
An application framework for E-learning

JAN HERMAN VERPOORTEN
Institute of Information and Computing Sciences

Utrecht University
Padualaan 14, 3584 CH Utrecht University

THE NETHERLANDS

Abstract: - The development of learning technology systems is expensive and time consuming. This applies to
both the system and the educational content. This article describes an effective solution in the form of an
application framework. The framework is capable to deliver highly interactive content and is suitable for all
kinds of instruction, with or without adaptive behavior. It can be handled by educational designers and
requires minor technical skills. The framework architecture is designed for change by programmers.

Key-words: - Architectures, XML, Software Design and Development, Educational Software.

1 Introduction
E-learning applications, following the IEEE
recommendations [1] from now on called Learning
Technology Systems (LTSs), are highly interactive
applications, possibly with complex behavior. They
also contain often huge amounts of educational
content. The effect of both factors is that many
projects face a high cost. Cost does matter because
the current demand for LTSs is great, incomparable
with other software applications. If LTSs become
more incorporated in the daily practice, the call will
be even greater. So, huge resources (people, time
and money) are needed for development and
maintenance.

An application framework (called ClassMate)
specifically focused on LTSs has been developed. A
framework can reduce development cost largely
because both design and code can be reused over
and over. Unfortunately the development of
effective application frameworks is difficult.
Effective reuse is only achieved by a not too
complex structure and the capacity to meet the
requirements in a broad application variety.
ClassMate has an ancestor [2], deployed in a variety
of domains and instructional levels. Application
types range from laboratory programs for
educational research [3,4] to computer-based
training and testing [4,5]. Useful experiences were
gathered and contributed largely to the current
design. A browser-based prototype (ECMA script)
of this design was constructed first. It was
succesfully deployed in two multimedial web-based
learning projects in order to validate the new design
concepts. This article discusses the final result.

 Unlike other application frameworks, ClassMate
is more than an architecture for a component library.

In a way, it is a self-assembling program. A
developer creates a specification, written in an XML
grammar. When the framework is launched (as an
applet on a web page or as an application), it reads
the specification and starts instantiating and
assembling the specified components. So,
developing an LTS is equivalent to writing a
specification which enables very rapid application
development, requires minor technical skills but
assumes a sound knowledge of the framework
modeling.

In the next section, this modeling is discussed.
Section 3 decribes the modeling of educational
content in ClassMate. Both issues are related to the
XML grammar, needed for specification. Section 4
finalizes the article with a conclusion.

2 Modeling the application framework
The scope of an application, developed with the
ClassMate framework is called a session. In a
session specification three matters stand central: the
content profile, the session course and controlling
either element by the program, the learner or both.
Any control causes runtime dynamics. An example
of such dynamics is an adaptive test, presenting
items whose difficulty is relative to the learner's
progress. Content profile, session course and
runtime dynamics will be discussed next.

2.1 Content profile
A content profile is expressed with three terms:
topic, store and item. Topic is only a label for lesson
content and is completely neutral as to application
type or granularity. For example the topics 'nouns'

and 'verbs' in a language learning lesson. From the
learner its perspective, a session is a series of
individual pieces of lesson content, called items. In
between topic and item stands store, which is an
abstraction for storage. The relations between topic,
store and item are expressed in a tree: content tree.
Topic nodes contain either topic or store nodes;
store nodes only contain items. Because a session
specification does not contain physical content, an
item node does not not contain the physical item but
knows its storage location and meta data such as an
ID or a style sheet. Figure 1 shows a possible
content tree structure and the XML grammar of a
topic node.

<element name='TopicSpecNode'>
 <complexType>
 <choice>
 <element ref='cm:TopicSpecNode'
 maxOccurs='unbounded'/>
 <element ref='cm:StoreNode' maxOccurs='unbounded'/>
 </choice>
 <attribute name='name' type='string' use='required'/>
 <attribute name='learnerControllable'
 type='boolean'
 use='optional' default='true'/>
 <attribute name='maxWeight'
 type='integer' use='optional'/>
 <attribute name='minWeight'
 type='integer' use='optional'/>
 <attribute name='nodeShufflerClassName'
 type='string' use='optional'
 default='DefaultNodeShuffler'/>
 <attribute name='nodeType'
 type='cm:NODETYPE' use='optional' default='OR'/>
 <attribute name='selected'
 type='boolean' use='optional' default='false'/>
 <attribute name='weight' type='integer' use='optional'/>
 </complexType>
</element>

Fig.1. Possible content tree structure and XML
grammar of a topic node

As you can see in figure 1, a topic node has many
attributes such as weight, minWeight, maxWeight,
selected and nodeType. All about the same is the
case for store nodes. The attributes specify the
relative importance of a node and enable dominance
of a node on to its children. This way, all kind of
content profiles can be realised. For example each
other including or excluding topics, stores or items
can be expressed: If a store has the attribute-value
pair nodeType="AND", selection of that store (or of

one item inside) implies the selection of all items:
the none_or_all dominance.

The relative importance in the content profile of a
topic or store node also defines the number of items
assigned to it during runtime. An algorithm
calculates this number, also taking the various
weights and nodeTypes into account. When during
runtime content tree is asked for an item, a node
shuffler (see figure 1) defines which one is returned:
Each node uses its own shuffler object. The
framework contains different shufflers but, as with
most components, an external component,
implementing a particular interface or abstract class,
may be delivered.

As many other aspects of the framework, a
content tree doesn't need to be static all the time. It
may be changed by user control, program control or
by both: This is the possible dynamic behavior of a
session. I will further explore the meaning of
dynamic behavior to a content tree in the next
section.

2.2 Session course
The course of a session is controlled either by the
learner, the program or both. A distinction is made
between initial and runtime issues. The bootstrap
component of the framework deals with all initial
issues, such as reading in the specification. So, each
session starts with a bootstrap: The specification
defines exactly what must or can be done both by
the program and the learner. This also influences the
content tree, for example if a learner is allowed to
make own choices. In the XML grammar of figure 1
this is represented by the learnerControllable and
selected attributes. To clarify, please look at the
hypothetical specification in figure 2. The learner's
choices are reflected by thick lines. As you can see
in the figure, topic c has nodeType='AND'. The
effect is that, because the learner selected either c,
c1 or c2, automatically the c node as well as its
branches, here c1 and c2, were selected. The learner
also choose node b2 or b3, without further
consequences, although these selections were
checked against the constraint on the root, which is a
minWeight=300 and a maxWeight=1000. This time
the learner selected a total sum of 450, so everything
is correct. When the learner finishes the bootstrap,
the tree removes its redundant branches. This way
the final content tree is realized (see figure 2).

Fig.2. Initial and final content tree; screen fragment
below

The runtime control issues of the session course

differ greatly from the initial ones. The framework
has a number of instances to define the behavior of a
session. One such instance is the run strategy which
bundles aspects like item mode (modal or
modeless), iteration (the number of loops), its
control (learner or program), menu and toolbar items
and so on. This runtime control is (of course) also
part of an specification. The learner part of it is
mainly contained in the user interface specifications.
This applies not only to menu or toolbar items. Also
different tasklist managers and item managers can
be defined, hiding either all aspects behind the
scenes or giving the learner an influence on the
session course.

Program control on the progress is achieved by
rules in a specification. During the course of a run
strategy, the learner's progress causes different
events and session states. These can be referred to in
rules. Each rule contains an expression and an action
list. If for example the learner performs poorly on a
topic, its relative weight in the content profile may
be increased. A possible expression in an XML
instance document for such a situation is showed in
figure 3 below. In this fragment a run strategy
contains two rules. They effect adaptive behavior:
more items are assigned to topic 'c' if necessarily.

<RunStrategy ….. >
 …..
 <Rule value=' (c.getScore()<0.5) && (c.getItemsDone()>3)'
 actionList=' c.setWeight(100)' />
 <Rule value=' (c.getScore()<0.5) && (c.isImplemented())'
 actionList=' c.setWeight(200);segment.setItems(20)' />
</RunStrategy>

Fig.3. Defining dynamic behavior in a run strategy

3 Content modeling
In ClassMate, educational content is synonymous to
items. An item is a modeling issue: it is the smallest
independent content unit. Similar to the session
specification, each item is a single specification in
an XML grammar. When asked for an item, the
content tree (part of the session specification)
returns the item's metadata such as the location. The
framework then reads the item specification and
starts constructing the item by instantiating and
assembling all specified components: Viewed from
the application framework, an item is a container
object for viewers, interactions, rules, inner items
and a view tree. Finally the framework renders the
item on the screen, as defined in the view tree part of
the item specification. After the learner-system
transactions the item manager on duty stores the
item.

Viewers apply to non-interactive data. They may
contain some interaction (e.g. a zoom function in an
image viewer), but such interaction is strictly for
program handling purposes and is not part of the
instructional experience. Interactions perform the
(educational) learner-system interactions.
Transactional behavior is specified in rules and is
largely performed by inner items: items, recursively
contained (or specified) in items. Rules are not
restricted to connecting learner events to inner items:
everything in the entire framework can be
manipulated, similar to the rules in the session
specification as mentioned before. The viewer and
interaction parts of an item specification will be
discussed individually next.

3.1 Viewers
Viewers are modeled on three aspects: data model,
visible granularity and the data type of the latter.
Three basic data models are distinguished:
singleton, list and tree. The framework contains a
number of viewers, although all handle an intrinsic
content type. For singletons, ClassMate uses the
MIME (Multipurpose Internet Mail Extensions) type
system. The framework is able to 'deliver' a suitable
viewer if a specification contains a known MIME
declaration. Custom MIME viewers can be
registered by means of the session specification.

A singleton is a single entity, containing intrinsic
content. A GIF bitmap image for example has a
singleton data model and intrinsic content.
Complexity arises when data contains intrinsic
content and other data models. Now we have a

container at the root of a complete hierarchy (figure
4). Usually, such a container is called a document.

Fig.4. Data model, granularity and data type

The difference between singletons and container

documents is made because of the difference in
inner complexity. In case of a singleton with a
visible granularity, a viewer can be specified by its
MIME type. It is more difficult in contrast to specify
a container viewer by a comparable and reliable
generic mechanism. Such viewers are considered to
be individual components, specified by a class
name. This is a common approach in ClassMate:
factory methods [6] will instantiate the specified
class. This class must be a super class of the abstract
viewer class contained in the framework. Although
list and tree model viewers can be specified by a
MIME type if all elements are of the same type, this
is not chosen. These viewers also are specified by its
class names.

3.2 Interactions
Interaction is an important aspect of the framework
modeling, because it is an essential hallmark of
education. LTSs are highly interactive systems and
so, a design challenge lies into finding interactions
which are unique and effective for the educational
domain. However, to avoid the nightmare of an
endless interaction collection, a suitable model
should be able to catch new variants in a
conceptually finite collection. Only in this way the
essential interfaces, abstract and helper classes can
be designed, necessarily for integration of new
variants into the framework.

The modeling carried out represents such a finite
collection. The modeling distinguishes data model,
action type and view/control implementation. The
latter refers to concrete implementations of abstract
super types. Only two action types are defined:
selecting and editing (something). An action is
performed on a data model. I distinguish (similar to
viewers) three different basic models: singleton, list
and tree. Considering a particular data model and an

action on it, several view/control-implementations
are possible.

By modeling an action in the types 'edit' or
'select', one has to face some ambiguity. A select
action is a single act. But an edit action is mostly a
combination of different acts. For instance selecting
a position, followed by changing something at that
position (insert, delete, replace, reorder). Multiple
ways to get the result are possible. Reordering can
be done by dragging or by deleting and typing again.
Deleting can be done by selecting the phrase and
hitting a key, etc. If several differents acts may
cause the same effect, then what exactly is 'edit'?
First, almost any edit action implies an initial
selection, but this is not the main act. Next, different
acts follow and the effect of all these following acts
is called 'edit': something will be changed. So,
although 'edit' is not a precise definition in terms of
the acts to be performed, the effect is clear. That is
how it is used in the modeling, as 'change' opposite
to 'select'. If needed, 'change' can be further
specified as 'reorder', 'insert' and so on. In many
cases such a need does not exist. This way the
modeling also fits with the daily used terminology.

Similar to viewers, both the list and tree model
contain singleton elements. This is a 'complication'
because now acts may handle on the list or tree, as
well as on the elements inside. In the modeling I
keep these two apart. For example, an edit action on
a list or tree is inserting, reordering or deleting
elements. A select action on a list or tree will select
an element. If however this element is editable, it
may be followed by an edit action performed on the
element 'inside' (see figure 5). This way more
complex interactions are possible.

Fig.5. Interactions at list and tree data model

The framework contains a number of interaction
components. This collection by can be easily
extended by custom designed components, again
using the base classes of the framework. An
example of an interaction (screen fragment) is in the
figure below.

Fig.6. Interaction example: multiple-choice exercise
as a browse variant. Options can be seen one by one
and marked with 'minus' or 'plus'. Browse filters can
be set.

4 Conclusion
ClassMate is not an integrated learning
environment. It does not offer services for managing
learner groups, storing individual profiles, retrieving
learner progress and so on. Also the editing of item
specifications is beyond the scope of the ClassMate
framework. Nevertheless this is an important factor,
because such editing is preferably within reach of
the teacher using the program. Research [2,7] has
shown that teacher involvement in development and
maintenance is crucial for success: The teacher is
the most prominent problem owner in the daily
situation. In the pre-ClassMate period an effective
working model for content creation was founded,
suitable for teachers. It also turned out to be
effective in the prototype phase. However, further
exploration of this aspect is beyond the scope of this
article.

The ClassMate design benefitted from the
experiences, gathered at the development of dozens

of computerbased lessons and testing programs in
the past. One of the lessons learned is to make a
distinction between educational designers and
teachers. This still stands: there are no arguments to
believe that non-technical teachers will be able to
handle the ClassMate framework. So, educational
designers are supposed to develop a session
specification, because it presumes some technical
knowledge and a sound knowledge of the ClassMate
framework modeling.

 The main achievements of the ClassMate
application framework are rapid and code-safe
application development by educational designers.
On the basis of a specification, the framework is
immediately functional. The framework is capable
of delivering a broad variety of instruction types.
For technicians, adding component extensions to the
framework is straightforward.

References:
[1] IEEE Learning Technology Standards

Committee, Draft Standard for Learning
Technology – Learning Technology Systems
Architecture, IEEE
(http://grouper.ieee.org/LTSC/wg1), 2000.

[2] Verpoorten J.H., A Model Based Approach to
Courseware Development, PhD Thesis, ECCO,
Utrecht, 1995.

[3] Graaff R. de, Differential Effects of Explicit
Instruction on Second Language Acquisition,
PhD Thesis, HIL Dissertations, Leiden, 1997.

[4] Slagter P.J., Learning by Instruction, PhD
Thesis, Rodopi, Amsterdam, 2000.

[5] Verpoorten J.H., Informatietechnologie voor
studenten letteren. In Mirande M.J.A. (ed.) De
Kwaliteiten van Computerondersteund
Onderwijs, Coutinho, Bussum, 1994, pp. 318-
331.

[6] Gamma E., Helm R., Johnson R. and Vlissides
J., Design Patterns: Elements of Object-
Oriented Software, ACM Press, New York,
1995.

[7] Blom J.J.C., Use-oriented Courseware
Development for Agricultural Education : An
Ecological Approach, PhD Thesis,
Landbouwuniversiteit, Wageningen, 1997.

