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Abstract: - Our aim is to show the interplay between geometry analysis and applications of the theory of isoperimetric
inequalities for some nonlinear problems. Reviewing the isoperimetric inequalities valid on Minkowskian plane we
show that we can get estimations of physical quantities, namely, estimation on the first eigenvalue of nonlinear
eigenvalue problems, on the basis of easily accessible geometrical data.
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1 The classical isoperimetric inequality
The classical isoperimetric inequality after which all
such inequalities are named states that of all plane curves
of given perimeter the circle encloses the largest area.
This extremal property is expressed in the inequality:
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where A denotes the area of the domain and L the
length of its boundary curve, and where equality holds
only for circles. This inequality was known already to
the Greeks. Pappus, in whose writings these results are
preserved, attributes their discovery to Zenodorus.

In their famous book Isoperimetric Inequalities in
Mathematical Physics, Pélya and SzegO extended this
notion to include inequalities for domain functionals,
provided that the equality sign is attained for some
domain or in the limit as the domain degenerates [15].

2 Isoperimetric inequalities in “broader

sense”
There are several interesting and important geometrical
and physical quantities depending on the shape and size
of a curve:

-the length of its perimeter, the area included,

-the moment of inertia, with respect to the centroid,
of a homogeneous plate bounded by the curve,

-the torsional rigidity of an elastic beam the cross
section of which is bounded by the given curve,

-the principal frequency of a membrane of which the
given curve is the rim,

-the electrostatic capacity of a plate of the same shape
and size,

-and several other quantities.

By the help of the isoperimetric inequalities we
estimate physical quantities on the basis of easily
accessible geometrical data.

The study of isoperimetric inequalities in a broader
sense began with the conjecture of St Venant in 1856,
that of all cylindrical beams of given cross-sectional area
the circular beam has the highest torsional rigidity. In
1877 Lord Rayleigh conjectured that of all vibrating
elastic membranes of constant density and fixed area the
circular membrane has the minimum principal
frequency. He gave some evidence to support the
conjecture. In 1903 H. Poincaré¢ made the conjecture that
of all solids of given volume the sphere has the
minimum exterior electrostatic capacity.

The proofs of these conjectures were given later.
Around 1923 G. Faber [7] and E. Krahn [10] obtained
independently the statement of Rayleigh. The proof were
based on the introduction of a special system of
curvilinear coordinates. G. SzegO and G. Pélya gave
another proof by using the Steiner symmetrization [15].
In recent literature the statement of the Rayleigh
conjecture is usually referred to as the Faber-Krahn
inequality. This property is expressed by the inequality
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with equality only for the circle, and where jj is the
first positive zero of the Bessel function of the first kind
Jo(x), moreover A is the area of the domain €.

In 1930 G. Szegl gave a rigorous proof of H.
Poincaré’s conjecture [16].

In 1948 G. Polya verified the conjecture of B. de St.
Venant [14].



3 Geometrical inequalities

The theory of isoperimetric inequalities is a subject of
great diversity and complexity. Our aim is to show the
interplay between geometry analysis and applications for
some nonlinear problems.

3.1 The Bonnesen inequality
Let curve ¢, be given as follows
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This is a central symmetric convex curve, which plays
the same role as the circle. If p =1, then curve ¢ 5 isa
circle with radius p.

The Minkowskian length of curve ¢, defined by (3) is
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and the area of the domain bounded by this curve is
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If p=1,then P=1x.

In paper [5] G. D. Chakerian proved and applied the
Bonnesen inequality in the Minkowskian plane for any
convex n-gon (and consequently for any convex curve)
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This inequality was proved by L. Fejes Téth [8] for
nonconvex curves in the Euclidean plane. The proof
given in [8] can be generalized without difficulty to such
Minkowskian geometry where the “circle” is any
centrally symmetric convex curve. The Bonnesen
inequality (7) is valid for non-convex curves in
Minkowskian geometry [4].

If p=1, inequality (7) is reduced to the Bonnesen

inequality valid on the Euclidean plane.

3.1 The isoperimetric
Minkowskian plane

From the Bonnesen inequality (7) for a simply connected
convex domain G. D. Chakerian [5] showed that the
isoperimetric inequality in the Minkowskian metric for a
simply connected convex domain €2 has the form

inequality in the
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Inequality (8) can be considered as the generalization of
the classical isoperimetric inequality (1). In (8) equality

holds if and only if domain €Q is bounded by curve ¢,
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4 Eigenvalue problems
We consider the following eigenvalue problems:

4.1 The linear problem (the problem of a
vibrating membrane)
We consider a homogeneous membrane covering a

region Q  R?. The deformations u(x,y) normal to
the plane has to satisfy the differential equation

Au+Au=0 in Q. 9

On the boundary 0Q of  we have the Dirichlet
boundary condition:

u=0,

if the mebrane is fixed.

The solutions u# of problem (9) under Dirichlet
boundary condition are called eigenfunctions and the
corresponding values of A are eigenvalues.

In [6] it is showed that there exist countably many
number of distinct normalized eigenfunctions with
associated eigenvalues to the eigenvalue problem (9).

For the eigenvalues A,(p) of the Dirichlet eigenvalue
problem of (9) the relation A,(p)—> o holds when

k — . Every eigenvalue is positive.

Only in certain cases, the solutions of (9) can be
calculated explicitly. For example, in the case of fixed
membranes when Q) is bounded by
- rectangle,

- circle,
- circular segments,

- triangles with angles:
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In the case of the linear problem (9) many papers
were published on the estimation of the first eigenvalue.
Such bounds are based on geometrical data of the
domain. The Faber-Krahn inequality (2) gives a lower
bound for the smallest (the first) eigenvalue.

For the case of convex domains J. Hersch [9] proved
the following bound on the first eigenvalue
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where p is the radius of the greatest inscribed circle in

Q

For a simply connected domain €2, E. Makai [11]
showed that there exists a constant C such that
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R. Osserman [12] gave the bound

For k-fold connected domains.

4.2 The nonlinear problems

We seek eigenfunctions u. and

j corresponding

eigenvalues 4, (j=1,2,...) of the following nonlinear

eigenvalue problem

~0,=2u" 'y n QcR® (10

where the nonlinear operator Q , 1s defined by
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If p=1, problem (10) is equivalent to the linear
problem (9).

The boundary condition corresponding to the Dirichlet
problem of (10) is

u‘ o0 =0.

In [3] it is showed that there exist countably many
number of distinct normalized eigenfunctions in
Wol’p . () with associated eigenvalues to the
eigenvalue problem (10). For the eigenvalues 4;(p) of

the Dirichlet eigenvalue problem of (10) the relation
A;(p) = © holds when k —> co. Every eigenvalue is

positive. Here the first eigenfunction has also many
special properties. The first eigenfunction does not
change sign and the corresponding eigenvalue, the first
eigenvalue is simple [13].

We have showed (see [1]) that the Dirichlet problem

of (10) has solutions belonging to C*(Q)NC'(Q)
when €2 is bounded by rectangle
Q={(x,y):0<x<a, 0<y<h}.

For the nonlinear problem with Dirichlet boundary
condition the eigenvalues and corresponding
eigenfunctions can be given as follows
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Ak ; = const. determined from the normalization of the

eigenfunction, and function § , 1s the solution of the

differential equation
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The function S, is the generalized sine function, which

plays the same role in case of nonlinear problem (10) as
the sine function in case of the linear problem (9).



Isoperimetric inequalities are also useful in the
derivation of explicit a priori inequalities employed in
the determination of a priori bounds in various types of
initial or boundary value problems. As an example, we
know that for domain €2 with sufficiently smooth
boundary O€2 the first eigenvalue in the fixed

membrane problem (with boundary condition u‘ 0 =0)

admits the following characterization:
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This characterization gives us a bound for A, i.e., for

any v € Wol’p+1 (Q)
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The equality sign will always hold for some choice of v

In [4] we gave a lower bound for the first eigenvalue
of the nonlinear eigenvalue problem (10). By using
geometrical data we get

p+l

Ph2\ 2
/h(p)Z( A° ] (11)

where A is the area of Q = R?, P is defined in (6),
and h, is the first positive zero of the generalized

nonlinear Bessel function H(x) satisfying the

nonlinear ordinary differential equation (see[2])
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In (11) equality holds if and only if domain € is
bounded by curve ¢, . Inequality (11) is a generalization

of the Faber-Krahn inequality for nonlinear eigenvalue
problems.

Another lower bound can be given for the first
eigenvalue of the nonlinear problem (10) by using the
method of Steiner symmetrization. We know that the
eigenfunction associated to A; has the same sign in Q.

If domain € is a simply connected convex domain in

R? , then
p+l
A z{’““ } (12)
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where A is the area of Q — R , o is the radius of the

greatest inscribed curve ¢, of (), and o = sz is the

area of the region bounded by the greatest inscribed
curve ¢, of Q.

In (12) equality holds if and only if domain 2 R’

is bounded by curve c¢,. Inequality (12) is the

Py
generalization of the estimation given by E. Makai for
the linear eigenvalue problem (9) in [11].
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