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Abstract: - In this paper we propose a model of a nonautonomous dynamical system whose operations show turbulent 
behavior. The appearance of the trajectory is similar to that of a simplified tornado. The electronic circuit implementation 
of this model contains simply two linear capacitors, a voltage-controlled switch (VCS), a linear inductor, two resistors, 
and a nonlinear negative resistor. Computer simulation results are used to show the existence of the desired turbulent 
attractor. 
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1.  Introduction 
Turbulence is a nonlinear phenomenon that can be found 
in many fields of science and technology. It has received 
considerable attention in several developments of high-
speed jet aircraft, plasma physics, and chemical 
engineering [1]. Thus, the development of a model of a 
simple system whose behavior is turbulent, is important 
not only in the study of how to avoid this nonlinear 
phenomena, which can be a nuisance, but also in the 
development of applications which actually exploit the 
features of this phenomenon. Brown [2] has discussed 
the relationship between turbulence and chaos and 
provided the theory to synthesize a turbulent vortex with 
convection. Inspired by this theory and the design of the 
twist-and flip circuit [3,4], we can actually develop a 
model of a system with a turbulent behavior in a same 
way as designing chaotic systems.   

In this paper, we propose a model for a turbulence 
system generator whose phase portrait resembles that of 
a simplified tornado, i.e. a rotating trajectory having a 
vortex and swirling upward and downward. In section 2, 
an nonautonomous system design of this model is 
presented. This system is constructed from building 
blocks (e.g. integrator, summer, multiplier, and 
amplifiers) that can be either designed or found in the 
off-shelf electronics library. The dynamics of this 
system, which is driven by a square-wave voltage 
source, are described by a system of ordinary differential 
equations  

  

  X f       (1) & ( , )X t=

Where X is a vector in 3-dimensional Euclidean space 
R3. In addition, a step-by-step procedure on how to 
select the system parameters is also presented. Section 3 
presents a simple nonautonomous electronic circuit 
implementation with a turbulent behavior. This circuit 
contains only two capacitors, one inductor, two resistors, 
a voltage-controlled switch (VCS) and a nonlinear 
negative resistor. Because of its simplicity, this circuit 
can be a good starting point to design more complex 
turbulent systems for advanced applications. 
Enhancements of the proposed system are also 
discussed. 

Throughout the paper, computer simulation results, 
using Simulink [5] and Electronics Workbench [6], are 
obtained to show the existence of the desired turbulent 
attractor. 

2. Turbulent system design 
Our aim in this section is to develop a model of a 
nonautonomous system that exhibits a trajectory that 
resembles that of a simplified tornado. It should be clear 
that the proposed model is kept very simple for 
illustration purpose and is not meant to represent actual 
tornados. Fig.1(a) shows the basic system model.  



 
Fig.1(a). Block diagram of a turbulent system. 

This model is described by the following system of 
ordinary differential equations: 
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X(0) is the initial condition, and denotes the 
derivative of the trajectory X(t).  and  are the 
equilibrium points. The voltage source s(t), for driving 
the system, is selected to be a square wave of unity 

amplitude and angular frequency f or period 
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shown in Fig.1(b).  

 
 

Fig.1(b). Waveform of the voltage source s(t) (a square 
wave with unity amplitude and frequency f.) 

 

It is described by: 

s t
for t n n T
for t n n T

( )
( , )
( , )

=
∈ +
∈ + +





1
0 1

1
2

1
2

               (3) 

Where n=0,1,2….For s(t)=1, the trajectory of system (2) 
is lead by the eigenvalues ( 1 1 ) and 
eigenvectors of A1 and the location of the equilibrium 
point . For s(t)=0, it is lead by the eigenvalues 

(

X Q
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) and eigenvectors of A2 and the location 
of the equilibrium point . Equation (2) can be 
regarded as three linear equations on two half-spaces  
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The solution of (2) on S1 is given by 
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where 
r
ηr1

and 
r
ηi1

are the real and imaginary parts of the 
eigenvectors associated with the complex conjugate pair 
of eigenvalues, 

v
ξγ 1

is the eigenvector associated with the 
real eigenvalue. The constants c , , and c1

cr1
ϕc1

 are real 
and determined by the initial conditions X(0). Similarly, 
the solution of (2) on S0 can be written in the same form 
as (4) with the corresponding eigenvalues, eigenvectors 
and constants. The objective is then to select all of the 
systems parameters described by (2) such that the 
trajectory of this system swirls down as it approaches the 
equilibrium point . Once it reaches the bottom, it 
changes directions and swirls up to the top away from 
the equilibrium point . This process is repeated over 
again. To achieve this objective, a step-by-step 
procedure is presented next. It should be noted that the 
selection of the parameters in this procedure is not 
unique. The function s(t) is selected to be periodic for 
simplicity and it should be clear that this does not imply 
that the trajectory of an actual tornado is periodic. 
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Design Procedure 

Step 1: Design of top-to-bottom trajectory 
Specifications 1: For the dynamical system described by 
A1 to have a trajectory that swirls down around  
while approaching it in the (x,y) plane and repelling it in 
the z-direction, the following must be satisfied : 

X Q
1

(i) The complex eigenvalues λ α ω= ±1 j 1  must be 
selected such that α1<0 and ω1>0. 

(ii)  The real eigenvalue γ1>0. 
 
Step 2: Design of bottom-to-top trajectory 
Specifications 2: For the dynamical system described by 
A2 to have a trajectory that swirls up around  while 
repelling it in the (x,y) plane and approaching it in the z-
direction , the following must be satisfied : 

X Q
2

(i)  The complex eigenvalues λ α ω= ±2 j 2 must be 
selected such that α2>0 and ω2>0. 

(ii)  The real eigenvalue γ2<0. 
 
Step 3: Linking the two trajectories 
In this step, select the function s(t) and use equation (2) 
to link the systems described in steps (1) and (2). Note 
that the initial conditions X(0) and the equilibrium points  

 and  must be selected to satisfy the above 
specifications.  
X Q

1 X Q
2

This procedure is best illustrated by the following 
example. 

Example 1: Consider the following dynamical system 
described by equation (2) where, 
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The implementation of this system is shown in Fig.2. 
Fig.3 shows a trajectory that swirls around in the 
direction toward  and away from . This trajectory 
meets the design specifications. Starting from the initial 
state X(0), and for s(t)=1, it swirls down until s(t) 

changes to 0. At that time, the trajectory will swirls up 
until s(t) changes back to 1. The process repeats itself.  

X Q
1 X Q

2

 
Fig.2 Block diagram of the physical implementation of 

the turbulent system described in the example.  
 
 

 

Fig.3. Trajectory of the system of Fig.2 realizing the 
dynamics of turbulence similar to that of a simplified 
tornado. 
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In the next section, a simple electronic circuit that 
displays a turbulent behavior is presented. The design of 
this electronic circuit is important not only to understand 
further the nature of turbulence but also to serve as a 
starting point to develop applications that explore this 
nonlinear behavior. 

3. Turbulent circuit implementation 

Fig. 4 shows an electronic circuit implementation of the 
model described in section 2. This circuit is simple and 
can be viewed as a good starting point to design complex 
systems that exploit the phenomenon of turbulence. 

+ 

 Fig. 4. Implementation of the turbulent circuit 

The proposed circuit contains simply two linear 
capacitors C1and C2, a voltage controlled switch (VCS) 
SW1, a linear inductor L, two resistors r and R4, and a 
nonlinear negative resistor. The nonlinear negative 
resistor denoted by R, described by i(v), is implemented 
using an operational amplifier and three resistors R1, R2, 
and R3. (v is the voltage between the negative terminal of 
the opamp and the ground). 
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Where β = +
R

R R
2

1 2( ) . The case of interest is when 

this part of the circuit is active (i.e. generating energy for 
the capacitor and inductor). In this case, 

R V v Vsat sat=  − < <βR
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β . Vsat is the 

operational amplifier saturation voltage. The switch SW1 
is controlled by the voltage source s(t) which is a square 
wave of unity amplitude, frequency f and duty cycle d. 
The switch SW1 is closed when s(t)=1, otherwise it is 
open. The state equations of the turbulent circuit are 
described for both cases, s(t)=1 and s(t)=0: 
 
For s(t)=1, we have v = vc1 and 
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and for s(t) = 0, we have 
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In accordance with the previous design considerations, 
suitable values for the circuit components are: L=0.5mH, 
r=100Ω, C1=0.5nF, C2=1µF, R1=R2=1kΩ, R3=5kΩ, and 
R4=100Ω. The voltage source s(t) has a frequency 
f=10kHz and a duty cycle d=58%. The equilibrium 
points are located at (0,0,-1) and (0,0,0) and the initial 
conditions are selected to be (vc1(0)=0.2V, iL(0)=0, 
vc2(0)=0). The phase portraits in the planes v1-v2 and iL-
v1, obtained by simulating the circuit using Electronics 
Workbench [6], are shown in Fig.5 and Fig.6, 
respectively. 

It should be clear that although the model described 
above is kept simple, adding several features could 
enhance it. For instance, we can include the following 
feature such as (1) increasing the trajectory rotation 
speed and (2) moving the fixed points. These 
enhancements can be related to the atmosphere changes. 
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4. Conclusion 
In this paper, we have proposed a model of a 
nonautonomous dynamical system that shows turbulent 
behavior similar to that of a simplified tornado. The 
proposed system is constructed from simple building 
blocks that can be easily described by linear ordinary 
differential equations. The global system is driven by an 
external source that enables the trajectory to swirl up and 
down. A simple electronic circuit implementation 
displaying turbulence was also presented. Although the 
true dynamics of turbulence is certainly much more 
complex, the proposed simplified model may form the 
basis for the development of more advanced and detailed 
mathematical models. It may also serve as a starting 
point for further research to understand this complex 
phenomenon of turbulence and to develop applications 
that use actually this phenomenon.   
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Fig. 5. Phase portrait in the plane v1-v2. (horizontal axis: 
v1, 5V/div. vertical axis: v2, 0.1V/div). 

 

 

 

 

Fig. 6. Phase portrait in the plane iL-v1 (horizontal axis: 
iL, 0.1V/div. vertical axis: v1, 5V/div). 
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