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Abstract: - This paper deals with the problem of searching and designing of minimal trellises for linear 
binary block codes (LBBC), from the generator matrices (GM). Minimal trellises could be used for soft 
decoding, especially in decoders which utilize the so-called Maximum Likelihood criterion, e.g. in 
decoders based on Viterbi algorithm. 
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1 Introduction 

The problem of ML decoding with the help of 
the trellis was first time tackled in the year 1974 by 
Bahl et al. in [1]. There was described a BCJR 
algorithm (acronym from names of authors) which 
minimizes symbol error probability. The problem of 
trellis construction arose together with the perspective 
to use optimal decoding algorithms such as Viterbi 
algorithm, which minimizes sequence error 
probability. Many of theories of minimizing trellises 
have been found for simplifying the decoding 
complexity. Kschischang and Sorokine in [2] 
described algorithm for the trellis construction from 
generator matrix G = [k.n]. This matrix must be 
transformed to „trellis-oriented form“ with help of row 
operations over GF(2). Row vectors must be linearly 
independent vectors with the minimal possible span 
and each of them with minimal Hamming distance 
(HD = d) from another row vectors. In [2] these row 
vectors are called „atomic generators“. But authors 
don’t present method how to find k vectors with a 
really lowest span. 

In [3] a method denoted as Greedy Algorithm I, 
which always generates minimal span vectors 
(definitions - see II.) is described. However it is based 
on an exhaustive search through all possible n-
dimensional vectors and selection of k independent 
vectors with HD = d, which can generate the LBBC, 
and with the span as small as possible. This algorithm 
is unusable in real time for large values of n. Modified 
Greedy Algorithm II is also based on row operations in 
G over GF(2). In [3] column permutations in G are 
mentioned, but author hasn’t used them because of 
nonexistence of an optimal algorithm. In [4] 
complexity measures for minimal trellises are 
described - total number of vertices, edges, mergers 
and total number of additions and reductions that 
Viterbi algorithm must make. 

We want to extend the set of these algorithms 
and also describe methods minimizing the span of 
GMs based not only on row operations, but also on 
column operations with column vectors of G. In 
section 2 we will describe the LBBC and its G matrix, 
span, span length, trellis and trellis complexity 
measures. In section 3 we will present the methods 
using column operations, which leads to trellis 
simplification, and section 4 contains results for 
various LBBCs. 
 

2 Linear Block Code and its Trellis 
Linear binary (n,k,d) block codes (LBBC) are 

transmission codes and belong to the group of error 
correcting codes. The symbols of LBBC are from the 
set {0,1}. LBBC encoder divides the input bit stream 
on k-tuples and encodes them into n-tuples, where n>k, 
i.e. a code brings into the bit stream redundant bits. A 
LBBC could be described using so-called generator 
matrix G with k rows and n columns. Hence G 
consists of k linearly independent vectors (rows) with 
the length n. Every codeword  
c = ( c1, c2, … cn ) could be obtained from a k-tuple 
u = ( u1, u2, … uk)? using multiplication with G over 
GF(2): c =? uG. 

A trellis is an oriented finite graph with vertices 
(nodes) and edges (branches) with labels. A set of 
vertices V is ordered in „depths“ which are represented 
through index i, i = 0, 1, …, n. There is only one 
vertex in depth 0 (start) and usually one in depth n 
(end). A set of edges E connects the vertices from 
depth i-1 to i, i = 1, 2, …, n. Labels on the edges 
correspond with bit values of the codewords in time i. 
The trellis must represent all codewords as the paths 
from start to end. 

A minimal trellis has a minimal number of 
vertices | V | and a minimal number of edges | E | 
among all trellises that might represent a given LBBC. 
McEliece has presented in [3] so-called BCJR trellis, 



first time presented in [1]. A BCJR trellis is 
constructed from the control matrix H and is edge-
minimal. In [3] it is shown that BCJR trellis can be 
constructed from (MSGM) GM G as well. Both 
principles of construction are very well described and 
in detail explained on examples in [3]. 

We have focused on the construction from G 
matrix. So-called Minimal Span Generator Matrix 
(MSGM matrix) [3] must have the following 
properties: 

• The row vectors g1, g2, … gk of G have to be 
linearly independent 

• First nonzero symbol gij = 1 in each row 
vector gi, i = 1, … k must be placed in 
different position (column) than first nonzero 
symbol in another rows j = 1, 2, … n and these 
positions are stored in variables: 
Li(gi); i = 1, 2, … k   (1) 

• Last nonzero symbol gij = 1 in each of row 
vector gi, i = 1, … k must be placed in 
different position (column) than last nonzero 
symbol in another rows j = 1, 2, … n and these 
positions are stored in variables: 
Ri(gi); i = 1, 2, … k   (2) 

• If the G matrix fulfils last two conditions, we 
say that it has a LR property. 

• The span of row vectors is defined as: 
Span(gi ) = {Li(gi), Li(gi)+1, …, Ri(gi)}; 
i = 1, 2, … k    (3) 

• Number of row vector elements inside the 
span is called spanlength: 
Spanlength(gi) = | Span( gi ) |   (4) 

 
Span(G) is the set of row spans. Spanlength(G) is 
equal to the sum of the spanlengths of the row vectors. 
McEliece (Theorem 6.11) says that „a matrix is 
MSGM if and only if it has the LR property“. But he 
has actually considered row operations only (Gaussian 
elimination, GE) over GF(2) with rows of G (see 
Greedy Algorithm II in [3]). This method doesn’t 
guarantee that Spanlength(G) will be really minimum 
spanlength. From this aspect is the expression 
„MSGM“ incorrect. 

The trellis complexity could be evaluated using 
different methods. Some reasonable measures for 
Viterbi decoding complexity are mentioned in [4]. 
From the trellis we can obtain the total number of 
edges | E | and total number of vertices  | V |. We can 
obtain from the trellis also the total number of 
simplifications  | M |, i.e. path reductions. In binary 
case a vertex has two incoming edges and one 
outgoing edge. In binary case: 
| M | =  | E |  -  | V |  + 1    (5) 
It means, that we can evaluate | M | from the known 
values | E | and | V |. (In non-binary case if the code is 

constructed over GF(q), the expression has a 
denominator equal to q-1). The value | E | represents 
the total number of additions required to compute path 
metrics in the Viterbi algorithm and value | M | is the 
number of binary comparisons required to obtain one 
survived path through in a trellis. 
 

3 The Methods Based on Operations 
with Column Vectors 
It’s obvious, that the smaller is Spanlength(G), the less 
complex will be the trellis (i.e. the less will be the 
values of | V | and | E |). To reduce the value of 
Spanlength(G), we considered not only row 
operations, but also column operations in G. The main 
reason why is because the row vectors usually contain 
in Spans some 0’s which can be displaced out of the 
Spans and so reduce Spanlength(G) via columns 
permutations. Column exchanges do not affect the 
LBBC weight spectra, they cause only the rotation of 
the vector space in which the code is defined. The 
resulting G’ matrix describes an equivalent (n,k,d) 
LBBC. 
 
3.1 Method A. 
/* Span reduction with the help of column operations*/ 
for(x = 1; x = n!; x++) { 
Select n column vectors in G and change the column 
order (make permutations) 
Write column vectors to the matrix marked as G’x 
Transform G’x matrix to have LR property  
// GE, row operations over GF(2) 
Calculate Spanlength(G’x) 
Store G’x and Spanlength(G’x) 
} 
Find matrix G’ with min{Spanlength(G’x)},  
x = 1, 2, … n! 
 
Method A transforms the known G matrix to all 
possible G’x matrices and selects from them the one: 
G’ with LR property and with the minimal span. 
But all possible column replacements must be checked 
out and alike the Greedy Algorithm I, it isn’t a real 
time task for accessible computers. 
 
3.2 Method B. 
/* Span reduction with help of column operations */ 
Set processRunTime 
Calculate Spanlength(G) 
Do { 
Select 1st column in G  
// random value i from interval 1, 2, … n  
Select 2nd column in G  
// random value j from interval j = 1, 2, … n, j ? ?i 
Change column vectors i and j, mark new matrix as G’ 



Transform G’ matrix to have LR property  
// GE, row operations over GF(2) 
Calculate Spanlength(G’) 
if(Spanlength(G’) < Spanlength(G))  
then save G’ as new G 
Decrement processRunTime 
} 
While processRunTime has not expired, continue 
again. 
 
Method B needs not to check all possible column 
permutations. Indices of the column vectors are 
generated randomly, only two columns are exchanged 
in one loop and the search can be stopped for example 
after the time expiration. But we gain this advantage at 
the cost that the solution is sub optimal. Random 
generation of column indices brings into the span 
minimizing process the element of uncertainty, i.e. we 
cannot ensure that the G’ is the matrix with minimum 
span. The result matrix G’ has LR property, so we can 
generate the trellis (for example with BCJR algorithm, 
well described in [3]). 
 
3.3 Method C 
Method C is the refinement of Method B. 
In the loop: 
Change column vectors i and j, mark new matrix as G’ 
Transform G’ matrix to have LR property  
// GE, row operations over GF(2) 
Apply “logic” from the left 
Apply “logic” from the right 
Calculate Spanlength(G’) 

Method C: Principle of the “logic” applied from the 
left is presented in Fig.1. It is sometimes possible to 
find two appropriate column vectors in the LR matrix 
with the same vector activity. This activity means that 
column vector elements (bits) lie inside of the 
Span(G). 
1st property: One bit of the 1st column vector starts the 
row span (bit value is 1), in fig.1 the 3rd bit in the 4th 
column vector starts the 3rd row Span(g3). 
2nd property: the vector element in another column, 
with the same index as the bit in 1st vector has value 0. 
 
If we have found two vectors, which satisfy these 
conditions, after the column vector exchange the bit 0 
will lie outside of the Span(G). Applying the “logic” 
from the left and from the right through all 2k column 
vectors satisfying 1st vector property we can speed up 
the span reduction process. 
.. .. .. 
   ?  ?       ?  ?   
0 0 0 0 0 0 0 …  0 0 0 0 0 0 0 … 
0 0 0 0 0 0 0 …  0 0 0 0 0 0 0 … 
0 0 0 1 1 0 0 …  0 0 0 0 1 1 0 … 
1 1 1 1 1 1 1 … ˜  1 1 1 1 1 1 1 … 
0 1 1 0 1 1 1 …  0 1 1 1 1 0 1 … 
0 0 1 1 0 1 1 …  0 0 1 1 0 1 1 … 
0 0 0 0 0 0 1 …  0 0 0 0 0 0 1 … 
 
Fig.1: “Logic” applied from the left of the G matrix 

 
LBBC [n,k,d] [23,7,9] [27,5,13] [27,10,9](1st) [36,15,10] [13,5,5] [27,10,9](2nd) 
RO:Spanlength(G) 119 113 170 314 42 180 
CE:Spanlength(G) 90 92 153 282 33 149 
Span reduction 24,4 % 18,6 % 10,0 % 10,2 % 21,4 % 17,2 % 
RO : | V | 1534 606 5630 185598 150 10238 
CE : | V | 426 350 2990 46942 76 2414 
reduction of | V | 72,2 % 42,2 % 46,9 % 74,7 % 49,3 % 76,4 % 
RO : | E | 1660 636 6396 218364 180 11260 
CE : | E | 520 380 3756 63324 98 3052 
reduction of  | E | 68,7 % 40,3 % 41,3 % 71,0 % 45,6 % 72,9 % 
RO : | M | 127 31 767 32767 31 1023 
CE : | M | 95 31 767 16383 23 639 
reduction of | M | 25,2 % 0 % 0 % 50,0 % 25,8 % 37,5 % 
RO : type syst. syst. syst. syst. syst. syst. 
CE : type non-syst. non-syst. non-syst. non-syst. non-syst. non-syst. 

Tab.1: Comparison of the trellis complexity reduction 
Legend:  RO - Results obtained with McElliece’s method (Row Operations only) 

CE - Results obtained using Column Exchanges too (Method C) 
type - if the trellis of G’ matrix describes systematic LBBC too or non-systematic only 



4 Results 
We’ve chosen for implementation the C 

language and we used as the workstation standard PC 
with Pentium II 700 MHz processor. Some matrices 
are published in [7] and [8], some of them are 
published on the Internet. 

In the table there are presented the results for 
miscellaneous LBBCs. We can see that relative small 
Span reduction leads to the eminently high total 
vertex and edge set reduction. If we reduce | V | and | 
E |, we can reduce | M | as well (see expression (5), 
but not in every case, see e.g. [27,5,13]).  
G’ matrices obtained using column operations too, 
describe non-systematic LBBCs. It is possible to find 
G’ in systematic form, but the trellis reduction will 
not be so high. 

For [27,10,9] we reduced total number of 
additions computed for every received codeword to 
27,1 % from previous value (100 % - 72,9 %) and 
total number of comparisons to obtain one survived 
path through the trellis to 62,5 % from previous value  
(100 % - 37,5 %). 

On the [13,5,5] example we will show the 
trellis complexity reduction graphically. It is obvious 
that the 2nd trellis in Fig. 2 is less complex as the 
trellis constructed from the G’, presented in Fig. 1, 
obtained with row operations. 

The 1st trellis has complexity measures 
| V |  = 150, | E |  = 180, | M |  = 31. 

The 2nd trellis has complexity measures 
| V |  = 76, | E |  = 98, | M |  = 23, i.e. | V |  is reduced 
to 50,7 %,  | E |  to 54,4 % and  | M |  to 74,2 %. 
 

5 Conclusions 
The main contribution of the new methods, 

which apply column permutations in G matrix of 
LBBC in order to reduce the overall Spanlength(G), 
is the trellis complexity reduction. 

The less complex is the trellis of the LBBC, the 
simpler is the decoding process; i.e. the less 
operations (additions and comparisons) must be 
performed. We have not found exact mathematical 

expressions for minimizing bounds. We have used 
sub-optimal methods which has newer the less led to 
the massive trellis complexity reduction. 
 

6 Acknowledgment 
The authors want to express their thanks to 

SWH Siemens Company Slovakia, CITEDI-IPN 
Research Center, CONACYT Mexico as well as 
Scientific Grant Agency of Ministry of Education of 
Slovak Republic and Slovak Academy of Sciences 
(Grant VEGA 1/7615/20) for supporting this work.  
 

7 References 
[1] L.R. Bahl, J. Cocke, F. Jelinek, J. Raviv: „Optimal 
decoding of linear codes for minimizing symbol error 
rate.“ IEEE Trans. on Inf. Theory, vol.20, No.2, 
pp.284-287, March 1974. 
[2] F.R. Kschischang, V. Sorokine: „On the trellis 
structure of block codes.“ IEEE Trans. on Inform. 
Theory, vol.41, No.6, pp.1924-1937, November 1995. 
[3] R.J. McEliece: „On the BCJR trellis for linear 
block codes.“ IEEE Trans. on Inform. Theory, vol.42, 
No.4, pp.1072-1092, July 1996. 
[4] A.B. Kiely, S.J. Dolinar, R.J. McEliece, L.L. 
Ekroot, W. Lin: „Trellis decoding complexity of 
linear block codes.“ IEEE Trans. on Inform. Theory, 
vol.42, No.6, pp.1687-1697, November 1996. 
[5] G.B. Horn, F.R. Kschischang: „On the 
intractability of permuting a block code to minimize 
trellis complexity.“ IEEE Trans. on Inform. Theory, 
vol.42, No.6, pp.2042-2048, November 1996. 
[6] R. Hoc, P. Farkas: „Hladanie minimalnej mriezky 
linearneho blokoveho kodu.“ Bratislava, SK: 
Telekomunikacie ’97, 3rd international conference, 
June 1997. 
[7] P. Farkas, W. Juling: „Five new best [27,10,9] 
codes.“ Hirzel-Verlag Stuttgart, AEÜ, vol.48, No.2, 
1994. 
[8] P. Farkas, A.S. Smirnov, J.V. Sotskov: „Linearne 
kody opravujuce mnohonasobne chyby.“ Informacne 
systemy, vol.14, No.5, pp. 540, 1986. 



 
Fig. 1: trellis of [13,5,5] obtained with row operations 

 
Fig. 2: trellis of [13,5,5] obtained with column permutation operations 


