
An Experiment in Neuro-Computed Torque Control of a Geared, DC Motor
Driven Industrial Robot

DANIEL SCHMIDT and ANDREW P. PAPLÍNSKI
Computer Science and Software Engineering

Monash University, Clayton 3168, AUSTRALIA

Abstract: - Efficient control of robotic manipulators is an important industrial problem, and this paper pro-
poses the use of artificial neural networks as a possible solution. The computed torque control scheme in
particular is examined, and neural networks are used for the task of modelling the robotic manipulators. This
scheme is applied to a two axis robot, whose feedback is corrupted by noise. The computation delay present
in the system is subsequently accounted for by the use of neural network state predictors. The performance
of the neuro-computed torque controllers is compared against a linear controller, and a comparison of other
issues such as noise problems is included. Joint space and Cartesian space trajectory results demonstrate the
superiority of the neural network-based nonlinear schemes over the linear controller.

Key-Words:- Robotics, Neural Networks, Computed Torque, Nonlinear Control, Noise Robustness

1 Introduction
The Computed Torque control method [13] is a well
known and efficient algorithm for trajectory control
of a robotic manipulator. In this method, the non-
linearities of the robot system are cancelled by a
nonlinear compensator, and a standard linear con-
trol law is subsequently applied. This compensation
is provided by what is effectively an inverse dynam-
ics model of the robot in question.

As the inverse dynamics models are usually
complex and computationally expensive, the stan-
dard implementation of a computed torque con-
troller is on a digital computer of adequate power.
The conventional approach to the creation of this
type of controller is to first derive a continuous time
model of the system by hand, and then apply a
continuous-to-discrete time transformation to allow
implementation on a digital computer [6].

Two main problems exist with this approach:
firstly, the inverse dynamics model must be derived
by hand and therefore there is the requirement for
correct parameter estimation by the designer, based
on mechanical models of the links. Secondly, the
discretisation process may introduce errors into the
model, especially if a simple algorithm, such as Eu-
ler’s method, is used [1]. The proposed solution
to these two problems utilizes artificial neural net-
works to learn the computed torque model from dis-
crete data samples gathered from the robot. This

approach avoids the explicit estimation of model pa-
rameters, and by-passes the problems of discretisa-
tion of a continous-time model using the discrete-
time neural networks.

Modelling dynamic systems with neural net-
works has already been examined and Narendra
[11] who proposed several input/output structures
for representing unknown non-linear dynamic sys-
tems with neural networks. Narendra [12] has also
proposed the application of the ’decoupling’ model
[5], which has already been successfully applied to
linear systems, for neural network system represen-
tation. The decoupling model describes the outputs
of the plant in terms of their relative degree.

Neural Networks have already been applied
with success to forward modelling of robotic manip-
ulators [4] as well as being used for payload com-
pensation [7]. These experiments indicate that neu-
ral networks are a suitable choice of structure for
modelling the inverse dynamics. Methods for com-
pensating for computation delays present in discrete
control systems involving state predictors have also
been previously proposed [2, 9].

This article is organised as follows: in section
2, the neural-network model used in the computed
torque scheme is considered. Section 3 covers the
design of the controller, and also includes the pro-
posed method for compensation of computation de-
lays. Section 4 details results of controller track-



ing performance on a two-axis robot manipulator,
as well as discussing other issues. Section 5 sum-
marises the main results of this paper.

2 Nonlinear Compensator
The heart of the computed torque scheme is the non-
linear compensator that is used to cancel the effects
of the robot manipulator’s non-linear dynamics.

Consider the standard torque equation describ-
ing an n-degree-of-freedom robot manipulator:

τ = D(q)q̈ + H(q, q̇) + G(q) (1)

The first term represents inertial torques present in
the system, the second term arises from interactions
between multiple axis and the last term is the pres-
ence of gravity, and q is the position of the axis. This
equation computes the torque exerted on the axis,
given some acceleration, velocity and axis configu-
ration [8]. Knowing that torque is a function of the
power delivered to the motor (i.e. the motor com-
mand) we can make this simple substitution and get

F (C) = D(q)q̈ + H(q, q̇) + G(q) (2)

whereC is the command to the motor amplifiers.
InvertingF () gives us:

C = F (D(q)q̈ + H(q, q̇) + G(q))−1 (3)

Therefore, the task is to learn the relationship be-
tween arm acceleration, velocity and position, and
the input command given to the manipulator. This
will allow us to ask the system what command is
required to generate a desired acceleration, given
the current configuration of the robot. The result-
ing feedback signals from the encoders were very
noisy, containing many large spikes, due to some
problems with electrical interface. As differentia-
tion generally amplifies noise the resulting acceler-
ation signals, produced by taking the first difference
of the velocity, were extremely noisy and meant that
training a model using acceleration as inputs would
be very difficult. Filtering the feedback signals was
obviously an option, but would either introduce ex-
tra dynamics in the case of an IIR type filter, or a
transport delay in the case of an FIR type filter, both
of which are highly undesirable.

The solution was to compute instead the com-
mand required to realise a particular velocity rather

than an acceleration. The velocity signals were
noisy but far from unusable, even without filtering.
The non-linear compensation network can now be
viewed as an open-loop velocity controller. Desired
velocities are inputted, and the commands required
to realise them are outputted. Though the form
shown in equation 3 is continuous in nature, no ex-
plicit discretisation was required as the compensator
was to be created by training a discrete time neural
network. Thus the final form of the compensator is:

C[t] = N(q[t], q̇[t], q̈[t]) (4)

whereN() is now the discrete time neural network
used to model the inverse dynamics. In this paper
the coupling effects present in the system will be ig-
nored by the derived controllers.

2.1 Network Structure
This inverse system has its own dynamics, and
therefore requires information on the state of the
robot to compute the required compensating torque.
A standard robotic manipulator takes motor com-
mands as inputs and produces positions as outputs.
Using several past values of positions as inputs to
the inverse system will allow it to capture the current
state of the manipulator, and because the gravita-
tional nonlinearities of the system are dependent on
the position, also allow the network to capture them
by using these inputs. The order of the system deter-
mines how many past values are required to capture
the dynamic behaviour exactly. This would be de-
termined experimentally.

2.2 Network Training
The nonlinear compensator network was trained us-
ing a set of training samples obtained by exciting
the manipulator in open loop mode. If the result-
ing inverse model is to accurately and fully model
the system it is required that the training data used
fully captures the dynamics of the axis and covers
all operating points of the system. It has been shown
that if the plant is of Nth order, then N sinusoids of
different frequency will be sufficient to capture the
dynamic behaviour of the plant [10].

Sinusoids were therefore used as probing sig-
nals. After two periods of each sinusoid signal, the
amplitude, frequency and offset were changed and
the axis was excited again. The random change



in offset effectively introduced step inputs, allow-
ing any first order behaviour to be easily captured.
Coverage of every single axis position was not nec-
essary, as the approximating abilities of the neural
network would allow for interpolation between the
positions that have been captured. The range of op-
eration was divided into eight regions, and the sys-
tem was probed at each region. The networks were
trained with the Levenberg-Marquadt algorithm, us-
ing a multi-start optimisation approach to overcome
local minima.

3 Controller Design

3.1 Linear controller
The linear controller used in conjunction with the
nonlinear compensator is a PD-type trajectory track-
ing controller with acceleration feedforward, taking
desired positions, velocities and accelerations as in-
puts. The linear control law used was:

ν[n] = Kp(qd[n]− q[n]) + Kd(q̇d[n]− q̇[n]) + q̈[n]
(5)

whereν[n] is the desired velocity for the next sam-
ple, which is then fed into the nonlinear compensa-
tion network, yielding the final control law:

C[n] = N(ν[n], q[n], q[n− 1], . . .) (6)

whereC[n] is the final command sent to the mo-
tor amplifiers. The gains were selected using the
method described by Ishihara [6]. This however, as-
sumes there is no modelling error and so the result-
ing gains were subsequently tuned to give minimum
overshoot in all configurations, because this require-
ment is typical of a robotics application. The final
structure of the neuro-computed torque controller is
shown in Figure 1.

Figure 1: Computed Torque Controller

3.2 Accounting for computation delays
A computed torque controller uses the inverse
model to compensate for the nonlinear dynamics of
the robot. Even given a reasonably small imple-
mentation, such as the neural network one presented
here, there is a finite computation delay present be-
tween the moment the position samples are read
from the encoders and the control command is cal-
culated. A naive implementation disregards this
computation delay. This results in the position the
robot is actually at when the command is finally is-
sued not being the position that the controller used
to make its decision. For linear discrete-time sys-
tems, it is well known that the effects of computa-
tion delay can be accounted for by the use of the
state predictor. This technique effectively predicts
the state of the system for the next sample. This
prediction is then used by the controller to make its
control decision, rather than on the feedback taken
directly from the plant [9]. This idea would be ex-
tended to the nonlinear case by the implementation
of a state predictor using neural networks.

The predictor must make an accurate prediction
of where the axis will be at the time of the next
sampling period, based on the current state of the
axis and the previous command given to the axis.
What is required then is a forward model of the
system. The same training data generated to train
the inverse models was used to train these forward
models. The forward model took commands as in-
puts and produced velocities. These velocities could
be accumulated to determine position. The forward
model also required information on the current state
of the axis in order to make its predictions, and to
this end previous outputs of the axis were also used
as inputs. As with the inverse model, the number of
previous output samples used would determine the
order of the model. Again, the forward model was
trained using the parallel-series structure described
by Narendra [11]. The final structure of the con-
troller accounting for computation delays is shown
in Figure 2.

4 Two-axis Robot case study
The techniques described previously were to be
tested on a real robotic manipulator to determine
their effectiveness. The tests were all performed
on a Nakanishi Nak-280N SCARA robot (shown in



Figure 3), consisting of two revolute axis’ chained
together to allow the robot end-effector to realise
any position in an x-y plane. For this experiment,
the SCARA robot was oriented to operate in a plane
perpendicular to the ground, thus introducing the
nonlinear effects of gravity. In SCARA configura-
tion robots the base axis is often called the shoul-
der, and the secondary axis the elbow, analogous to
the human arm. Feedback is supplied by optical en-
coders, and both axis’ are actuated by 48 volt, 2 amp
permanent magnet D.C. motors. The sampling rate
used in these experiments was 500 Hz.

Figure 2: Computed Torque Controller with Neural
Network State Predictor

Figure 3: The Nakanishi Nak-280N robot

The experimental procedure performed on this
robot consisted of creating a linear PID-type con-
troller, and neuro-computed torque controllers with
and without compensation for computation delays.
Performance of all three controllers would then be

tested by attempting to track a Cartesian space tra-
jectory. All controllers were tuned to give minimum
overshoot to a step input, in all configurations.

4.1 Test conditions
The most important consideration at this point was
that the feedback from the encoders was corrupted
with a noise source of an unknown distribution.
This feedback noise required the modification to the
computed torque scheme as previously described.
However, it also allowed the noise robustness of
the neural network computed torque scheme to be
tested.

4.2 Linear Controller
A linear P.I.D controller was developed. This type
of controller is very representative of the controllers
found on a large class of existing older robotic ma-
nipulators, and therefore would be useful for com-
parison purposes. This controller was designed by
taking samples from the linear region of operation
of the axis, deriving a linear model and applying
Zieger-Nichols [3] tuning.

4.3 Compensation Networks
The structure of the compensation networks needed
to be determined. This comprised two main sec-
tions: determination of the order of the networks,
and the type and structure of neural network used
to represent the system. The shoulder was mod-
elled as a second order system, and the elbow as first
order. Multi-layer cascade forward perceptron net-
works were used. These were arranged in three lay-
ers; two layers of non-linear sigmoid neurons and
a final single, linear neuron in the output layer to
provide scaling. The minimum number of neurons
required to reasonably accurately approximate the
function is the best choice, as overfitting generally
leads to memorisation of noise and poor prediction.
Two layers of one sigmoid neurons was found to be
sufficient to learn the inverse dynamics. The net-
works were trained on data gathered from the axis
in a manner previously described. Approximately
10,000 samples were gathered from the each axis
and used in the training process.

4.4 Neural Network State Predictors
The proposed approach for overcoming computa-
tion delays in the system was through the use of



state predictors built from neural network forward
models. The order of the shoulder and elbow for-
ward models was chosen to be the same as the cor-
responding inverse models. Cascade-forward MLP
networks with hidden layers of two sigmoid neurons
were found to be sufficient to give good one-step-
ahead prediction performance.

4.5 Implementation
The controller gains were selected as previously de-
scribed. The controllers themselves were imple-
mented in C++ on a digital computer attached to the
Nakanishi robot.

4.6 Testing performance
A multi-link robotic manipulator’s main task is to
interact with the physical world, and as such the best
way to test the controller would be to track a suit-
able cartesian space trajectory. The trajectory used
traced a figure of eight (seen in Figure 4) in carte-
sian space in approximately 140 milliseconds. This
speed trajectory required several samples of close to
maximum acceleration and velocity to be realised,
therefore testing the high frequency response of the
controllers. The cartesian location of the figure-
of-eight was chosen so as to require the joint co-
ordinates to be in the nonlinear regions of operation.

The trajectories tracked by the controllers will
be compared to the reference trajectory by using the
mean-squared-error of the joint space co-ordinates
and the mean-absolute-error in cartesian space. The
cartesian space error was calculated as the Eu-
clidean distance from the desired (x, y) position to
the actual (x, y) position of the robot end-effector.

5 Discussion of Results
5.1 Tracking performance
Figure 4 shows the Cartesian paths generated by all
three controllers. The linear controller is unable to
respond with the correct magnitude force for half
of the figure of eight and therefore is seen to lag
badly. The computed torque controllers have man-
aged to maintain the dimensionality of the figure-
of-eight, that is the resulting trajectory is of similar
dimensions but the symmetry is not perfect. The
computation-delay compensated computed torque
scheme performs better than both the other con-
trollers. This is no doubt due to the fact that the

gains of this controller could be higher than those of
both other controllers. While all three controllers
were tuned to give minimum overshoot, the pre-
dictors allowed the controller to look into the fu-
ture and therefore be able to have reduced over-
shoot while maintaining the higher gains crucial to
respond quickly to the fast changing input trajec-
tory.

Figure 4: Cartesian tracking results. (a) Desired tra-
jectory (b) Linear controller. MAE: 18.06 (c) Com-
puted torque controller. MAE: 3.66 (d) Computed
torque with predictor. MAE: 1.97

Table 1 summarises the joint space results, and it is
clear that the computed torque with predictors also
outperforms the other controllers in terms of joint-
space MSE.

Shoulder MSE Elbow MSE

P.I.D Mean: 6,530,000Mean: 1,210,000
SD: 45,460 SD: 23,990

Computed Mean: 314,020 Mean: 88,430
Torque SD: 10060 SD: 3340
Computed Mean: 151,970 Mean: 33,650
Torque (with SD: 2380 SD: 1880
Predictors)

Table 1: Joint space results

5.2 Noise Issues
The resulting controllers showed resistance to the
feedback noise. This is most probably due to the na-
ture of the models being trained. The inverse model



and the forward prediction models, while being dy-
namic, were only required to produce a forecast of
one sample. That is, at every point in time, the in-
puts to the models came as measurements from the
robot itself. Therefore, as the outputs of the models
were never used as subsequent state feedback into
the models themselves, any errors did not accumu-
late.

Additionally, given the fact that the noise only
ever occurred on the velocity signals it is also possi-
ble to see why the noise did not significantly affect
the training of the inverse model. The noise itself
affected the measured velocity signals, introducing
abnormally large spikes. The inverse model takes
these corrupted velocities as inputs, and is told that
normal commands generated them. A false relation-
ship will be learnt, but given that such abnormally
large velocities are never actually inputted to the in-
verse model once in the loop this false information
is never actually retrieved.

6 Conclusion

During this project the problem of efficient control
of robotic manipulators was considered. Artificial
neural networks were proposed as a possible solu-
tion to this problem, and were subsequently utilised
in an adaptation of the well known computed torque
scheme. Results from experiments performed on
a two-axis robot show good performance increases
over linear controller schemes and additionally do
not require large amounts of computation power to
realise. It was also seen that the processes required
to create the neuro-computed torque controller were
robust to noise. The issue of computation delay was
also considered, and solved with use of use of non-
linear state-prediction built using neural networks.

Throughout the design of the neuro controllers,
there was no requirement for any of the models used
to be derived by hand. The neural network con-
trollers in this project were designed with no explicit
derivation of models or estimation of parameters, by
utilising the learning ability of the neural network
structure. This work indicates that neural-network
based Computed Torque controllers may be able to
efficiently control higher order manipulators with

little requirement for intimate knowledge of their
dynamics.

References:

[1] Conte, S.D., De Boor, C.,Elementary Numer-
ical Analysis, MacGraw-Hill, 1965

[2] Barratt, C., Boyd, S., Examples of exact trade-
offs in linear controller design,IEEE Control
Systems Magazine, 9(1), pp. 115-143, 1987

[3] Dutton, K., Thompson, S., Barraclough, B.,
The Art of Control Engineering, Addison-
Wesley, 1997

[4] Eskandarian, A., Bedewi, N.E., Kramer, B.M.
Modelling of Robotic Manipulators Using an
Artificial Neural Network,Journal of Robotic
Systems, Vol. 11, No. 1, 1994, pp. 41-52

[5] Falb, P.L., Wolowich, W.A., Decoupling in
the design and synthesis of multi-variable con-
trol systems,IEEE Transactions on Automatic
Control, Vol. 12, 1967, pp. 651-659

[6] Ishihara, T., Direct Digital Design of Com-
puted Torque Controllers,Journal of Robotic
Systems, pp. 197-209, 1994

[7] Leahy, M.B, Johnson, M.A., Rogers, S.K.
Neural Network Payload Estimation for Adap-
tive Robot Control, IEEE Transactions on
Neural Networks, Vol. 2, No. 1, 1991, pp. 93-
100

[8] McKerrow, P.J., Introduction to Robotics,
Addison-Wesley Publishing Company, 1991

[9] Mita, T., Optimal Digital feedback control sys-
tems counting for computation time of control
laws,IEEE Trans. Automat. Control, 1985, pp.
542-548

[10] Narendra, K.S, Adaptive Control Using Neu-
ral Networks,Neural Networks for Control,
1991, pp. 115-142

[11] Narendra, K.S, Parthasary, K. Identification
and Control of Dynamical Systems Using
Neural Networks,IEEE Transactions on Neu-
ral Networks, Vol. 1, No. 1, 1990, pp. 4-26

[12] Narendra, K.S, Mukhopadhyas, S.Adaptive
Control of Nonlinear Multivariable Systems
using Neural Networks Neural Networks, Vol.
7, No. 5, 1994, pp. 737-752

[13] Spong, W.M, Vidyasagar, M.Robot Dynamics
and Control, John Wiley and Sons, 1989


