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Abstract: -  A brief review of some classical non linear systems is presented. Most of these 
problems are stated as a set of non linear first order equations or its state space. These systems are 
simulated using circuital macro models suited for  program simulators like Spice.  
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1  Introduction 
Simulation of electronic circuits has 
replaced, many times, breadboarding as a 
mean of verifying and analyzing the 
performance of complex circuits or systems. 
These simulated results depend on how good 
are the inner models of the simulator 
programs. Actually the number of elements 
has far outstripped the capability of Spice 
[1,2] like simulators, just think in a VLSI 
chip with thousands or even millions of 
transistors. Significant research has been 
done to extend the capabilities of actual 
program simulators, i.e. nonlinear frequency 
analysis programs and its steady state 
solutions, like Harmonica[3]. 
One solution is to rise the modeling level to 
a behavioral or macromodel level of 
modeling. The ability to represent entire 
circuit blocks by an equation or a set of 
equations will make simulation of complete 
and complex analog systems possible, this 
will speed up the simulation and evaluation 
of different blocks of analog systems. 
Modeling entire behavioral or structural 
blocks like digital design in VHDL, 
hardware language descriptors. AHDL its 
analog counterpart (1990, IEEE) is now 
being developed [4]. 

In this article a brief review of some 
classical non linear systems is presented. 
These problems are stated as a set of non 
linear first order equations or state equations 
form and are macro modeled in a program 
simulator like Spice. The solution and 
theory of these state Space methods have 
been well studied, it gives a very good 
visualization of the physical problem, it can 
be modeled in a digital or analog computer 
and gives a general method applicable to 
discrete and continuous systems, linear and 
non linear and time variant or not. A brief 
discussion and some mathematical ideas 
precede the macromodel  solution, this 
solution is simple in most cases and can be 
analyzed with different parameters, 
coefficients or initial conditions, it must be 
mentioned that there are excellent references 
dealing with each specific problem, this is 
just another way to solve and understand 
these kind of problems, we do not discuss 
some mathematical points like stability, 
behavior around some critical points, etc, we 
make emphasis in a graphical solution, 
remembering that an image sometimes gives  
better comprehension than analytical 
methods. 
 



2 Problem formulation and 
solution 
2.1 Dynamics of a population. 
A well known mathematical model  that 
describes the dynamics of a population is the 
Lotka Volterra model [5]. 
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where N1  is the population density of 
species 1, N2 is the density of species2, f1 
and f2 functions represent an specific natural 
growing, and depends basically on the birth 
rate and the mortality index, these equations 
can be applied to a predator and prey 
population. In absence of predators, N1 the 
prey density will be: 
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where b is the birth rate and d is the 
mortality rate, α will be positive when there 
is enough food. With predators present, the 
prey will be eaten proportional to the 
number of predators 
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| In absence of preys,N2 the predator 
density will die with a rate γ 
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but if there are preys they will survive 
proportional to the number of preys. 
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Depending on the values of α, β, γ, 
δ and the initial or final values, a different 
solutions arises, stable oscillations, damped 
solutions and highly unstable solutions.  

An specific example taken from 
reference [6]: 
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where x describes a small fish population, 
perhaps sole and y the predator population 
ie. sharks. This problem can be easily 
modeled using ideal circuit macromodels, 
suited for circuit simulators like Spice. In a 
capacitor: 
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i(t) can be expressed  as a current source 
controlled by voltages, VCCS, in a 
polynomial form. Equations (7,8) can be 
modeled with two of this models as can be 
seen in Fig 1, where x and y correspond to 
the voltages of each circuit.  
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Fig.1 Circuital macromodels of Eqs. 7 and 8. 

 
The Spice netlist is also presented in table 1. 
 
VOLTERRA EQUATIONS. 
R1 1 0 1e9 
R2 2 0 1e9 
C1 1 0 1 
C2 2 0 1 
G1 0 1 POLY(2) 1 0 2 0 
+0 2 0 0 –1 
G2 0 2 POLY(2) 2 0 1 0 
+0 –8 0 0 2 
.IC V(1)=1 V(2)=1 
.TRAN .1 10 UIC 
.Probe 
.end 
 Table 1 Spice Netlist. 



Spice simulated results of the prey 
and predator populations are shown in Fig.2 
and Fig. 3. The Spice simulated phase plane 
portrait of the system is shown in Fig.3. 
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Fig.2 Dynamics of interacting populations. 
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2.2  Kinetics of a fermentation process 
Other applications, based on the same 
theory, with different emphasis can be found 
in the synthesis of some chemical reactions, 
ie. the fermentation of penicyllin, the grow 
rate of pseudomonas ovalis and in the 
synthesis of gluconic acyd [7]. The 
fermentation of the penicillin can be 
modeled as : 
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Where y1 is the concentration of cell mass 
and y2 represents the synthesis of the 
penicillin with initial conditions y1(0)=0.03 
and y2(0)=0. The process depends on the 
temperature, affecting the coefficients by 
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From experimental data W1=13.5  
(b1 at 25° C), W2=0.005, W3=30°C, W4=.94 
(b2 at 25° C ), W5=1.71 (b3 at 25° C), 
W6=20° C, θ=T° C. To maximize the 
concentration of penicillin at a final time 
t=1, the Pontryagin maximum principle is 
applied, it obtains the optimum temperature 
profile [8]. 

Spice simulated results of the 
penicyllin fermentation and its phase portrait 
are shown in Figs. 4 and 5. 
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Fig.4 Penicyllin fermentation 
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Fig.5 Simulated phase plane portrait. 
 
 

2.3  Dynamics of volume of flow 
. A classical non linear hydraulic example is 
presented when the flow between two 
cascaded tanks of water is derived, Fig.6.  
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Fig. 6 Water flow between two tanks. 
 
Applying the Bernoulli principle to 

one tank [9]. The flow of water  Q(t) can be 
written as 

 

022 )()( ptptQ −= β          (15) 

011 )()( ptptQ −= β           (16) 
 

Where β is a constant and depends 
on the geometry of the outlet hole . P1 and P2 

, are the internal pressures of tank 1 and  
tank 2 respectively. The relationship 
between the pressures and the height of the 
liquid are: 
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Where ρ is the liquid density and g 
is the gravity constant. In each tank the 
quantity of water that enters it minus the out 
flowing one should be the accumulated one, 
in mathematical terms. 
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Where A is the horizontal section of 

each tank. The dynamic of the system can be 
described by: 
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To simulate this example we make all 
constants equal to 1 and define a circuital 
macromodel that extracts the square root of 
the input, shown in table 2. 
 
.subckt csqrt 1 2 
*y=x+y-y2 

R1 1 0  1e9 
Eout 2 0 poly(2) 1 0 2 0 
+0 1  1 0 0 –1 
Rout 2 0 1e9 
.ends 
 
Table 2  Spice netlist of square root 
extractor.  
 

The simulated results are shown in 
Figs.7 and 8.   
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2.4. A non linear feedback control 
system. 
In the next system, a classical example  of 
nonlinear feedback control [10], 
nonlinearities are introduced by the sign 
function. The behavior of the system can be 
observed in the state-space plot, Fig.10, 
showing dx2/dx. Altough there is no external 
input to the system, nevertheless it does not 
reach a steady state, but instead shows a 



periodic behavior appearing as a limit cycle 
in the state-space plot. 
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To obtain the sign function , the subcircuit, 
shown in table 3, was defined. Simulated 
results of  transient output and phase plane 
portrait are shown in Figs. 9 and 10 
respectively. 
 
.subckt sgnx 100 107 
Rin 100 0 1e9 
E1 102 0 poly (3) 100 0 107 0 104 0 
+0 100 –100 1e-15 
R1 102 0 1 
E2 103 0 102 0 1e6 
R2 103 104 1 e12 
D1 104 105 diode 
V1 105 0 1 
D2 106 104 diode 
V2 106 0 –1 
.model diode D(N=.001) 
E4 107 0 104 0 1 
.ends 
 
Table 3 Spice netlist of sign function. 
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2.5 A Chaos example, Lorentz 
Equation 
Another classical example where the non 
linearity gives us a chaotical behaviour is 
presented with the classical Lorentz 
Equation [11]. A brief explanations follows. 
Human kind has always depend on a 
variable unstable dynamic atmosphere. 
From the early beginnings man try to predict 
weather with all its available tools. Von 
Neumann in the  forties studied not only to 
predict it, but also to control it. The 
atmosphere acts like a shield against solar 
radiation and cosmic energy. It interchanges 
heat and cold at a huge scale, from equator 
to poles and from sea level to high altitude. 
It obeys strictly deterministic laws but ought 
to the great number of complex factors, it 
represents a classical  chaotic system, non 
linear feedback generates unpredictable 
conditions. Weather conditions depend on 
the solar energy that incidences the planet 
surface, almost 43% of  this energy is in the 
form of heat energy, the rest remains at the 
atmosphere or is reflected to the outer space. 
The heat gradient in the atmosphere moves 
air masses at a global scale, warmer air with 
less density ascends faster than cold air, 
creating regions of high and low pressure. 
The planet is not circular, rotates around its 
axe (Coriolis force) and presents an 
inclination, so solar radiation varies along 
the year. Lorentz developed a weather 
model in the 60’s, based on differential 
equations. 

A climatic condition could be 
represented as a point in a 3D space, i.e. x  
represents the temperature , y humidity and 
z the barometric pressure. Just plotting the 
observations along time patterns will show 
future behavior. He takes Navier Stokes 
equations in fluid theory. The following 
results shows the so called Lorentz attractor, 
an attractor that resembles a butterfly. 
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This system shows great sensibility to the 
values of initial conditions, it tries to 
describe a phenomenon where little changes 
in recursive system magnifies and alters 
drastically the expected results. The well 
known Lorentz attractors are obtained in 
Figs. 11 and 12 by drawing x vs. y, and x vs. 
z respectively. 
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2.6 A Median filter. 
In many signal processing applications the 
suppression of unwanted components can be 
achieved by linear filters, but in signals with 
sharp edges corrupted by noise, linear filters 
also smoothes out signal edges (information) 
and in addition, impulsive noise cannot be 
sufficiently suppressed. Another type of 
filters, non linear or adaptive were proposed, 
filters that preserves edges while 
suppressing impulsive noise. The non linear 
Median Filter has had a good performance 
in such cases, it replaces the input signal 
value at each point by the median of the 
signal value in a neighborhood around that 
point [12]. Lee and Kassam, based on a 
Maximun Likelihood Estimators theory, 
proposed an algorithm to get the median 
[12]. It is stated as: The output yk of the 

median filter M is defined as the solution of 
the equation : 
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If f(x) is a linear function f(x)=ax, 

the media is obtained. If f(x) is no linear 
approaching the hard limiter as shown in 
Fig. 13, the median is obtained. 
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Fig. 13 Hard limiter function. 
 

A macromodel to solve the algorithm is 
shown in Fig. 14, together with the 
simulated output in Fig.15.  
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Fig.14 Macromodel to obtain the median. 
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Fig 15 Median of three signals. 



3  conclusions 
Some classical non linear problems, a brief 
explanation, its mathematical model and 
simulation of these models using Pspice 
were presented in this article. Different 
examples from different areas were given, 
biochemical areas, ecological ones, an 
hydraulic system, a  control theory example, 
non linear filters and a chaotic system. One 
can easily see the non linearities in these 
models, the time response of the simulated 
system is observed, the frequency response 
can also be obtained and relating two 
variables the state space portrait can be 
obtained. Simple models were used, they 
were simulated it with behavioral 
macromodels in Spice. With minor changes 
you can observe different responses. These 
models can be generalized to obtain 
solutions of ODE non linear systems. 
Graphical solutions gives a very good 
visualization of the problems. 
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