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Abstract: Based on the ICD (Individual channel Design) approach, the design of a multivariable digital submarine depth 
control system is presented. The model of the submarine is the standard 80 meters British submarine.  As expected, the 
frequency rate of sampling introduces limitations to achieve the required responses. Furthermore, the discrete model 
presents zeros close to imaginary axis resulting in a control system with bandwidths under the specified requirements. 
Nevertheless, it is  found that the digital ICD, similar to it’s continuous counterpart,  is a useful approach to analyse and 
design multivariable digital control systems in a transparent way, that is, in a way in which the limitations and 
possibilities to meet specifications can be elucidated  prior to the design of any controller. In particular, the controller 
designed hereby was designed following a classical control approach. 
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1 Introduction  
The design of multivariable control systems from 
an engineering point of view -in a way in which the 
possibilities and limitations of the plant can be 
elucidated prior to control design and corrections or 
adjustments to the controller is transparent- is a 
problem which can be tackled by  the ICD 
approach. The cornerstone of the ICD is the so 
called Multivariable Structure Function γ(s). By 
means of γ(s) the robustness structure of the system: 
number of RHPP’s and  RHPZ’s, and the level of 
coupling can be determined. In previous papers 
[1,2,3] was found that ICD is more a framework of 
analysis than design for multivariable control 
systems. It is an approach that also defines the 
necessary conditions for robustness based on the 
classical phase and gain margins but for highly 
couple multivariable systems. Also, under the ICD 
approach it has been proved that it is no always 
necessary the use of full matrix controllers, 
moreover if the Multivariable Structure Function 
γ(s) of the process is close to the point (1,0) it may 
result in a non robust control system. Due to the 
advantages digital control  has it is necessary to 
explore how ICD can be used in the design of 
multivariable digital control systems. In [2] the 
design of a continuous control system for the 
submarine based on the ICD approach which meets 

robustness and performance gives an insight to the 
possibilities to design a discrete version.  
 
2 Submarine Model 
The model of the submarine, taken from [2], is 
given by the following matrix transfer function 
G(s): 
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where: 
 
Z(s): represents the depth of the submarine,  
θ: the heading angle, 

)(SBδ : angle of the  prow hydroplane, 
)(SSδ : angle of the stern hydroplane, and  

 
the matrix transfer function G is given by: )(s
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where the individual transfer functions are given 
by: 
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The bandwidth of the individual transfer 
functions, , are: 2,1),( == jisgij
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To calculate the digital model of the submarine, it is 
necessary to define an appropriate sampling 
frequency W . The sampling frequency W  can be 
obtained following the criterion W , 
[4]. Due to the fact that the maximum bandwidth is 
given by , and because all 
the individual transfer functions of G , in 
equation (3), have roll off’s with  slops of  –
40dB’s/dec, an appropriate W  which includes all 
the significant dynamics  is given by 

. Therefore, the resulting sampling 
period is:  
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The discrete matrix transfer function G = 
Z{ } including the ZOH (zero order hold)  with  
sampling period T  is given by: 

)(z
)(sG

.sec6=
 









=

)()(
)()(

)(
2221

1211

zgzg
zgzg

zG   (4) 

 
 
 

where: 

)2284.07849.0)(6856.0)(1(
)6269.0)(6960.0)(0081.3(2223.0)(

)2284.07849.0)(6856.0)(1(
)0133.0)(7435.0)(8025.1(248.0)(

12

11

jzzz
zzzzg

jzzz
zzzzg

±−−−
+−−−=

±−−−
+−+−=

  

    (5) 
 

)2284.07849.0)(6856.0)(1(
)8614.0)(7163.0)(1(0340.0)(

)2284.07849.0)(6856.0)(1(
)8195.0)(8323.0)(1(025.0)(

22

21

jzzz
zzzzg

jzzz
zzzzg

±−−−
+−−−=

±−−−
+−−=

  

 
 
3 ICD Review 
The review of the ICD will be limited to the case of 
a 2x2 MIMO control system. The block diagram of 
a 2x2 control system with a diagonal matrix control  
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is given by the following Fig. 1 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 2x2 control system with diagonal controller 
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The individual open loop channels, 
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by: 
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where the Multivariable Structure Function )(zγ is 
given by: 
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and subsystems and are given by: )(1 zh )(2 zh
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are depicted in Fig.2 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Cross coupling relations in a 2x2 control 

system  with diagonal controller 
 

 
The structure of the poles and zeros of the 
individual open loop channels, equations (7-8), are 
described in Table 1 
 
 
 
 

CHANNEL ZEROS OF... POLES OF... 
 C  )(1 z 211 1( hg γ− ) 2211211 ,,, hggg

 C  )(2 z )1( 122 hg γ−  1211222 ,,, hggg

 
Table 1 Channels open loop poles and zeros 

 
Also, the transmission zeros of the process G  
are the zeros of 

)(z
)1( γ−

(2 z

(), 2 zh

. Therefore, the  Nyquist 
stability criteria can be used to determine the RHPZ 
of and C , that is, by the number of 
encirclements to the point (1,0) of the Nyquist 
trajectories of 

)(),( 1 zCzG )

)(z γγ and )(1 zhγ respectively. 
 
Finally, the conditions required for robustness are 
defined in the following set of gain and phase 
margins of Table 2 
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It necessary to recall that in the case of digital 
control systems the Nyquist stability criteria is 
given by [5]: 

rj 
with i=1,2 and j=1,2 

 
Let  be an open loop transfer function. 
The system will be close loop stable if : 
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=Φ11 =wP Number of poles of G on the 
unit circle. 
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4 Controller Design  
From equations (3) and (9) the Multivariable 
Structure Function )(zγ of the  submarine is given 
by: 
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From equation (12) is possible to see that )(zγ has a 
pole and a zero out of the unit circle, therefore 

)(zγ is unstable and non-minimum phase. The 
Nyquist plot of )(zγ is shown in Fig. 3 

Fig. 3  Nyquist plot of γ(z) 
 
By equation (11) and because Φ11 of  γ(z) is equal 
to –180°, as shown in Fig. 3,  the process is 
minimum phase. Nevertheless, to ma
condition in a close loop condition is necessary that 
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Fig. 4  Bode plots of γ(z) 
F

also have Φ11 equal to –180°. 
 
The gain a phase margins of γ(z) are 4.43dB’s and 

he control problem consist of designing a 
ontroller such that the submarine maintains a 
onstant depth Z(z) relative to a mean sea level with 
  head angle θ = 0°. To meet these responses the 
quired bandwidths for channels and 

should be 0.5rad/sec and 0.05  
spectively. 

 

 

Fig. 5  Submarine depth control problem 

 matrix control which quired 
bustness conditions indicated in Table 2 is given 
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55.87° respectively (similar to it’s continuous 
counterpart) as shown in Fig. 4. Despite the small 
gain margin, at low frequency, the process is 
assumed structurally robust because at low 
frequencies  the uncertainties can be neglected. 
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Fig. 6  Nyquist plots of γ(z), )(zhγ  and h )(zγ  
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Fig.8 Bode plots of 111gk  
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Fig. 10  Bode plots of )(2 zC  

inally, the steps responses of the close loop system 
re shown in Fig. 11 and Fig. 12.  
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Fig. 11  Step response of channel C1 
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the continuous version raised when the discrete 
model was calculated, that is, the individual 
transfers functions g11(z) is no minimum phase (it’s 
continuous counter parts is minimum phase), 
resulting in a unstable Multivariable  Structure 
Function )

 
Fig. 12  Step response of channel C2 
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sing the Individual Channel Design approach
igital version of a submarine depth control system

was designed. Additional problems, with respect to 
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appropriate approach to design multivariable digital 
control systems. For the particular case of the 
submarine depth control problem is recommended 
to investigate how the frequency sampling rate can 
be modified to obtain a better discrete model.  
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