
On Minimal Trellises of Linear Binary Block Codes

HOC Roman *, FARKAS Peter**, Dr. Sergio Herrera-Garcia ***
* SWH s.r.o.,Stromova 9, 83007 Bratislava, SLOVAKIA, ** Slovak University

of Technology, Ilkovicova 3, 812 19 Bratislava, SLOVAK IA, *** CITEDI-IPN
Research Center, 2498 Roll Dr. # 757 Otay Mesa, San Diego, CA 92154

Abstract: - This paper deals with the problem of searching and designing of minimal trellises for linear
binary block codes (LBBC), from the generator matrices (GM). Minimal trellises could be used for soft
decoding, especially in decoders which utilize the so-called Maximum Likelihood criterion, e.g. in
decoders based on Viterbi algorithm.

Key Words: - linear block codes, minimal trellis, span, Viterbi algorithm, ML decoding, soft decoding.

1 Introduction

The problem of ML decoding with the help of
the trellis was first time tackled in the year 1974 by
Bahl et al. in [1]. There was described a BCJR
algorithm (acronym from names of authors) which
minimizes symbol error probability. The problem of
trellis construction arose together with the perspective
to use optimal decoding algorithms such as Viterbi
algorithm, which minimizes sequence error
probability. Many of theories of minimizing trellises
have been found for simplifying the decoding
complexity. Kschischang and Sorokine in [2]
described algorithm for the trellis construction from
generator matrix G = [k.n]. This matrix must be
transformed to „trellis-oriented form“ with help of row
operations over GF(2). Row vectors must be linearly
independent vectors with the minimal possible span
and each of them with minimal Hamming distance
(HD = d) from another row vectors. In [2] these row
vectors are called „atomic generators“. But authors
don’t present method how to find k vectors with a
really lowest span.

In [3] a method denoted as Greedy Algorithm I,
which always generates minimal span vectors
(definitions - see II.) is described. However it is based
on an exhaustive search through all possible n-
dimensional vectors and selection of k independent
vectors with HD = d, which can generate the LBBC,
and with the span as small as possible. This algorithm
is unusable in real time for large values of n. Modified
Greedy Algorithm II is also based on row operations in
G over GF(2). In [3] column permutations in G are
mentioned, but author hasn’t used them because of
nonexistence of an optimal algorithm. In [4]
complexity measures for minimal trellises are
described - total number of vertices, edges, mergers
and total number of additions and reductions that
Viterbi algorithm must make.

We want to extend the set of these algorithms
and also describe methods minimizing the span of
GMs based not only on row operations, but also on
column operations with column vectors of G. In
section 2 we will describe the LBBC and its G matrix,
span, span length, trellis and trellis complexity
measures. In section 3 we will present the methods
using column operations, which leads to trellis
simplification, and section 4 contains results for
various LBBCs.

2 Linear Block Code and its Trellis
Linear binary (n,k,d) block codes (LBBC) are

transmission codes and belong to the group of error
correcting codes. The symbols of LBBC are from the
set {0,1}. LBBC encoder divides the input bit stream
on k-tuples and encodes them into n-tuples, where n>k,
i.e. a code brings into the bit stream redundant bits. A
LBBC could be described using so-called generator
matrix G with k rows and n columns. Hence G
consists of k linearly independent vectors (rows) with
the length n. Every codeword
c = (c1, c2, … cn) could be obtained from a k-tuple
u = (u1, u2, … uk)? using multiplication with G over
GF(2): c =? uG.

A trellis is an oriented finite graph with vertices
(nodes) and edges (branches) with labels. A set of
vertices V is ordered in „depths“ which are represented
through index i, i = 0, 1, …, n. There is only one
vertex in depth 0 (start) and usually one in depth n
(end). A set of edges E connects the vertices from
depth i-1 to i, i = 1, 2, …, n. Labels on the edges
correspond with bit values of the codewords in time i.
The trellis must represent all codewords as the paths
from start to end.

A minimal trellis has a minimal number of
vertices | V | and a minimal number of edges | E |
among all trellises that might represent a given LBBC.
McEliece has presented in [3] so-called BCJR trellis,

first time presented in [1]. A BCJR trellis is
constructed from the control matrix H and is edge-
minimal. In [3] it is shown that BCJR trellis can be
constructed from (MSGM) GM G as well. Both
principles of construction are very well described and
in detail explained on examples in [3].

We have focused on the construction from G
matrix. So-called Minimal Span Generator Matrix
(MSGM matrix) [3] must have the following
properties:

• The row vectors g1, g2, … gk of G have to be
linearly independent

• First nonzero symbol gij = 1 in each row
vector gi, i = 1, … k must be placed in
different position (column) than first nonzero
symbol in another rows j = 1, 2, … n and these
positions are stored in variables:
Li(gi); i = 1, 2, … k (1)

• Last nonzero symbol gij = 1 in each of row
vector gi, i = 1, … k must be placed in
different position (column) than last nonzero
symbol in another rows j = 1, 2, … n and these
positions are stored in variables:
Ri(gi); i = 1, 2, … k (2)

• If the G matrix fulfils last two conditions, we
say that it has a LR property.

• The span of row vectors is defined as:
Span(gi) = {Li(gi), Li(gi)+1, …, Ri(gi)};
i = 1, 2, … k (3)

• Number of row vector elements inside the
span is called spanlength:
Spanlength(gi) = | Span(gi) | (4)

Span(G) is the set of row spans. Spanlength(G) is
equal to the sum of the spanlengths of the row vectors.
McEliece (Theorem 6.11) says that „a matrix is
MSGM if and only if it has the LR property“. But he
has actually considered row operations only (Gaussian
elimination, GE) over GF(2) with rows of G (see
Greedy Algorithm II in [3]). This method doesn’t
guarantee that Spanlength(G) will be really minimum
spanlength. From this aspect is the expression
„MSGM“ incorrect.

The trellis complexity could be evaluated using
different methods. Some reasonable measures for
Viterbi decoding complexity are mentioned in [4].
From the trellis we can obtain the total number of
edges | E | and total number of vertices | V |. We can
obtain from the trellis also the total number of
simplifications | M |, i.e. path reductions. In binary
case a vertex has two incoming edges and one
outgoing edge. In binary case:
| M | = | E | - | V | + 1 (5)
It means, that we can evaluate | M | from the known
values | E | and | V |. (In non-binary case if the code is

constructed over GF(q), the expression has a
denominator equal to q-1). The value | E | represents
the total number of additions required to compute path
metrics in the Viterbi algorithm and value | M | is the
number of binary comparisons required to obtain one
survived path through in a trellis.

3 The Methods Based on Operations
with Column Vectors
It’s obvious, that the smaller is Spanlength(G), the less
complex will be the trellis (i.e. the less will be the
values of | V | and | E |). To reduce the value of
Spanlength(G), we considered not only row
operations, but also column operations in G. The main
reason why is because the row vectors usually contain
in Spans some 0’s which can be displaced out of the
Spans and so reduce Spanlength(G) via columns
permutations. Column exchanges do not affect the
LBBC weight spectra, they cause only the rotation of
the vector space in which the code is defined. The
resulting G’ matrix describes an equivalent (n,k,d)
LBBC.

3.1 Method A.
/* Span reduction with the help of column operations*/
for(x = 1; x = n!; x++) {
Select n column vectors in G and change the column
order (make permutations)
Write column vectors to the matrix marked as G’x
Transform G’x matrix to have LR property
// GE, row operations over GF(2)
Calculate Spanlength(G’x)
Store G’x and Spanlength(G’x)
}
Find matrix G’ with min{Spanlength(G’x)},
x = 1, 2, … n!

Method A transforms the known G matrix to all
possible G’x matrices and selects from them the one:
G’ with LR property and with the minimal span.
But all possible column replacements must be checked
out and alike the Greedy Algorithm I, it isn’t a real
time task for accessible computers.

3.2 Method B.
/* Span reduction with help of column operations */
Set processRunTime
Calculate Spanlength(G)
Do {
Select 1st column in G
// random value i from interval 1, 2, … n
Select 2nd column in G
// random value j from interval j = 1, 2, … n, j ? ?i
Change column vectors i and j, mark new matrix as G’

Transform G’ matrix to have LR property
// GE, row operations over GF(2)
Calculate Spanlength(G’)
if(Spanlength(G’) < Spanlength(G))
then save G’ as new G
Decrement processRunTime
}
While processRunTime has not expired, continue
again.

Method B needs not to check all possible column
permutations. Indices of the column vectors are
generated randomly, only two columns are exchanged
in one loop and the search can be stopped for example
after the time expiration. But we gain this advantage at
the cost that the solution is sub optimal. Random
generation of column indices brings into the span
minimizing process the element of uncertainty, i.e. we
cannot ensure that the G’ is the matrix with minimum
span. The result matrix G’ has LR property, so we can
generate the trellis (for example with BCJR algorithm,
well described in [3]).

3.3 Method C
Method C is the refinement of Method B.
In the loop:
Change column vectors i and j, mark new matrix as G’
Transform G’ matrix to have LR property
// GE, row operations over GF(2)
Apply “logic” from the left
Apply “logic” from the right
Calculate Spanlength(G’)

Method C: Principle of the “logic” applied from the
left is presented in Fig.1. It is sometimes possible to
find two appropriate column vectors in the LR matrix
with the same vector activity. This activity means that
column vector elements (bits) lie inside of the
Span(G).
1st property: One bit of the 1st column vector starts the
row span (bit value is 1), in fig.1 the 3rd bit in the 4th
column vector starts the 3rd row Span(g3).
2nd property: the vector element in another column,
with the same index as the bit in 1st vector has value 0.

If we have found two vectors, which satisfy these
conditions, after the column vector exchange the bit 0
will lie outside of the Span(G). Applying the “logic”
from the left and from the right through all 2k column
vectors satisfying 1st vector property we can speed up
the span reduction process.
..
 ? ? ? ?
0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 …
0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 …
0 0 0 1 1 0 0 … 0 0 0 0 1 1 0 …
1 1 1 1 1 1 1 … ˜ 1 1 1 1 1 1 1 …
0 1 1 0 1 1 1 … 0 1 1 1 1 0 1 …
0 0 1 1 0 1 1 … 0 0 1 1 0 1 1 …
0 0 0 0 0 0 1 … 0 0 0 0 0 0 1 …

Fig.1: “Logic” applied from the left of the G matrix

LBBC [n,k,d] [23,7,9] [27,5,13] [27,10,9](1st) [36,15,10] [13,5,5] [27,10,9](2nd)
RO:Spanlength(G) 119 113 170 314 42 180
CE:Spanlength(G) 90 92 153 282 33 149
Span reduction 24,4 % 18,6 % 10,0 % 10,2 % 21,4 % 17,2 %
RO : | V | 1534 606 5630 185598 150 10238
CE : | V | 426 350 2990 46942 76 2414
reduction of | V | 72,2 % 42,2 % 46,9 % 74,7 % 49,3 % 76,4 %
RO : | E | 1660 636 6396 218364 180 11260
CE : | E | 520 380 3756 63324 98 3052
reduction of | E | 68,7 % 40,3 % 41,3 % 71,0 % 45,6 % 72,9 %
RO : | M | 127 31 767 32767 31 1023
CE : | M | 95 31 767 16383 23 639
reduction of | M | 25,2 % 0 % 0 % 50,0 % 25,8 % 37,5 %
RO : type syst. syst. syst. syst. syst. syst.
CE : type non-syst. non-syst. non-syst. non-syst. non-syst. non-syst.

Tab.1: Comparison of the trellis complexity reduction
Legend: RO - Results obtained with McElliece’s method (Row Operations only)

CE - Results obtained using Column Exchanges too (Method C)
type - if the trellis of G’ matrix describes systematic LBBC too or non-systematic only

4 Results
We’ve chosen for implementation the C

language and we used as the workstation standard PC
with Pentium II 700 MHz processor. Some matrices
are published in [7] and [8], some of them are
published on the Internet.

In the table there are presented the results for
miscellaneous LBBCs. We can see that relative small
Span reduction leads to the eminently high total
vertex and edge set reduction. If we reduce | V | and |
E |, we can reduce | M | as well (see expression (5),
but not in every case, see e.g. [27,5,13]).
G’ matrices obtained using column operations too,
describe non-systematic LBBCs. It is possible to find
G’ in systematic form, but the trellis reduction will
not be so high.

For [27,10,9] we reduced total number of
additions computed for every received codeword to
27,1 % from previous value (100 % - 72,9 %) and
total number of comparisons to obtain one survived
path through the trellis to 62,5 % from previous value
(100 % - 37,5 %).

On the [13,5,5] example we will show the
trellis complexity reduction graphically. It is obvious
that the 2nd trellis in Fig. 2 is less complex as the
trellis constructed from the G’, presented in Fig. 1,
obtained with row operations.

The 1st trellis has complexity measures
| V | = 150, | E | = 180, | M | = 31.

The 2nd trellis has complexity measures
| V | = 76, | E | = 98, | M | = 23, i.e. | V | is reduced
to 50,7 %, | E | to 54,4 % and | M | to 74,2 %.

5 Conclusions
The main contribution of the new methods,

which apply column permutations in G matrix of
LBBC in order to reduce the overall Spanlength(G),
is the trellis complexity reduction.

The less complex is the trellis of the LBBC, the
simpler is the decoding process; i.e. the less
operations (additions and comparisons) must be
performed. We have not found exact mathematical

expressions for minimizing bounds. We have used
sub-optimal methods which has newer the less led to
the massive trellis complexity reduction.

6 Acknowledgment
The authors want to express their thanks to

SWH Siemens Company Slovakia, CITEDI-IPN
Research Center, CONACYT Mexico as well as
Scientific Grant Agency of Ministry of Education of
Slovak Republic and Slovak Academy of Sciences
(Grant VEGA 1/7615/20) for supporting this work.

7 References
[1] L.R. Bahl, J. Cocke, F. Jelinek, J. Raviv: „Optimal
decoding of linear codes for minimizing symbol error
rate.“ IEEE Trans. on Inf. Theory, vol.20, No.2,
pp.284-287, March 1974.
[2] F.R. Kschischang, V. Sorokine: „On the trellis
structure of block codes.“ IEEE Trans. on Inform.
Theory, vol.41, No.6, pp.1924-1937, November 1995.
[3] R.J. McEliece: „On the BCJR trellis for linear
block codes.“ IEEE Trans. on Inform. Theory, vol.42,
No.4, pp.1072-1092, July 1996.
[4] A.B. Kiely, S.J. Dolinar, R.J. McEliece, L.L.
Ekroot, W. Lin: „Trellis decoding complexity of
linear block codes.“ IEEE Trans. on Inform. Theory,
vol.42, No.6, pp.1687-1697, November 1996.
[5] G.B. Horn, F.R. Kschischang: „On the
intractability of permuting a block code to minimize
trellis complexity.“ IEEE Trans. on Inform. Theory,
vol.42, No.6, pp.2042-2048, November 1996.
[6] R. Hoc, P. Farkas: „Hladanie minimalnej mriezky
linearneho blokoveho kodu.“ Bratislava, SK:
Telekomunikacie ’97, 3rd international conference,
June 1997.
[7] P. Farkas, W. Juling: „Five new best [27,10,9]
codes.“ Hirzel-Verlag Stuttgart, AEÜ, vol.48, No.2,
1994.
[8] P. Farkas, A.S. Smirnov, J.V. Sotskov: „Linearne
kody opravujuce mnohonasobne chyby.“ Informacne
systemy, vol.14, No.5, pp. 540, 1986.

Fig. 1: trellis of [13,5,5] obtained with row operations

Fig. 2: trellis of [13,5,5] obtained with column permutation operations

