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Abstract: - Our aim is to show the interplay between geometry analysis and applications of the theory of isoperimetric 
inequalities for some nonlinear problems. Reviewing the isoperimetric inequalities valid on Minkowskian plane we 
show that we can get estimations of physical quantities, namely, estimation on the first eigenvalue of nonlinear 
eigenvalue problems,  on the basis of easily accessible geometrical data. 
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1   The classical isoperimetric inequality 
The classical isoperimetric inequality after which all 
such inequalities are named states that of all plane curves 
of given perimeter the circle encloses the largest area. 
This extremal property is expressed in the inequality:   
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where A  denotes the area of the domain and L  the 
length of its boundary curve, and where equality holds 
only for circles. This inequality was known already to 
the Greeks. Pappus, in whose writings these results are 
preserved, attributes their discovery to Zenodorus.  
     In their famous book Isoperimetric Inequalities in 
Mathematical Physics, Pólya and Szegő extended this 
notion to include inequalities for domain functionals, 
provided that the equality sign is attained for some 
domain or in the limit as the domain degenerates [15]. 
 
 
2   Isoperimetric inequalities in “broader 
sense” 
There are several interesting and important geometrical 
and physical quantities depending on the shape and size 
of a curve:  
     -the length of its perimeter, the area included,  
     -the moment of inertia, with respect to the centroid, 
of a homogeneous plate bounded by the curve,  
     -the torsional rigidity of an elastic beam the cross 
section of which is bounded by the given curve,  
     -the principal frequency of a membrane of which the 
given curve is the rim,  
     -the electrostatic capacity of a plate of the same shape 
and size,  
     -and several other quantities.  

     By the help of the isoperimetric inequalities we 
estimate physical quantities on the basis of easily 
accessible geometrical data. 
     The study of isoperimetric inequalities in a broader 
sense began with the conjecture of St Venant in 1856, 
that of all cylindrical beams of given cross-sectional area 
the circular beam has the highest torsional rigidity. In 
1877 Lord Rayleigh conjectured that of all vibrating 
elastic membranes of constant density and fixed area the 
circular membrane has the minimum principal 
frequency. He gave some evidence to support the 
conjecture. In 1903 H. Poincaré made the conjecture that 
of all solids of given volume the sphere has the 
minimum exterior electrostatic capacity. 
     The proofs of these conjectures were given later. 
Around 1923 G. Faber [7] and E. Krahn [10] obtained 
independently the statement of Rayleigh. The proof were 
based on the introduction of a special system of 
curvilinear coordinates. G. Szegő and G. Pólya gave 
another proof by using the Steiner symmetrization [15]. 
In recent literature the statement of the Rayleigh 
conjecture is usually referred to as the Faber-Krahn 
inequality. This property is expressed by the inequality 
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with equality only for the circle, and  where 0j  is the 
first positive zero of the Bessel function of the first kind 

)(0 xJ , moreover A  is the area of the domain Ω . 
     In 1930 G. Szegő gave a rigorous proof of H. 
Poincaré’s conjecture [16]. 
     In 1948 G. Pólya verified the conjecture of B. de St. 
Venant [14]. 
 
 



3   Geometrical inequalities 
The theory of isoperimetric inequalities is a subject of 
great diversity and complexity. Our aim is to show the 
interplay between geometry analysis and applications for 
some nonlinear problems. 
 
 
3.1 The Bonnesen inequality 
Let curve ρc  be given as follows 
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This is a central symmetric convex curve, which plays 
the same role as the circle. If 1=p , then curve ρc  is a 
circle with radius ρ . 
The Minkowskian length of curve ρc  defined by (3) is  
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and the area of the domain bounded by this curve is 
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     If 1=p , then π=P . 
     In paper [5] G. D. Chakerian proved and applied the 
Bonnesen inequality in the Minkowskian plane for any 
convex n-gon (and consequently for any convex curve) 
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This inequality was proved by L. Fejes Tóth [8] for 
nonconvex curves in the Euclidean plane. The proof 
given in [8] can be generalized without difficulty to such 
Minkowskian geometry where the “circle” is any 
centrally symmetric convex curve. The Bonnesen 
inequality (7) is valid for non-convex curves in 
Minkowskian geometry [4]. 
     If 1=p , inequality (7) is reduced to the Bonnesen 
inequality valid on the Euclidean plane. 

 

3.1 The isoperimetric inequality in the 
Minkowskian plane  
From the Bonnesen inequality (7) for a simply connected 
convex domain G. D. Chakerian [5] showed that the 
isoperimetric inequality in the Minkowskian metric for a 
simply connected convex domain Ω  has the form 
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Inequality (8) can be considered as the generalization of 
the classical isoperimetric inequality (1). In (8) equality 
holds if and only if domain Ω  is bounded by curve ρc  
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4   Eigenvalue problems 
We consider the following eigenvalue problems: 

 
 
4.1 The linear problem (the problem of a 

vibrating membrane) 
We consider a homogeneous membrane covering a 
region 2R⊂Ω . The deformations ),( yxu  normal to 
the plane has to satisfy the differential equation 
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     On the boundary Ω∂  of Ω  we have the Dirichlet 
boundary condition: 
 

0=u , 
 

if the mebrane is fixed. 
     The solutions u  of problem (9) under Dirichlet 
boundary condition are called eigenfunctions and the 
corresponding values of λ  are eigenvalues. 
     In [6] it is showed that there exist countably many 
number of distinct normalized eigenfunctions with 
associated eigenvalues to the eigenvalue problem (9). 
For the eigenvalues )( pjλ  of the Dirichlet eigenvalue 

problem of (9) the relation ∞→)( pjλ  holds when 
∞→k . Every eigenvalue is positive. 

     Only in certain cases, the solutions of (9) can be 
calculated explicitly. For example, in the case of fixed 
membranes when Ω  is bounded by  
- rectangle, 
- circle, 
- circular segments, 

- triangles with angles: 
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     In the case of the linear problem (9) many papers 
were published on the estimation of the first eigenvalue. 
Such bounds are based on geometrical data of the 
domain. The Faber-Krahn inequality (2) gives a lower 
bound for the smallest (the first) eigenvalue. 
     For the case of convex domains J. Hersch [9] proved 
the following bound on the first eigenvalue 
 

2

2

1 4ρ
πλ ≥ , 

 

where ρ  is the radius of the greatest inscribed circle in 
Ω . 
     For a simply connected domain Ω , E. Makai [11] 
showed that there exists a constant C such that 
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R. Osserman [12] gave the bound  
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For k-fold connected domains. 
 
4.2 The nonlinear problems 
We seek eigenfunctions ju  and corresponding 

eigenvalues jλ   ,...)2,1( =j   of the following nonlinear 
eigenvalue problem 
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where the nonlinear operator  pQ   is defined by 
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for   .0 ∞<< p  
 

If 1=p , problem (10) is equivalent to the linear 
problem (9). 
The boundary condition corresponding to the Dirichlet 
problem of (10) is  
 

0=Ω∂u . 
 

     In [3] it is showed that there exist countably many 
number of distinct normalized eigenfunctions in 

)(1,1
0 Ω+pW  with associated eigenvalues to the 

eigenvalue problem (10). For the eigenvalues )( pjλ  of 
the Dirichlet eigenvalue problem of (10) the relation 

∞→)( pjλ  holds when .∞→k  Every eigenvalue is 
positive. Here the first eigenfunction has also many 
special properties. The first eigenfunction does not 
change sign and the corresponding eigenvalue, the first 
eigenvalue is simple [13]. 
     We have showed (see [1]) that the Dirichlet problem 
of (10) has solutions belonging to )()( 12 Ω∩Ω CC  
when Ω  is bounded by rectangle 
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For the nonlinear problem with Dirichlet boundary 
condition the eigenvalues and corresponding 
eigenfunctions can be given  as follows 
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., constA lk =  determined from the normalization of the 

eigenfunction, and function pS  is the solution of the 
differential equation  
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under condition 
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The function pS  is the generalized sine function, which 
plays the same role in case of nonlinear problem (10) as 
the sine function in case of the linear problem (9). 



     Isoperimetric inequalities are also useful in the 
derivation of explicit a priori inequalities employed in 
the determination of a priori bounds in various types of 
initial or boundary value problems. As an example, we 
know that for domain Ω  with sufficiently smooth 
boundary Ω∂  the first eigenvalue in the fixed 
membrane problem (with boundary condition 0=Ω∂u ) 
admits the following characterization: 
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This characterization gives us a bound for 1λ , i.e., for 

any ∈v )(1,1
0 Ω+pW  
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The equality sign will always hold for some choice of v  
     In [4] we gave a lower bound for the first eigenvalue 
of the nonlinear eigenvalue problem (10). By using 
geometrical data we get 
 

2
1

2
0

1 )(

+











≥

p

A
Ph

pλ                    (11) 

 

where A  is the area of 2R⊂Ω , P  is defined in (6), 
and 0h  is the first positive zero of the generalized 
nonlinear Bessel function )(0 xH  satisfying the 
nonlinear ordinary differential equation (see[2])  
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with conditions  
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and 
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In (11) equality holds if and only if domain Ω  is 
bounded by curve ρc . Inequality (11) is a generalization 
of the Faber-Krahn inequality for nonlinear eigenvalue 
problems. 
     Another lower bound can be given for the first 
eigenvalue of the nonlinear problem (10) by using the 
method of Steiner symmetrization. We know that the 
eigenfunction associated to 1λ  has the same sign in Ω . 
If domain Ω  is a simply connected convex domain in 

2R , then  
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where A  is the area of 2R⊂Ω , ρ  is the radius of the 

greatest inscribed curve ρc  of Ω , and 2ρσ P=  is the 
area of the region bounded by the greatest inscribed 
curve ρc  of Ω .  

     In (12) equality holds if and only if domain 2R⊂Ω  
is bounded by curve ρc . Inequality (12) is the 
generalization of the estimation given by E. Makai for 
the linear eigenvalue problem (9) in [11]. 
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