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Abstract: - In the implementation of lossless compression, the traditional Lempel-Ziv dictionary algorithm 
produces good compression performance, but at a relatively slow processing speed for use in real-time 
applications. This paper highlights a technique to speed up the overall compression process through introduction 
of a prediction pre-processor stage. A variety of predictors are applied to two variations of the Lempel-Ziv - 
LZSS and LZARI. It is shown that the proposed two-stage scheme significantly reduces the overall processing 
time taken for to encode raw telemetry data, as well as improves the overall compression performance achieved. 
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1   Introduction 
The use of data compression is very significant in 
most fields that utilise computers and related 
machinery in one way or the other. The reduction of 
data size though the removal of redundancies in the 
data, possesses many benefits. Among these are : the 
ability for increased data storage in fixed capacity 
devices, quick manipulation of large data files, faster 
data transfer over fixed bandwidth and reduced total 
transmission error (assuming constant probability of 
transmission error along a medium, reduced data 
transmitted implies reduced total error incurred by 
that data during transmission). 

In terms of accuracy, a number of applications 
require lossless data compression, as opposed to the 
higher compression capabilities of lossy 
compression. Applications such as binary files, 
satellite telemetry data and medical images have to 
be lossless as lossy effects could render the files 
inaccessible, may pose difficulties in diagnosis / 
analysis, or in extreme cases, may even give rise to  
"false" data due to inaccuracies and missing parts of 
the data. 

There exists many algorithms for lossless data 
compression, ranging from primitive strategies of 
null suppression, to well known statistical 
techniques such as Huffman and arithmetic coding, 
as well as combination techniques which integrate a 
number of strategies within the algorithm, e.g. 
Sixpack [1]. One technique that produces good 
compression performance, but at the expense of 

relatively slow processing is the dictionary method, 
such as that employed by Lempel-Ziv (LZ) coding 
schemes [2].  

This paper seeks to improve the performance of 
two LZ variations, especially in terms of processing 
time. This is done through the application of a two-
stage scheme, which utilises classical predictors as 
well as artificial neural networks as a prediction-
based pre-processor to the LZ encoder. 
 
 
2   The Lempel-Ziv Algorithms 
The basic concept of a dictionary-type encoder is 
that the encoder builds a table of characters / words / 
phrases that have been encountered in the input 
stream, assigning a corresponding codeword to each 
entry in the table. When an instance in the input 
matches an entry in the table (dictionary), it is 
replaced with the corresponding codeword. 
Dictionaries may be static (pre-defined) or dynamic 
(built and updated at run-time, with the possibility of 
initialisation with a pre-defined mini-dictionary of 
common matches at start-up). A description of the 
LZ algorithm as well as the two variations used in 
this paper is given below. 
 
 
2.1 Lempel-Ziv 
The LZ coding (also known as Ziv-Lempel and 
LZ77) [2] has a text window divided into two parts. 
The first part is the body of the text window 



(containing recently encoded text), and the second is 
a look-ahead buffer that contains the new input to be 
compressed. The algorithm tries to match the 
contents of the look-ahead buffer to a string in the 
dictionary (body of text window). Compression is 
achieved by replacing variable-length text with 
fixed size tokens. Each token has three parts : a 
pointer into the  dictionary, the length of the phrase 
and the first symbol in the look-ahead buffer that 
follows the phrase, as given in Fig. 1.  
 
 

Position Length Next character 

 
Fig. 1 : Format of LZ77 encoded token 
 
 

An example of the algorithm is illustrated in Fig. 
2. During compression, the very first character (say 
a) is represented as 0, 0, ‘a’. During decompression, 
a similar text window will be created. The token is 
read, the indicated phrase is output and the 
remaining character (i.e. a) is appended. After this, 
the dictionary and look-ahead buffer is used, and the 
process is repeated until the end of the input. The 
implementation of LZ77 can cause a bottleneck, as 
string comparison has to be done at every position 
in the text window. When matching strings are not 
found, the cost of using this algorithm is very high 
as the 24-bit token is used to encode each 
unmatched 8-bit character, thus resulting in possible 
data expansion. 

 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 : Example of Lempel-Ziv Coding  

The LZ class of algorithms has many variations 
which implement various adaptations and 
improvements. Among the popular variations are : 
LZSS, LZ78, Lempel-Ziv-Welch (LZW), LZJ, LZT, 
LZC, Lempe-Ziv with Huffman coding (LZH) and 
Lempel-Ziv with arithmetic coding (LZARI) 
[1][3][4]. Two are evaluated in this paper : LZSS 
and LZARI. 
 
 
2.2 LZSS 
LZSS by Storer & Szymanski in 1982 [3] is an 
improvement of the LZ77, which updates a binary 
search tree with the phrases that are moved out of 
the look-ahead buffer into the dictionary. This 
allows string comparison to be done quickly, thus 
reducing the performance bottleneck. LZSS also 
reduces wastage by modifying the token. It uses a 1-
bit prefix to indicate whether an offset (length pair) 
or a single symbol for out put is being sent. When a 
match is not found, the dummy position 0 and 
length 0 will not be sent.  

At the start of compression, performance is poor 
as there is no data in the text window for 
comparison. A further improvement to the 
implementation would be to find probable data 
beforehand to be pre-loaded into the body of the text 
window. Therefore, meaningful tokens can be used 
right from the start, thus improving compression 
 
 
2.3 LZARI 
LZARI is a multilevel coding technique that uses a 
two-pass operation [1]. The first pass uses one of the 
better LZ algorithms, followed by the second pass in 
which the tokens (code pointers) are encoded using 
arithmetic coding. The arithmetic coding [5] 
encodes the codewords into a floating point number 
fi (such that :i∀ 0 ≤ fi < 1.0). Each codeword 
occupies a different non-overlapping range between 
0 and 1.0, such that :ji∀∀ i=j lowi ≤ fi < highi , where 
lowi and highi are the lower and upper bound of the 
range occupied by fi. 
 The dictionary (text window) building and look-
up phases cause the LZ algorithms to be relatively 
slow during implementations, as opposed to other 
popular schemes such as the statistical Huffman and 
arithmetic coding. However, the compression 
performance, in terms of compression ratio achieved 
by the LZ tends to be better than the simpler 
schemes, even when applied for compression of data 
which handicaps it (such as numeric data with very 
few repeated values, as used to test the schemes 
reported in this paper - see Section 4) [6]. 
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    (processed input in dictionary)          Buffer 
 
 

 
(a) LZ77 Text window and look-ahead 

buffer at a particular instance 
 
 
 

(b) Text window and look-ahead buffer  
shifted left by 4 places after 

encoding the string '<MAX' into 
the LZ77 encoded symbol 13,4,‘;’  
using the format given in Fig. 1 

 

(i=0; i<MAX-1;i++)\r for( j=i+1;j<MAX ;j++ )\r a[ i ]=100 

d; for (i=0; i<MAX-1;i++)\r for( j=i+1;j <MAX ; j++ )\r a[ i 



 
 

Table 1 : Characteristics of the test data files 
 

    Parameter 1 Parameter 2 
 

Test  
File 

File  
Size  

(bytes) 

Total  
number 

of 
symbols 

Sampling 
rate 

(symbols 
per sec.) 

Number 
of 

distinct 
symbols 

Max. 
freq.  
of a 

symbol 

Max. 
value  
of a 

symbol 

Source 
Entropy 
(bits per 
symbol) 

Number 
of 

distinct 
symbols 

Max. 
freq. 
of a 

symbol 

Max.  
value  
of a  

symbol 

Source 
Entropy 
(bits per 
symbol) 

Tdata1 252305 28324 520 28324 1 159.9 14.790 157 7131 66.135 3.128 
Tdata2 139571 11631 65 11631 1 368.0 13.506 12 7484 1070.249 1.017 
Tdata3 55365 6778 65 6778 1 119.9 12.727 43 1438 76.105 4.644 
Tdata4 131841 16052 130 16052 1 139.9 13.970 191 3985 50.894 5.387 
Tdata5 184774 17232 65 17232 1 349.9 14.073 240 349 4960.000 7.614 
Tdata6 74915 8662 65 8662 1 149.9 13.080 6 2840 124.250 2.121

3   Two-Stage Scheme 
It is proposed in this paper that a pre-processing 
stage be integrated with the encoders to improve 
performance in terms of processing time of the LZ 
implementation. Generally, it is desired that the 
number of stages in any process for data 
manipulation be minimised, in order to minimise 
total processing time. However, it will be shown in 
Section 4 that the introduction of an additional pre-
processing stage can in fact bring about significant 
benefits in terms of processing time of the LZ, 
especially when dealing with numeric data.  

The two-stage scheme basically integrates a 
predictor (coupled with a residue generator) as a 
pre-processor to the encoder, as shown in Fig. 3. 
The first stage reduces the dynamic range of the 
input by predicting the current value (Xn) at each 
iteration. Prediction is achieved using the p past 
input values. At each iteration, the output generated 
is the corresponding residue (error between the 
actual and predicted values). By transmitting the 
residue, the receiver then utilises the same predictor 
and adds the residue to the predicted value to restore 
the original input. 

 
 
 

  Input,               Compressed 
  Xn,Xn-1,..,Xn-p         Output 
 
 
           Predict   Residue Generator        Lempel  
             E(Xn)       Rn = Xn - E(Xn)          -Ziv 
 
    

PRE-PROCESSOR        ENCODER 
 
 

Fig. 3 : Two-stage Scheme 

A good predictor would remove the redundancy 
in the input thus minimising the number of unique 
patterns passed on to the encoder. As such, a 
dictionary type encoder benefits from the reduced 
size of the dictionary / lookup table it needs to build 
and use. In the case of numeric data, the mean and 
mode value of the residues of a good predictor 
would be 0, thus most of the input to the encoder 
would be encoded with the same codeword. This in 
turn allows the size of the codeword to be minimal, 
thus achieving higher compression. 
 
 
4   Performance Evaluation 
Evaluation of the implementation is carried out with 
a data set of 6 satellite launch vehicle telemetry data 
files of varying magnitude and distribution patterns, 
each containing a different type of telemetry 
measurement (e.g. pressure, temperature etc.).  
 
 
4.1 Characteristics of the Test Data 
The data files generally consists of pairs of values, 
(each converted to a 16-bit integer value). The first 
parameter is a reference value with increasing linear 
distribution, while the second the actual 
measurement reading which varies in pattern and 
distribution. Table 1 gives the characteristics of the 
test data [7]. The total number of samples and 
sampling rate is equal for both parameters. There 
are no repeated values in the first parameter, so the 
maximum frequency of a symbol is 1 and the 
number of distinct levels is equal to the number of 
samples. This produces high entropy, and in turn, 
high source information rate. Entropy, calculated 
using Eq. (1), gives the minimum number of bits 
required to encode the data, assuming that each 
distinct symbol is represented by a different bit 
pattern.  



H = -∑
−

n

i
ii PP

1
2 )(log        (1) 

 
The value obtained by Eq. (1) using probability 

of occurrence (Pi) of symbol i, would be 
representative of a fixed model. Adaptive models 
are capable of greater compression (i.e. total 
compressed size less than the product of the entropy 
and total number of symbols).  
 For the second parameter, it is observed that the 
least number of distinct levels is 6 (for ‘Tdata6’) 
whilst the highest is 240 (for ‘Tdata5’). The file 
‘Tdata5’ has equi-probable symbols, and as such, 
also has the highest source entropy of 7.614.  
 
 
4.2 Predictors 
A variety of predictors may be used in the first (pre-
processor) stage  of the two-stage implementation. 
A sample of 3 classical predictors as well as 2 
artificial neural network models are reported here : 
 
• a 5th-order fixed finite impulse response (FIR) 

filter given by Eq. (2) [8],  
 

E(Xn) = 4Xn-1 - 7Xn-2 + 7Xn-3 - 4Xn-4 + Xn-5     (2) 
 
• an adaptive FIR with normalised least mean 

squared (NLMS) algorithm,   
• a 2nd-order adaptive recursive least squares 

lattice filter with a-priori estimation errors and 
error feedback (RLSL) [9].  

• the 4th-order single layer perceptron (SLP) 
neural network, and  

• the 2nd-order multilayer perceptron (MLP) [10] 
neural network. 
 
The neural network models were trained 

adaptively using block of training data, such that 

20% of the block was used for training the 
remainder values were predicted. More details may 
be found in [11]. 

 
 
4.3 Processing Time 
The processing time taken by the encoders in the 
single- and two-stage schemes is summarised in 
Table 2. The tabulations are simulation results on 
the Sun Ultra-10 platform, with the results for the 
neural predictors estimated based on internal 
operations and I/O performance on a parallel 
version of the same platform.  An appropriate neural 
chip, ASIC or FPGA may be used. 

From the table, it is shown that the processing 
time of the LZSS and LZARI are significantly 
shortened when the pre-processing stage is 
introduced. Amongst the predictors evaluated, the 
neural network SLP aids both encoders the most, 
with respect to reduction in total processing time.  

It would be noticed from the results that the 
surprising performance in processing time brought 
about by the additional stage. Instead of slowing the 
implementation, as is usually the case for additional 
phases, the pre-processor has contributed to 
significantly reduce the processing time from 
approximately 8.5 seconds for the LZ algorithms by 
themselves, to less than 1 second for all the two-
stage schemes. The processing time for the SLP-
LZARI of 0.48 seconds (approximately 6% of the 
original LZARI implementation) brings about an 
increase of efficiency of more than 15 times. 

The reason for this significant difference is due 
to the fact that the predictors generally performed 
well on the test data. As such, resulting in small 
residue values with a small dynamic range, i.e. the 
frequency of each value was high. As the LZ 
algorithms only had to encode the residue stream, 
the size of the dictionary was kept minimal, thus the 
gains in speed.   

 
 

Table 2 : Overall Processing Time for Encoder-only and Two-stage schemes 
 

LZSS LZARI  
Test 
File 

LZSS 
only 

FIR – 
LZSS 

NLMS 
-LZSS 

RLSL  
–LZSS 

SLP – 
LZSS 

MLP – 
LZSS 

LZARI 
only 

FIR - 
LZARI 

NLMS- 
LZARI 

RLSL- 
LZARI 

SLP- 
LZARI 

MLP- 
LZARI 

Tdata1 7.18 1.52 0.98 0.84 0.56 0.58 7.25 1.53 0.98 0.88 0.56 0.58 
Tdata2 12.59 0.65 0.44 0.62 0.50 0.52 12.70 0.67 0.43 0.61 0.49 0.51 
Tdata3 4.09 0.46 0.31 0.28 0.38 0.40 3.98 0.44 0.33 0.25 0.38 0.40 
Tdata4 7.45 0.92 0.78 0.60 0.44 0.46 7.56 0.90 0.78 0.55 0.43 0.45 
Tdata5 8.71 1.57 1.56 0.86 0.67 0.69 8.81 1.44 1.93 0.78 0.66 0.68 
Tdata6 10.95 0.61 0.51 0.41 0.38 0.40 10.78 0.58 0.48 0.38 0.38 0.40 
average 8.50    0.96    0.76    0.60    0.49    0.51    8.51    0.93    0.82    0.58    0.48    0.50 



4.4 Compression Performance 
As desirable as speed is, when dealing with 
compression, it is important to ensure good 
compression performance. The results, in terms of 
compression ratio achieved for each test file, is 
presented in Table 3.  

In general, it is observed that there is 
performance gain in terms of compression. This is 
again due to the fact that the size of the codewords 
for the LZ were reduced as the dynamic range of the 
residues is lesser than the original input stream, in 
additional to the fact that the magnitude of residue 
values are also much reduced as compared to the 
original input. This is not always the case though. 

From table 3, it is observed that the compression 
performance actually deteriorates with the 
introduction of the FIR first stage. The fixed 
predictor was not an efficient predictor as it was 
unable to adapt to the changing data, and produced 
large residues. This can cause data expansion 
(resulting compression ratios smaller than those 
achieved by the single stage LZSS and LZARI 
implementations), instead of compression. 
Sequences of similar large residues would still 
reduce the dictionary building and lookup time, but 
coding the residues into the dictionary would result 
in poor compression. This is observed when 
comparing the performance of the FIR in Tables 2 
and 3. 

 
 
5   Conclusion 
In this paper, a two-stage scheme was proposed to 
improve the performance of the Lempel-Ziv (LZ) 
dictionary-type lossless compression algorithm. A 
pre-processor stage utilising a predictor and residue 
generator was integrated with the LZ encoder. The 
scheme was tested using two variations of the LZ 
algorithm, namely LZSS and LZARI, combined 
with a variety of classical and artificial neural 

network predictors.  
As a general rule, an increased number of stages 

or processes in data manipulation leads to increased 
processing time. This paper, however, shows that 
this is not necessarily the case. In effect, the total 
processing time may be significantly reduced with 
the introduction of a suitable pre-processing stage, 
albeit the likelihood of additional resource 
requirements (processing power, storage buffer etc.) 
for implementing the additional stage. Through 
empirical or analytical means, the number and type 
of pre- / post-processing stages used should be 
determined by taking into account the overall 
performance gains vs. the resources requirements 
for the integration. Simulation results provided for 
some small known predictors show that 
performance gains of up to 17 times may be 
achieved by the two-stage scheme as opposed to 
single-stage encoder-only implementations.  

In addition to processing speed gains, the results 
provided also shows that the introduction of a pre-
processor may also enhance compression 
performance significantly, even up to more than 10 
times that of the single-stage encoder 
implementation. This certainly merits the use of the 
two-stage scheme for lossless data compression. A 
similar idea may also be ported for lossy 
compression. 

It must be noted that the test data sets used in this 
paper were numeric telemetry data, which is not 
best suited for LZ compression. The intentional use 
of such data was to portray a non-optimum scenario 
for better clarity in the empirical results. The 
predictors used were of low complexity for practical 
implementation of a small setup with limited 
resources.  

The result presented in this paper recommend 
that with a suitable pre-processor stage, 
performance of the encoder can be improved 
significantly, when dealing with different data. This 

Table 3 : Compression Ratio achieved by Encoder-only and Two-stage schemes 
 

 LZSS Encoder LZARI Encoder 
Test 
File 

LZSS 
only  

FIR – 
LZSS 

NLMS 
-LZSS 

RLSL  
–LZSS 

SLP – 
LZSS 

MLP – 
LZSS 

LZARI 
only 

FIR - 
LZARI 

NLMS- 
LZARI 

RLSL- 
LZARI 

SLP- 
LZARI 

MLP- 
LZARI 

Tdata1 7.83 5.22 21.09 32.32 21.99 23.15 21.31 5.22 21.09 32.32 24.63 25.38 
Tdata2 6.49 5.10 22.03 42.88 18.42 28.70 16.45 5.10 22.03 42.88 25.34 34.99 
Tdata3 5.54 2.82 11.75 38.31 38.93 27.77 11.57 2.82 11.75 38.31 49.57 45.61 
Tdata4 6.53 4.47 10.94 39.78 36.65 22.24 16.02 4.47 10.94 39.78 40.32 27.80 
Tdata5 5.54 2.75 3.09 16.36 5.45 5.25 9.58 2.75 3.09 16.36 7.40 6.34 
Tdata6 5.79 3.58 44.46 72.17 55.08 70.15 13.10 3.58 44.46 72.17 102.06 132.36 
average 6.29 3.99 18.89 40.30 29.42 29.54 14.67 3.99 18.89 40.30 41.55   45.41 

 



finding may also hold true for other types of 
encoders. Other tests with Huffman and arithmetic 
coding did not render better speed as these 
algorithms are essentially fast, but the respective 
two-stage schemes did exhibit significant 
improvement in compression performance [6] at the 
cost of a slight delay in processing efficiency. 
Performance (compression as well as speed) relies 
on the combination of both stages, so the suitability 
of the predictor in generating an appropriate residue 
stream for the particular encoder must be 
emphasised [6]. 
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