
Enhancement Of Lempel-Ziv Coding Using A Predictive Pre-Processor
Scheme for Data Compression

RAJASVARAN LOGESWARAN

Faculty of Engineering
Multimedia University

63100 Cyberjaya,
MALAYSIA

Abstract: - In the implementation of lossless compression, the traditional Lempel-Ziv dictionary algorithm
produces good compression performance, but at a relatively slow processing speed for use in real-time
applications. This paper highlights a technique to speed up the overall compression process through introduction
of a prediction pre-processor stage. A variety of predictors are applied to two variations of the Lempel-Ziv -
LZSS and LZARI. It is shown that the proposed two-stage scheme significantly reduces the overall processing
time taken for to encode raw telemetry data, as well as improves the overall compression performance achieved.

Key-Words: - Neural Networks, Lempel-Ziv, Prediction, Data Compression, Optimisation, Two-stage scheme

1 Introduction
The use of data compression is very significant in
most fields that utilise computers and related
machinery in one way or the other. The reduction of
data size though the removal of redundancies in the
data, possesses many benefits. Among these are : the
ability for increased data storage in fixed capacity
devices, quick manipulation of large data files, faster
data transfer over fixed bandwidth and reduced total
transmission error (assuming constant probability of
transmission error along a medium, reduced data
transmitted implies reduced total error incurred by
that data during transmission).

In terms of accuracy, a number of applications
require lossless data compression, as opposed to the
higher compression capabilities of lossy
compression. Applications such as binary files,
satellite telemetry data and medical images have to
be lossless as lossy effects could render the files
inaccessible, may pose difficulties in diagnosis /
analysis, or in extreme cases, may even give rise to
"false" data due to inaccuracies and missing parts of
the data.

There exists many algorithms for lossless data
compression, ranging from primitive strategies of
null suppression, to well known statistical
techniques such as Huffman and arithmetic coding,
as well as combination techniques which integrate a
number of strategies within the algorithm, e.g.
Sixpack [1]. One technique that produces good
compression performance, but at the expense of

relatively slow processing is the dictionary method,
such as that employed by Lempel-Ziv (LZ) coding
schemes [2].

This paper seeks to improve the performance of
two LZ variations, especially in terms of processing
time. This is done through the application of a two-
stage scheme, which utilises classical predictors as
well as artificial neural networks as a prediction-
based pre-processor to the LZ encoder.

2 The Lempel-Ziv Algorithms
The basic concept of a dictionary-type encoder is
that the encoder builds a table of characters / words /
phrases that have been encountered in the input
stream, assigning a corresponding codeword to each
entry in the table. When an instance in the input
matches an entry in the table (dictionary), it is
replaced with the corresponding codeword.
Dictionaries may be static (pre-defined) or dynamic
(built and updated at run-time, with the possibility of
initialisation with a pre-defined mini-dictionary of
common matches at start-up). A description of the
LZ algorithm as well as the two variations used in
this paper is given below.

2.1 Lempel-Ziv
The LZ coding (also known as Ziv-Lempel and
LZ77) [2] has a text window divided into two parts.
The first part is the body of the text window

(containing recently encoded text), and the second is
a look-ahead buffer that contains the new input to be
compressed. The algorithm tries to match the
contents of the look-ahead buffer to a string in the
dictionary (body of text window). Compression is
achieved by replacing variable-length text with
fixed size tokens. Each token has three parts : a
pointer into the dictionary, the length of the phrase
and the first symbol in the look-ahead buffer that
follows the phrase, as given in Fig. 1.

Position Length Next character

Fig. 1 : Format of LZ77 encoded token

An example of the algorithm is illustrated in Fig.
2. During compression, the very first character (say
a) is represented as 0, 0, ‘a’. During decompression,
a similar text window will be created. The token is
read, the indicated phrase is output and the
remaining character (i.e. a) is appended. After this,
the dictionary and look-ahead buffer is used, and the
process is repeated until the end of the input. The
implementation of LZ77 can cause a bottleneck, as
string comparison has to be done at every position
in the text window. When matching strings are not
found, the cost of using this algorithm is very high
as the 24-bit token is used to encode each
unmatched 8-bit character, thus resulting in possible
data expansion.

Fig. 2 : Example of Lempel-Ziv Coding

The LZ class of algorithms has many variations
which implement various adaptations and
improvements. Among the popular variations are :
LZSS, LZ78, Lempel-Ziv-Welch (LZW), LZJ, LZT,
LZC, Lempe-Ziv with Huffman coding (LZH) and
Lempel-Ziv with arithmetic coding (LZARI)
[1][3][4]. Two are evaluated in this paper : LZSS
and LZARI.

2.2 LZSS
LZSS by Storer & Szymanski in 1982 [3] is an
improvement of the LZ77, which updates a binary
search tree with the phrases that are moved out of
the look-ahead buffer into the dictionary. This
allows string comparison to be done quickly, thus
reducing the performance bottleneck. LZSS also
reduces wastage by modifying the token. It uses a 1-
bit prefix to indicate whether an offset (length pair)
or a single symbol for out put is being sent. When a
match is not found, the dummy position 0 and
length 0 will not be sent.

At the start of compression, performance is poor
as there is no data in the text window for
comparison. A further improvement to the
implementation would be to find probable data
beforehand to be pre-loaded into the body of the text
window. Therefore, meaningful tokens can be used
right from the start, thus improving compression

2.3 LZARI
LZARI is a multilevel coding technique that uses a
two-pass operation [1]. The first pass uses one of the
better LZ algorithms, followed by the second pass in
which the tokens (code pointers) are encoded using
arithmetic coding. The arithmetic coding [5]
encodes the codewords into a floating point number
fi (such that :i∀ 0 ≤ fi < 1.0). Each codeword
occupies a different non-overlapping range between
0 and 1.0, such that :ji∀∀ i=j lowi ≤ fi < highi , where
lowi and highi are the lower and upper bound of the
range occupied by fi.
 The dictionary (text window) building and look-
up phases cause the LZ algorithms to be relatively
slow during implementations, as opposed to other
popular schemes such as the statistical Huffman and
arithmetic coding. However, the compression
performance, in terms of compression ratio achieved
by the LZ tends to be better than the simpler
schemes, even when applied for compression of data
which handicaps it (such as numeric data with very
few repeated values, as used to test the schemes
reported in this paper - see Section 4) [6].

 Contents of the Contents of the
 Text Window Look-Ahead
 (processed input in dictionary) Buffer

(a) LZ77 Text window and look-ahead

buffer at a particular instance

(b) Text window and look-ahead buffer
shifted left by 4 places after

encoding the string '<MAX' into
the LZ77 encoded symbol 13,4,‘;’
using the format given in Fig. 1

(i=0; i<MAX-1;i++)\r for(j=i+1;j<MAX ;j++)\r a[i]=100

d; for (i=0; i<MAX-1;i++)\r for(j=i+1;j <MAX ; j++)\r a[i

Table 1 : Characteristics of the test data files

 Parameter 1 Parameter 2

Test
File

File
Size

(bytes)

Total
number

of
symbols

Sampling
rate

(symbols
per sec.)

Number
of

distinct
symbols

Max.
freq.
of a

symbol

Max.
value
of a

symbol

Source
Entropy
(bits per
symbol)

Number
of

distinct
symbols

Max.
freq.
of a

symbol

Max.
value
of a

symbol

Source
Entropy
(bits per
symbol)

Tdata1 252305 28324 520 28324 1 159.9 14.790 157 7131 66.135 3.128
Tdata2 139571 11631 65 11631 1 368.0 13.506 12 7484 1070.249 1.017
Tdata3 55365 6778 65 6778 1 119.9 12.727 43 1438 76.105 4.644
Tdata4 131841 16052 130 16052 1 139.9 13.970 191 3985 50.894 5.387
Tdata5 184774 17232 65 17232 1 349.9 14.073 240 349 4960.000 7.614
Tdata6 74915 8662 65 8662 1 149.9 13.080 6 2840 124.250 2.121

3 Two-Stage Scheme
It is proposed in this paper that a pre-processing
stage be integrated with the encoders to improve
performance in terms of processing time of the LZ
implementation. Generally, it is desired that the
number of stages in any process for data
manipulation be minimised, in order to minimise
total processing time. However, it will be shown in
Section 4 that the introduction of an additional pre-
processing stage can in fact bring about significant
benefits in terms of processing time of the LZ,
especially when dealing with numeric data.

The two-stage scheme basically integrates a
predictor (coupled with a residue generator) as a
pre-processor to the encoder, as shown in Fig. 3.
The first stage reduces the dynamic range of the
input by predicting the current value (Xn) at each
iteration. Prediction is achieved using the p past
input values. At each iteration, the output generated
is the corresponding residue (error between the
actual and predicted values). By transmitting the
residue, the receiver then utilises the same predictor
and adds the residue to the predicted value to restore
the original input.

 Input, Compressed
 Xn,Xn-1,..,Xn-p Output

 Predict Residue Generator Lempel
 E(Xn) Rn = Xn - E(Xn) -Ziv

PRE-PROCESSOR ENCODER

Fig. 3 : Two-stage Scheme

A good predictor would remove the redundancy
in the input thus minimising the number of unique
patterns passed on to the encoder. As such, a
dictionary type encoder benefits from the reduced
size of the dictionary / lookup table it needs to build
and use. In the case of numeric data, the mean and
mode value of the residues of a good predictor
would be 0, thus most of the input to the encoder
would be encoded with the same codeword. This in
turn allows the size of the codeword to be minimal,
thus achieving higher compression.

4 Performance Evaluation
Evaluation of the implementation is carried out with
a data set of 6 satellite launch vehicle telemetry data
files of varying magnitude and distribution patterns,
each containing a different type of telemetry
measurement (e.g. pressure, temperature etc.).

4.1 Characteristics of the Test Data
The data files generally consists of pairs of values,
(each converted to a 16-bit integer value). The first
parameter is a reference value with increasing linear
distribution, while the second the actual
measurement reading which varies in pattern and
distribution. Table 1 gives the characteristics of the
test data [7]. The total number of samples and
sampling rate is equal for both parameters. There
are no repeated values in the first parameter, so the
maximum frequency of a symbol is 1 and the
number of distinct levels is equal to the number of
samples. This produces high entropy, and in turn,
high source information rate. Entropy, calculated
using Eq. (1), gives the minimum number of bits
required to encode the data, assuming that each
distinct symbol is represented by a different bit
pattern.

H = -∑
−

n

i
ii PP

1
2)(log (1)

The value obtained by Eq. (1) using probability

of occurrence (Pi) of symbol i, would be
representative of a fixed model. Adaptive models
are capable of greater compression (i.e. total
compressed size less than the product of the entropy
and total number of symbols).
 For the second parameter, it is observed that the
least number of distinct levels is 6 (for ‘Tdata6’)
whilst the highest is 240 (for ‘Tdata5’). The file
‘Tdata5’ has equi-probable symbols, and as such,
also has the highest source entropy of 7.614.

4.2 Predictors
A variety of predictors may be used in the first (pre-
processor) stage of the two-stage implementation.
A sample of 3 classical predictors as well as 2
artificial neural network models are reported here :

• a 5th-order fixed finite impulse response (FIR)

filter given by Eq. (2) [8],

E(Xn) = 4Xn-1 - 7Xn-2 + 7Xn-3 - 4Xn-4 + Xn-5 (2)

• an adaptive FIR with normalised least mean

squared (NLMS) algorithm,
• a 2nd-order adaptive recursive least squares

lattice filter with a-priori estimation errors and
error feedback (RLSL) [9].

• the 4th-order single layer perceptron (SLP)
neural network, and

• the 2nd-order multilayer perceptron (MLP) [10]
neural network.

The neural network models were trained

adaptively using block of training data, such that

20% of the block was used for training the
remainder values were predicted. More details may
be found in [11].

4.3 Processing Time
The processing time taken by the encoders in the
single- and two-stage schemes is summarised in
Table 2. The tabulations are simulation results on
the Sun Ultra-10 platform, with the results for the
neural predictors estimated based on internal
operations and I/O performance on a parallel
version of the same platform. An appropriate neural
chip, ASIC or FPGA may be used.

From the table, it is shown that the processing
time of the LZSS and LZARI are significantly
shortened when the pre-processing stage is
introduced. Amongst the predictors evaluated, the
neural network SLP aids both encoders the most,
with respect to reduction in total processing time.

It would be noticed from the results that the
surprising performance in processing time brought
about by the additional stage. Instead of slowing the
implementation, as is usually the case for additional
phases, the pre-processor has contributed to
significantly reduce the processing time from
approximately 8.5 seconds for the LZ algorithms by
themselves, to less than 1 second for all the two-
stage schemes. The processing time for the SLP-
LZARI of 0.48 seconds (approximately 6% of the
original LZARI implementation) brings about an
increase of efficiency of more than 15 times.

The reason for this significant difference is due
to the fact that the predictors generally performed
well on the test data. As such, resulting in small
residue values with a small dynamic range, i.e. the
frequency of each value was high. As the LZ
algorithms only had to encode the residue stream,
the size of the dictionary was kept minimal, thus the
gains in speed.

Table 2 : Overall Processing Time for Encoder-only and Two-stage schemes

LZSS LZARI
Test
File

LZSS
only

FIR –
LZSS

NLMS
-LZSS

RLSL
–LZSS

SLP –
LZSS

MLP –
LZSS

LZARI
only

FIR -
LZARI

NLMS-
LZARI

RLSL-
LZARI

SLP-
LZARI

MLP-
LZARI

Tdata1 7.18 1.52 0.98 0.84 0.56 0.58 7.25 1.53 0.98 0.88 0.56 0.58
Tdata2 12.59 0.65 0.44 0.62 0.50 0.52 12.70 0.67 0.43 0.61 0.49 0.51
Tdata3 4.09 0.46 0.31 0.28 0.38 0.40 3.98 0.44 0.33 0.25 0.38 0.40
Tdata4 7.45 0.92 0.78 0.60 0.44 0.46 7.56 0.90 0.78 0.55 0.43 0.45
Tdata5 8.71 1.57 1.56 0.86 0.67 0.69 8.81 1.44 1.93 0.78 0.66 0.68
Tdata6 10.95 0.61 0.51 0.41 0.38 0.40 10.78 0.58 0.48 0.38 0.38 0.40
average 8.50 0.96 0.76 0.60 0.49 0.51 8.51 0.93 0.82 0.58 0.48 0.50

4.4 Compression Performance
As desirable as speed is, when dealing with
compression, it is important to ensure good
compression performance. The results, in terms of
compression ratio achieved for each test file, is
presented in Table 3.

In general, it is observed that there is
performance gain in terms of compression. This is
again due to the fact that the size of the codewords
for the LZ were reduced as the dynamic range of the
residues is lesser than the original input stream, in
additional to the fact that the magnitude of residue
values are also much reduced as compared to the
original input. This is not always the case though.

From table 3, it is observed that the compression
performance actually deteriorates with the
introduction of the FIR first stage. The fixed
predictor was not an efficient predictor as it was
unable to adapt to the changing data, and produced
large residues. This can cause data expansion
(resulting compression ratios smaller than those
achieved by the single stage LZSS and LZARI
implementations), instead of compression.
Sequences of similar large residues would still
reduce the dictionary building and lookup time, but
coding the residues into the dictionary would result
in poor compression. This is observed when
comparing the performance of the FIR in Tables 2
and 3.

5 Conclusion
In this paper, a two-stage scheme was proposed to
improve the performance of the Lempel-Ziv (LZ)
dictionary-type lossless compression algorithm. A
pre-processor stage utilising a predictor and residue
generator was integrated with the LZ encoder. The
scheme was tested using two variations of the LZ
algorithm, namely LZSS and LZARI, combined
with a variety of classical and artificial neural

network predictors.
As a general rule, an increased number of stages

or processes in data manipulation leads to increased
processing time. This paper, however, shows that
this is not necessarily the case. In effect, the total
processing time may be significantly reduced with
the introduction of a suitable pre-processing stage,
albeit the likelihood of additional resource
requirements (processing power, storage buffer etc.)
for implementing the additional stage. Through
empirical or analytical means, the number and type
of pre- / post-processing stages used should be
determined by taking into account the overall
performance gains vs. the resources requirements
for the integration. Simulation results provided for
some small known predictors show that
performance gains of up to 17 times may be
achieved by the two-stage scheme as opposed to
single-stage encoder-only implementations.

In addition to processing speed gains, the results
provided also shows that the introduction of a pre-
processor may also enhance compression
performance significantly, even up to more than 10
times that of the single-stage encoder
implementation. This certainly merits the use of the
two-stage scheme for lossless data compression. A
similar idea may also be ported for lossy
compression.

It must be noted that the test data sets used in this
paper were numeric telemetry data, which is not
best suited for LZ compression. The intentional use
of such data was to portray a non-optimum scenario
for better clarity in the empirical results. The
predictors used were of low complexity for practical
implementation of a small setup with limited
resources.

The result presented in this paper recommend
that with a suitable pre-processor stage,
performance of the encoder can be improved
significantly, when dealing with different data. This

Table 3 : Compression Ratio achieved by Encoder-only and Two-stage schemes

 LZSS Encoder LZARI Encoder
Test
File

LZSS
only

FIR –
LZSS

NLMS
-LZSS

RLSL
–LZSS

SLP –
LZSS

MLP –
LZSS

LZARI
only

FIR -
LZARI

NLMS-
LZARI

RLSL-
LZARI

SLP-
LZARI

MLP-
LZARI

Tdata1 7.83 5.22 21.09 32.32 21.99 23.15 21.31 5.22 21.09 32.32 24.63 25.38
Tdata2 6.49 5.10 22.03 42.88 18.42 28.70 16.45 5.10 22.03 42.88 25.34 34.99
Tdata3 5.54 2.82 11.75 38.31 38.93 27.77 11.57 2.82 11.75 38.31 49.57 45.61
Tdata4 6.53 4.47 10.94 39.78 36.65 22.24 16.02 4.47 10.94 39.78 40.32 27.80
Tdata5 5.54 2.75 3.09 16.36 5.45 5.25 9.58 2.75 3.09 16.36 7.40 6.34
Tdata6 5.79 3.58 44.46 72.17 55.08 70.15 13.10 3.58 44.46 72.17 102.06 132.36
average 6.29 3.99 18.89 40.30 29.42 29.54 14.67 3.99 18.89 40.30 41.55 45.41

finding may also hold true for other types of
encoders. Other tests with Huffman and arithmetic
coding did not render better speed as these
algorithms are essentially fast, but the respective
two-stage schemes did exhibit significant
improvement in compression performance [6] at the
cost of a slight delay in processing efficiency.
Performance (compression as well as speed) relies
on the combination of both stages, so the suitability
of the predictor in generating an appropriate residue
stream for the particular encoder must be
emphasised [6].

References:
[1] M. Nelson and J.L. Gailly, The data

compression book, New York : M&T Books,
1996.

[2] J. Ziv and A. Lempel, “A universal algorithm
for sequential data compression”, IEEE
Transactions of IT, Vol. IT-23, No.3, 1977, pp.
337-343.

[3] J.A. Storer and T.G. Szymanski, “Data
compression via textual substitution”, Journal
of the ACM, Vol.29, No.4, 1982, pp. 928-951.

[4] J. Ziv and A. Lempel, “Compression of
individual sequences via variable-rate coding”,
IEEE Transactions of IT, Vol. IT-24, No.5,
1978, pp. 530-536.

[5] G.G. Langdon, “An introduction to arithmetic
coding”, Journal of IBM R&D, March 1984.

[6] R. Logeswaran and C. Eswaran, “Effect of
encoders on the performance of lossless two-
stage data compression schemes”, IEE
Electronics Letters, Vol.35, No.18, 1999, pp.
1515-1516.

[7] F. Rahaman, Adaptive entropy coding schemes
for telemetry data compression, Project Report
No. EE95735, Madras, India : IIT, 1997.

[8] J.W. McCoy, N. Magotra and S. Stearns,
“Lossless predictive coding”, IEEE Midwest
Symposium on Circuits and Systems, 1994, pp.
927-930.

[9] S. Haykin, Adaptive Filter Theory, NJ :
Prentice Hall International, 1991.

[10] R. Logeswaran and C. Eswaran, “Neural
network based lossless coding schemes for
telemetry data”, IEEE International
Geoscience and Remote Sensing Symposium,
Vol.4, 1990, pp. 2057-2059.

[11] R.Logeswaran, “Transmission issues of
artificial neural networks in a prediction-based
lossless data compression scheme”, IEEE
International Conference on
Telecommunications, Vol.1, 2001, pp. 578-583.

