

Methodical Aspects for the Development of Product Lines

ILKA PHILIPPOW, KAI BÖLLERT, DETLEF STREITFERDT, MATTHIAS RIEBISCH

Faculty for Informatics and Automation
Ilmenau Technical University

98684 Ilmenau/Thuringia, PF 100565
GERMANY

Abstract: Reuse is one of the most important aspects for improving the productivity of software development.
Nowadays, reuse is mainly realized through object-oriented techniques. Software product line architectures are
considered to be a very promising approach for software reuse on a high level. Despite advantages of software reuse,
many problems during development and application occur in practice. The main problems in the development and
application of product lines result from a poor or non-existing description and documentation. Furthermore, a suitable
product line-oriented method for development and application, which is also supported by tools, is lacking. In this
paper the evolutionary process for the development and application of product lines is explained and occurring
problems are discussed. To support solving some of these problems two approaches are introduced.
Activities based on these approaches can be integrated into software product line development processes. One
approach deals with the engineering of family requirements using feature modeling techniques. The second approach
supports the designing of product line components.

Key words: software reuse, product line architecture, evolutionary development process, system family requirements,
product line components

1 Introduction

During the last decade the complexity of software
systems has increased extremely. Meanwhile, there are
various approaches, methods and tools in order to
support the development and management of very large
and complex software systems. Concerning this, Object
Technology has established itself as one of the most
significant technologies in software engineering [1],
[2].

In addition, a high degree of software reuse offers
possibilities of reducing development efforts and
improving software quality. There are different kinds of
reuse [3], [4], [5]. It is possible to reuse source code in
form of modules, functions, classes or components or
on the other hand artifacts of analysis, design, and
architecture.

Software product lines seem to be a fundamental
approach that is connected with expectations for
enhancements in reusability, adaptability, flexibility,
and control of complexity and performance of software.
Although the application of reusable units and
architectures like components, frameworks and product
lines could lead to a lot of advantages like reducing the
development time, the success of reusable elements in
practice depends on many factors. In the next section
the problems of application and development of
reusable architectures are discussed.

2 Problems of the Development and

Application of Reusable Architectures
In the past there have been some examples for

unsuccessful software reuse like the framework project
Taligent [6]. In our own experience we discovered
similar problems which prevented successful
reusability. The success of reusable elements in practice
depends on various factors that are explained in the
following:

• Acceptance for non-inhouse solutions

Often developers are not willing to accept solutions
from outside their group or company. The “Not
Invented Here” syndrome is mainly based on social
issues, communication problems, poor motivation,
misunderstanding, and low acceptance of other’s
ideas. This problem requires solutions in the fields
of management, culture, and organization. It is not
discussed in more detail because this paper focuses
on technical subjects.

• Support by architecture provider
The support for application developers by providers
is a critical success factor for reusability, too.
Missing support leads to high efforts in application
development. These problems cannot be addressed

by technical means. Solutions can be found in
changes of management and organization of
projects.

• Missing time and budget for architecture
restructuring
Most projects are organized to develop a single
system, not a reusable architecture. The
evolutionary development and restructuring of an
architecture needs extra time and budget.
Organizational solutions can help here.

• Effort for understanding reusable elements
Application developers need a lot of time for
learning and understanding the principles of
reusable architectures. They have to understand it
fairly deep to build an application upon it. In most
cases there is no sufficient documentation and only
small methodical support for automated application
e.g. by guidelines and tools. An approach for the
automated instantiation of applications based on
frameworks is introduced in [7], [8].

• Applicability for actual user problems
In many cases the application developer meets
requirements that the reusable architecture cannot
fulfill. The applicability for this requirements has to
be evaluated. The variability of the architecture has
to be extended to solve the actual problems. The
extending of reusable architectures are the most
crucial activities in development and application. It
leads to a high influence on maintainability and
thus life expectancy of an architecture.

• Maintainability, loss of structure during framework
evolution
Maintenance, improvements and extensions lead to
architectural changes which often decrease
understandability and maintainability. The causes
are lacking methodical support during evolution
and maintenance. Successful reusable architectures
have to be built in an evolutionary and incremental
way. They can attain maturity only through
evolutionary improvement.

Methods for the evolutionary development of

product lines based on domain analysis and reverse
engineering in general are necessary to perform this
process in an effective and cost-saving way. In the next
section the development of product line architectures as
an evolutionary process is described. The
representation of domain information proposed in
section 2.1. supports a systematic definition of
variability. The method in section 2.2. is proposed in
order to perform the evolution systematically. Both
approaches can be used for improving the applicability
for actual user requirements and the maintainability.

3 Evolutionary Development Process for
Product Line Architectures
By software product lines a “group of products” out

of a specific problem domain is described [9]. They are
based on a system family architecture offering a
“common set of core assets” [10]. Within a specific
problem domain software systems are derived from
predefined architectures These architectures consist of
common and variable parts. Variable parts can be
changed or adapted to satisfy the special needs of an
application.

The development process for product lines is very
similar to those of software development in general. The
independent process of every single application
development cycle can be represented as a cluster [11].
In many cases the decision for developing a product line
architecture is made based on successful development
of several similar applications [12] and on reengineering
of legacy software [13]. Fig. 1 [14] shows the
evolutionary development of product lines.

Cluster 1

Cluster 2

Cluster 3

Specification

 Design
Implementation

Maintenance

DesignDecision
Recovery

Specification

 Domain
 Engineering

 Design
Implementation

Maintenance

DesignDecision
Recovery

 Domain
 Engineering

 Design
Implementation time

version,
system requirements

Fig. 1 Evolutionary Process of Software Product Line

Development

For each new cluster, developers attempt to reuse the
results of former work, which exist in the form of
design documents or source code. The evolutionary
development process of product lines is characterized
by the following activities for reuse, refinement and
improvement [15]:

• reverse-engineering and understanding former

application architectures,
• comparing new requirements to the former ones,
• creating a new design, including both the new and

the former requirements,
• redesigning the architecture and implementing new

common and variable parts

• documenting design decisions, intentions and the
new architecture for future refinements.

3.1. Engineering Family Requirements

The management of domain information and
family specific data is a key issue of the proposed ideas
in section 2.1. As described in [16] and in [17], most of
the current software development efforts fail because of
a poor requirements engineering phase. The impact of
misleading or simply wrong requirements in
conventional projects is restricted to a single system.
When switching to a family based development
strategy we have to face a far-reaching impact. Now all
the applications, to be generated out of the family, will
contain the errors and mistakes made in the
requirements engineering phase for the system family.
Thus the importance of a well-defined requirements
engineering phase increases dramatically.

Traditionally, requirements engineering is divided
into three main phases as described in [18] [19] and
[20]. First developers need to get familiar with the
future product and its inherent problems. Within the
elicitation phase these problems can be evaluated using
document analysis, interviews, observation or
prototypes. In addition, information about stakeholders,
intentions, decisions or market surveys are part of the
elicitation phase. All the information is processed to get
to the first milestone of software development, where a
decision about continuing or discarding the project has
to be made. Developers will link the pieces of
information together to get a requirements model. This
model, as the result of the modeling phase, contains
different kinds of data. Simple textual notes, sketches,
brief UML-models as an explanation for requirements,
pictures and other data types which are useful for a
good understanding of the ideas the future product is
based on. The last phase of requirements engineering is
the validation of the product against the initial
requirements. After all requirements are elicited
possible ways and procedures for their validation have
to be added to the requirements model. Thus a test
strategy is realized from the beginning on. All three
phases, elicitation, modeling and validation, are
processed with many iterations until an agreement
about the future product is reached.

For system family development the three phases of
requirements engineering still exist but need to be
adapted to meet the special family needs:

• The concept of commonality and variability has to

be laid down in the requirements engineering data
model. New connections between the model
elements and the family concept need to be
established.

• Family development tools will have to support
family specific views on the data model depending

on the needs of the different stakeholders in the
project.

• Analysis of the requirements model has to reveal
family specific inconsistencies. For example,
requirements with side effects to members of the
family need to be rejected or costs estimations for
the family itself and for each of the family member
are needed.

• All the produced assets and data elements of the
requirements engineering phase are interwoven
themselves and need to be related to the following
development phases, which is addressed by the term
traceability.

���������������������
���������������������
���������������������

Library

System
Management

Borrowing
Books

Reminder
Management

Medium Person

Review

Mail Notification

Email

or

optional

mantadory

Fig. 2 Feature diagram of a family of library systems

Two problems need to be analyzed to address the
above mentioned requirements. On the one hand a data
model holding all the information of the requirements
engineering phase is needed. On the other hand a
specialized family requirements engineering process is
needed to support using the data model. The following
paragraphs briefly describe these two parts of the
problem.

A data model holding the elaborated information of
requirements engineering phase for system families has
to incorporate the central family concept of
commonality and variability as it is done by Feature
Oriented Domain Analysis (FODA) [21]. A system
family of library systems is represented as feature
diagram as shown in Fig. 2.

The optional parts of the feature diagram allow
derivation of up to four different systems. In addition to
features as one way to view a family, design decisions,
design objectives and a detailed priority management
for requirements, features and derived applications is
needed. Since system families are making use of higher
level abstractions than conventional development
strategies, priority management for estimation of costs
and relevance of system parts, as described in [22], is

vital for the successful development of the family. Use-
case oriented or scenario-based approaches are
commonly used concepts for capturing and describing
functional requirements. The conventional concepts,
described in [23] and [24], need to be enhanced to meet
system family needs. As a first step a requirements
engineering data model for system family development
will have to integrate the above mentioned existing
approaches. The full integration requires the definition
of links between the parts of the data model, what is
subject of current research efforts.

The development process on top of the data model
must be made of domain engineering parts, single
system development parts and specific process steps for
the contents described in the data model paragraph. In
Family-oriented Abstraction Specification and
Translation (FAST) [25] a family specific but very high
level process is introduced. Developers using FAST
need to build a domain specific language for the family
together with a full tool set to support using this
language. The requirements engineering process is
focused on finding commonalities and variabilities but
needs further refinement to be used in combination
with a defined data model. A use-case centered family
development process is Feature-oriented Reuse Driven
Software Engineering Business (FeatuRSEB) [26], with
enhanced use-cases for variability modeling. As shown
in Fig. 3, overdue books are modeled with two use-
cases bound to a variation point. Depending on the
selected features, use-cases are part of the derived
application or will be left out.

check for
overdue books

notification of
overdue books

email
notification

mail
notification

«uses»

{notification type}

Fig. 3 Variation point for use-cases in FeatuRSEB

A requirements engineering process for system

family development will integrate existing processes as
described in the last paragraph for the family specific
issues and common development processes like the
Rational Unified Process (RUP) [23] for the
conventional requirements engineering activities.

3.2. Designing Product Line Components

Product lines consist of common and variable
components. While a product that is developed based
on a product line must reuse all of the product line’s

common components, it needs to reuse only those
variable components that the customer actually requires.
This aspect of reuse is specific to product lines and
should be considered throughout the development of
product lines. As a consequence, product line
components have to be separated from each other in the
design as well as in the implementation. Today’s
product line development methods, for instance
FeatuRSEB [26], make it possible to separate common
and variable components. They do this by applying
inheritance and design patterns while developing the
components. To illustrate this approach, an example
from the domain of library systems is introduced next.

Every time a library user wants to borrow a book
from a library, he has to identify himself in order to get
access to the library. A product line for library systems
could provide different procedures to perform this
identification, for example by scanning a user’s
identification card, his fingerprints or iris. A system
built from such a product line features only one of those
procedures, i.e. customers need to choose from one of
the three mentioned alternatives. This requirement
affects the design of the library system product line, as
is shown in Fig. 4. There the class BorrowBook
encapsulates the process of borrowing a book. In order
to work, the class needs to be parameterized with a
strategy on how to identify library users. This has been
achieved by applying the design pattern Strategy [27].
The abstract superclass Identification defines an
interface to which every identification procedure in the
product line conforms. The three procedures, modeled
as subclasses of Identification, realize the interface by
overriding the abstract operation execute(). The
operation returns the scanned serial number of a user
stored in the database of the library system. The
common components in this example are the classes
BorrowBook and Identification; variable components
are IdentificationCard, Fingerprint, and Iris. A library
system reuses, in addition to the common components,
either the variable component IdentificationCard or
Fingerprint or Iris, depending on the customer’s
requirements.

BorrowBook Identification

execute(): int

IdentificationCard Fingerprint Iris

execute(): int execute(): int

execute(): int

strategy

1
commonOperation()

Fig. 4 Designing components using design patterns

Thus, the separation of common and variable
components in the design and implementation of a
product line can be solved by using inheritance and
design patterns. However, this solution introduces a
problem, which is not obvious by looking at the
example alone because its size was reduced
considerably to fit into the paper. A real product line
consists not only of four components but contains
hundreds of them, which are closely coupled with each
other. If many components are separated by inheritance
and design patterns, the complexity of the product line
increases to a level, which seriously hinders the
understandability, maintainability and extensibility of
the product line. Why does the complexity goes up?
Because applying inheritance results in deeper
inheritance hierarchies, and applying design patterns
results in more artificial abstractions in the design as
well as more complex object interactions. The
functionality of the product line is split up into small
fragments and is spread over many classes and
operations. In the end, developers have to visit a lot of
classes in order to understand some part of the
functionality. Another solution for separating common
and variable components is desirable – and already
exists in Generative Programming. Generative
Programming comprises techniques that automatically
assemble systems from components [28]. The
following briefly outlines how one of those techniques,
the Hyperspace approach, improves the separation of
product line components without introducing
unnecessary complexity.

Core IdentificationCard

BorrowBook

performIDCheck(): int
commonOperation()

// unimplemented

BorrowBook

performIDCheck(): int

// scan ID card

Fingerprint

BorrowBook

performIDCheck(): int

// scan fingerprints

Iris

BorrowBook

performIDCheck(): int

// scan iris

Product (Core + Iris)

BorrowBook

performIDCheck(): int
commonOperation()

// scan iris

(a)

(b)

Fig. 5 Designing components using hyperslices

The Hyperspace approach decomposes software

systems by their concerns. Each concern is then
designed and implemented separately in a so-called
hyperslice. Afterwards a generator composes some or
all concerns to build different systems [29]. In the field
of product line development components can be
conceived as concerns. Fig. 5 (a) shows how to model
the library system product line using the Hyperspace

approach. The class diagram shows four hyperslices
depicted as packages. The first slice Core encapsulates
the common components. The other three slices each
define one variable component. If a generator composes
the first and fourth slice, the resulting system will look
like the package in Fig. 5 (b). Note that neither design
patterns nor inheritance was used to separate the three
identification procedures in the design of the product
line. The abstract class Identification as well as its
subclasses are not necessary anymore. Instead, the
identification procedures are now implemented directly
in the respective operation BorrowBook::
performIDCheck().

4 Conclusion and Outlook
In this paper two approaches have been introduced

for supporting the evolutionary development of software
product lines. For the development of software product
lines the collection, description and utilization of
domain information has to be carried out very carefully,
comprehensive and understandable for both, product
costumer and product developer.

Our current research activities include the
development of a requirements engineering method for
system family development and the belonging data
model. The twofold solution is based on the methods
mentioned in section 2.1 and on Extensible Markup
Language (XML) for the data model part. Future efforts
will be put into the development of an XML-based data
format for requirements engineering assets which will
be linkable to design models in XML Metadata
Interchange (XMI) format. The development method
will be an enhanced version of current family
development methods, as discussed in section 2.1. The
relation to the data model allows a well-defined and
standardized way of requirements engineering for
system families.

The Hyperspace approach is a promising way to
design product line components that are easier to
understand and better to maintain. We currently extend
hyperslice modeling to other parts of the UML like use
case diagrams, state machine diagrams, activity chart
diagrams etc. This will allow to structure product lines
from requirements over design to implementation using
the Hyperspace approach, and so the separation of
common and variable components is realized
throughout the development process. These new
modeling techniques will then be integrated into an
enhanced FeatuRSEB method.

References:
[1] G. Booch, Object Oriented Analysis and Design with

Applications, 2nd Edition, Benjamin/Cummings, 1994
[2] I. Jacobson, M. Christerson, P. Jonsson, G. Oevergard,

Object Oriented Software Engineering : A Use Case
Driven Approach, Addison-Wesley, 1992

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns – Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995

[4] I. Jacobson, M. Griss, P. Jonsson, Software Reuse :
Architecture, Process and Organization for Business
Success, Addison Wesley, 1997

[5] Buschmann F., Meunier R., Rohnert H., Sommerlad P.,
Stal M., Pattern-Oriented Software Architecture: A
System of Patterns. Wiley, 1996.

[6] Taligent, Building Object-Oriented Frameworks, A
Taligent white paper, Taligent, Inc 1994

[7] E. Ivanov, I. Philippow, R. Preisel, A Methodology
and Tool Support for the Development and Application
of Frameworks, Journal of Integrated Design and
Process Science, Vol. 3, No. 2, 1999 S.21-23, June

[8] E. Ivanov, Eine Methodik für die Entwicklung und
Anwendung von objektorientierten Frameworks, PhD
thesis Technische Universität Ilmenau, Verlag ISLE,
ISBN 3-932633-41-5, 1999 (in German)

[9] Kotler, Philip; Bliemel, Friedhelm: Marketing-
Management: Analyse, Planung, Umsetzung und
Steuerung. Schäffer-Poeschel, 9th edition (in german)
1999.

[10] Clement, Paul; Northrop, Linda: A framework for
software product line practice, version 2.7, 1999

[11] Henderson-Sellers, B., Edwards, J. M., Object-oriented
software systems life cycle, CACM Vol. 33, No. 9,
1990.

[12] Koskimes K., Mössenback H., Designing a Framework
by Stepwise Generalization. 5th European Software
Engineering Conference Barcelona, Lecture Notes in
Computer Science 989, Springer, 1995.

[13] Pree W., Framework Patterns. White Paper, SIGS
Books, New York, 1996.

[14] Riebisch, M.; Philippow, I.: Evolution of Product Lines
Using Traceability. OOPSLA 2001: Workshop on
Engineering Complex Object-Oriented Systems for
Evolution. October 14-18, 2001, Tampa Bay Florida
USA

[15] I. Philippow, M. Riebisch, Systematic Definition of
Reuseable Architectures. Proceedings 8.th Annual
IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, April 17-20,
2001. S. 128-136

[16] Milagros Ibanez, Dr. Helmut Rempp European User
Survey Analysis, ESPITI project report, 1996

[17] The Standish Group. CHAOS report. www.pm2go.com,
CHAOS chronicles. 1995

[18] Hofmann Hubert. Requirements Engineering, Deutscher
Universitäts-Verlag. 2000

[19] Ian Sommerville, Pete Sawyer. Requirements
Engineering. John Wiley and Sons Ltd. 1997

[20] Loucopoulos Pericles. System Requirements
Engineering. McGraw Hill. 1995

[21] Kyo C. Kang, Sholom G. Cohen, James A. Hess,
William E. Novak, A. Spencer Peterson. Feature-
Oriented Domain Analysis (FODA): Feasibility Study.
Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, 1990

[22] Juha Kuusela, Juha Savolainen. Requirements
Engineering for Product Families, Nokia Research
Center, Proc. of the International Conference on
Software Engineering (ICSE), 1997

[23] Rational Software Corporation. Rational Unified
Process. www.rational.com. 2000

[24] Jolita Ralyté. Reusing Scenario Based Approaches In
Requirements Engineering Methods: CREWS Method
Base. CREWS Report Series 99-112, Proceedings of
REP’99, 1st International Workshop on the
Requirements Engineering Process, 1999

[25] David M. Weiss, Chi Tau Robert Lai. Software
Product-Line Engineering: A Family-Based Software
Development Process. Addison Wesley. 1999

[26] Martin L. Griss, John Favaro, and Massimo
d’Alessandro. Integrating Feature Modeling with the
RSEB. In Proceedings of the 5th International
Conference on Software Reuse (ICSR ’98), pages 76-85.
IEEE Press (1998).

[27] Erich Gamma et al. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley
(1995).

[28] Krzysztof Czarnecki and Ulrich W. Eisenecker.
Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000).

[29] Harold Ossher and Peri Tarr. Multi-Dimensional
Separation of Concerns and The Hyperspace Approach.
In Proceedings of the Symposium on Software
Architectures and Component Technology: The State of
the Art in Software Development. Kluwer Academic
Publishers (2000).

