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Abstract: - The formulation of the process of analog system design has been done on the basis of the control theory
application. This approach produces many different design strategies inside the same optimization procedure and
alows determine the problem of the optima design strategy existence from the computer time point of view.
Different kinds of system design strategies have been evaluated from the operations number. This analysis shows
that the traditional approach is not time-optimal at least for the electronic circuit design. Genera methodology for
any system design was formulated by means of optimum control theory. This approach generates practically infinite
number of the different design strategies. The problem of the time-optimal design agorithm construction is defined
as the problem of functional minimization of the optimal control theory. Numerical results of some nonlinear
passive and active electronic circuit design demongtrate the efficiency of the proposed methodology and prove the
non-optimality of the traditional design strategy. These examples show that the potential computer time gain of the
optimal design strategy with respect to the traditional design strategy increases when the size and complexity of the

system increase.
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1 Introduction

The problem of the computer time reduction of alarge
system design is one of the essential problems of the
total quality design improvement. This problem has a
gpecial significance for the VLSl eectronic circuit
design. Any system design methodology includes two
main parts as a rule: the model of the system, which
can be smulated as algebraic equations or
differential-integral  equations and a parametric
optimization procedure that achieves the objective
function optimal point. The traditional design strategy
for the system design has two fixed determined parts.
The first part is the mathematical model of the
physical system and the second one is the optimization
procedure. In limits of this conception it is possible to
change optimization strategy and use different models
and different analysis methods. However, the time of
the large-scde circuit analysis and the time of
optimization procedure increase when the network
scaleincreases.

There are some powerful methods that reduce the
necessary time for the circuit analysis. Because a
matrix of the large-scale circuit is a very sparse, the
gpecial  sparse  matrix  techniques are used

successfully for this purpose [1]-[2]. Other approach
to reduce the amount of computational required for
the linear and nonlinear equations is based on the
decomposition techniques. The partitioning of a
circuit matrix into bordered-block diagona form can
be done by branches tearing as in [3], or by nodes
tearing as in [4] and jointly with direct solution
algorithms gives the solution of the problem. The
extenson of the direct solution methods can be
obtained by hierarchicd decomposition and
macromodel representation [5]. Other approach for
achieving decomposition a the nonlinear level
consists on a special iteration techniques and has been
redlized in [6] for the iterated timing analysis and
circuit simulation. Optimization technique that is used
for the circuit optimization and design, exert a very
strong influence on the total necessary computer time
too. The numerical methods are developed both for the
unconstrained and for the constrained optimization [7]
and will be improved later on. Meanwhile, it is
possible to reformulate the total design problem and
generdlize it to obtain a set of different design
strategies inside the same optimization procedure. It is
clear that a finite but a large number of different



strategies include more possibilities for the selection
of one or severa design dtrategies that are time-
optimal or quasi-time-optimal ones. This is especialy
right if we have infinite number of the different design
strategies. On the contrary of the traditional design
strategy, the modified traditional design strategy has
only one part, because al system parameters are
determined as independent and the objective function
of the optimization procedure includes additiona
penalty functions that describe the model of the
physica system. In this case the equations of the
model of the physical system disappear. On the other
hand, it is possible to re-determine the total design
problem, to generalize it, to obtain a set of the
different design strategies. First of al, we define the
time-optima design strategy as the agorithm that
achieves the optimum point of the objective function
of the design process at the minimal computer time.
The main problem of this formulation is the search of
the specia conditions, which need to be satisfied for
the optimal algorithm construction.

The idea of the control theory use, which was
introduced in [8] is developed now for the design of
the systems that are described by the non-linear
algebraic equation model. This methodology
generdizes the design problem and can reduce the
total necessary computer design time.

2 Problem Formulation

The design process for any analog system design can
be defined as the problem of the objective function
C(X ) minimization for XT RM with the system
of congtraints. It is supposed that the minimum of the
objective function C( X ) achieves al design objects
and the constraint system is the mathematical model
of the physical system. It is supposed aso, that the
system model can be described as the system of
nonlinear equations.

g,(x)=0
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The vector X can be separated in two parts:
X=(X¢X¢. The vector X¢1 R* can be named asthe
vector of independent variables, where K is the
number of independent variables, and the vector
X@l E" isthe vector of dependent variables, where
N =K+ M. This separation is very conditiona,
because any variable can be defined as independent or
dependent parameter. If the eectronic system is

described, it is more traditional and natural to define
the system elements as independent variables and the
physical parameters (voltages, currents, and so on) as
dependent variables, but it is not obligatory.

The optimization process for the objective function
C(X) minimization for two-step procedure can be
defined as following vector equation:

XS+1:Xs+tSXHS (2)

with congraints (1), where s is the iterations
number, t _ isthe iteration parameter, t.1 R', His
the direction of the objective function C(X)
decreasing. The vector H is the function of C( X ).
This is a typical formulation for the constrained
optimization problem. This problem can be
transformed to the unconstrained optimization
problem for K=N-M variables. In this case the design
problem is defined in more traditional form as an

unconstrained optimization processin the space R":
XEr=XE+t xH*® 3)

with the system (1) which is solved at each step of the
optimization procedure.

The specific character of the design process at
least for the electronic systems consistsin the fact that
it is not necessary to fulfill the condition (1) for all
steps of the optimization process. It is quite enough to
fulfill these conditions for the fina point of the design
process.

The problem (1), (3) can be redefined in form
when there is no difference between independent and
dependent variables. All components of the vector X
can be defined as independent. This is the main idea
for the penalty function method application. In this
case the vector function H is the function of the
objective function C( X ) and the additional penalty

function j (X): H®= f(C(XS),j (XS)). The
penalty function structure includes all equations of the
system (1) and can be defined for example as:
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i (x7)==ag(x9) (4)
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In this case we define the design problem as the
unconstrained optimization (2) in the space R"
without any additiona system but for the other type of
the objective function F( X ). This function can be



defined for example as an additive function:
F(X) =C(X) +] (X) . In this case we achieve the
minimum of the initial objective function C( X) and
comply with the system (1) in the final point of the
optimization process. This method can be named as
modified traditiona design method and it produces
another design strategy and another trgjectory line in
the space R". On the other hand, it is possible to
generdize the idea of the additional penalty function
application if to make up the penalty function as one
part of the system (1) only, and the other part of this
system is defined as condtraints. In this case the
penalty function includes first Z items only,

&
j (Xs):el'&:l1 92(x ) where 1 [0,M] and

M-Z equations make up one modification of the
system (1):
gj(X)=O j=Z+1,Z+2,..,M (1)
It is clear, that each new value of the parameter Z
produces a new design strategy and a new tragjectory
line. This idea can be generalized more in case when
the penalty function j (X) includes Z arhitrary
equations from the system (1). The total number of
different design strategies is equa to 2, if
z1 [o,m]. All these strategies exist inside the same
optimization procedure. The optimization procedure is
redized in the space R***. The number of the
dependent variables M increases rapidly with the
system complexity increasing. In this case the
number of different design strategies increases
exponentialy. These different strategies have various
computer times because they have different operations
number. It is appropriate in this case to define the
problem of the search of an optimal design strategy
that has the minimal computer time. The most genera
approach can be constructed on the basis of the design
problem formulation as the problem of optima
control [8]-[9]. It is possible to define a design
strategy by equations (1), (2) with the variable value
of the parameter Z during the all optimization process.
It means that we can change the number of
independent variables and the number of the terms of
the penalty function at each point of the optimization
procedure. It is convenient to introduce in
consideration a vector of the special control functions
U = (ul,uz,..., Uy ) for this aim, where ujT W;

W={0;3}. These control variables are introduced

artificialy to generdlize the design process. The sense

of the control function u; is next: the equation

number j is present in the system (1) and the term
g2(X) is removed from the right part of the

formula (4) when u;=0, and on the contrary, the

equation number j is removed from the system (1)
and is present in the right part of the formula (4)
when u;= 1. In this case we have the following

formulas for the model of the system and for the
penalty function:

(1' uj)gj(x):O i=12,.M (5

1Y
j(x7)=_auxgi(x7) ©
j=1

All control variables u , are the functions of the

current point of the optimization process. The vector
of the directiond movement H is the function of the
vectors X and U in this case H = f(X,U). The
total number of the different design strategies, which
are produced inside the same optimization procedure,
is practicaly infinite. Among all of these strategies
exist one or few optima srategies that achieve the
design objects for the minimum computer time. So,
the problem of the time-optimal design strategy
finding is formulated as the typica minima-time
problem of the control theory. The main problem of
this definition is unknown optimal dependencies of al
control functions. The solution of this problem may be
finding by some approximate methods of the optimal
control theory.

3 Time-Optimal System
Problem Formulation

Design

3.1 Continuousform

It is possible to determine the problem of any analog
system design as the problem of the optimal control.
The principal system of eguations in this case
consigts of two parts and can be determined by two
systems of equations:

%:fi(X,U),

at i=01...,N @)

(1' uj)gj(x) =0, j=12..Mm (8)



where N=K+M, X, is the additional variable,
U is the wvector of control variables,
U =(u,up,.iuy ), u, T w w={0;.

The functions of the right hand part of the system
(7) are determined as:

- 9l 18 0¥
fi(x,u)_-bdxi%c(x)+e?}lujgj(X)g
€)

for i=12,... K,

d ! 14 U
HO0) = b el + 2 a gy

(- u.)g
2y (X))
(9)
for i=K+1,K+2,...,N,
where b is the iteration parameter; the
d
operator d7 heer and bdow  means
j (X KM qj (X)) Tx
2 B0 g (X)
dXi ﬂxi p=K+1 ﬂxp ﬂxi

Xi isequa to x(t- dt); h (X) istheimplicit
function (x, =h,(X) ) that is determined by the
system (8).

The sense of the control variables u; is provided in
section 2. These variables have the time dependency
in general case. The equation number j is removed
from (8) and the dependent variable X,; Iis
transformed to the independent when u,=1. This
independent parameter is defined by the formulas (7),
(9). In this case there is no difference between
formulas (9) and (9), because the parameter X, ; is
an ordinary independent parameter. On the other
hand, the equation (7) with the right part (9) is
transformed to the identity %:% when u; =0,
because h (X)- x = x(t)- x(t- dt) =dx. It
means that at this time moment the parameter X, is
dependent one and the current value of this parameter
can be obtained from the system (8) directly. This
transformation of the vectors X¢ and Xd can be
done at any time moment. The function fo( X ,U) is
determined as the necessary calculation time for one

step of the system (7) integration. This function
depends on the concrete design strategy. The
additional variable X, is determined as the total
computer time T for the system design. In this case
we determine the problem of the time-optimal system
design as the classica problem of the functiona
minimization of the optimal control theory. In this
context the aim of the optimal control isto result each

function f,(X,U) to zero for the fina time t;, , to

minimize the objective function, and to minimize the
total computer time X,. By this formulation the
general design strategy of the previous section is the
particular case only. It is possible to re-determine this
genera design strategy as method with the fixed
vaues of al control functions u; . The total number

of the different design strategies, which is produced
by the general design strategy, is equal to 2" . On the
contrary, the idea that defined the design process by
means of equations (7)-(9) generates practicaly an
infinite number of the different design strategies. Each
design strategy has its own trajectory in space R". It
is clear, that the time comparison of the different
trgjectories is adequate only in case when the fina
trgjectory point is the same. On the other hand, the
objective function C(X) has a set of local minimal
points, because the design problem is a non-linear
problem in genera. It is necessary to put the
additional simple conditions to achieve the same point
of the objective function for the different design
strategies. However, the non-simple problem is not a
specific feature of new design problem formulation.
We have this type of problem always when we begin
the design process from the different start points. It is
supposed below that the simple conditions are
provided.

To minimize the total design computer time it is
necessary to find the optimal behavior of the control
functions u; during the design process. The functions

fi(X,U) are piecewise continued as the temporal
functions because the control functions u; have

discontinuities. The problem for the system (7) with
the non-continued or non-smaoothed functions (9), (9)
can be solved most adequately by means of
Pontryagin's maximum principle [10].

The idea of the system design problem
formulation as the functional minimization problem
of the control theory can be embedded into different
optimization procedures. In this paper three



optimization algorithms were selected as the typical
representatives of three man groups of the
optimization procedures. There are the gradient
method, the Newton's method and the Davidon-
Fletcher-Powell (DFP) method. These optimization
algorithms serve well both independent methods and
as the basis for the different others optimization
methods.

3.2 Discreteform

The continuous form of the problem is transformed in
next subsections to the discrete form for three
optimization methods.

3.2.1 Gradient method

The discrete form of this method for each component
of the vector X is determined by the following
equations:

=+t xf (XU), isokken (10)
(1' Uj)gj(X)ZO, j=12,...M (11)

where the components f. (X ,U) are given by:

d
o F(x,u) (12)

for i=12,...K,

fi(x,u)=-

fi(X,U):-ui_ch)i(F(X,U)

| (12)
. (1-tui—K){_ x¢ +h, (X )}
for i=K+1LK+2,...,N,

M
where F(x,U):C(x)+ié’1 u g*(X).
=1

The control variables u; have dependency from the

step number s in genera case. The dependent
variable X, ; is transformed to the independent when

u;=1. This independent parameter is defined by the
formulas (10), (12). In this case there is no difference

between formulas (12) and (12), because the
parameter X, ; is an ordinary independent variable.

On the other hand, the equation (10) with the right

s+l s+l

part (12) istransformed to the identity X, = X,

when u; = 0. It means that a this step of the design

process the equation number K+j disappear from the
system (10), parameter X, ; isa dependent one and
the current value of this parameter can be obtained
from the system (11) directly. This transformation can

be done at any step.

3.2.2 Newton’s method and DFP method
Two main systems are (10) and (11) as for gradient

method, but the functions f, (X,U) are given by:

for i=12,..,K,

N
fi(x’U)z_ui-Ké bikddF(X,U)

k=1 Xk

0 s, ()

for i=kK+1LK+2,..,N,
where b, is the eement of

{F(X,U )} *for the Newton's method and the

element of the matrix B(X,U) for the DFP method. In
the last case this element is defined by following

expresson g = B_+ FF:S(FSQ)TS ) (B(S(;;):)z(BBng)T |
where B, isthe unit matrix, s =0,1,... and
R =X X°, Q@ =F(x*,u*)- Fx®,us).

the matrix

4 Examples

Some passive and active non-linear electronic circuits
have been analyzed to demonstrate this system design
approach based on the optima control theory. The
passive circuits have various nodal numbers from 1 to
5 (M1 [15]). Three examples of the transistor

circuits have three, five and seven nodes respectively.
The design process has been realized on DC mode for
al circuits. The detailed andysis of the passive
electronic circuit for M = 5 is presented below in
sections 4.1. The active circuit analysisis presented in
sections 4.2 for M =7. The objective function C (X))

has been determined as the sum of the sguared



differences between beforehand-defined values and
current values of the nodal voltages for some nodes
with additional inequalities for some circuit elements.
It is supposed aso that the additional physica
congtraints for the passive element are provided. All
these elements are positive. To obtain this property it
is convenient to change all admittance values Yy, to
X?. The iteration parameter t _ was adapted on the
basis of well-known idea to minimize the objective
function at each point of the optimization process as
one variable function.

4.1 Passive nonlinear circuits

In Fig. 1 there is a circuit that has six independent
variables as admittance V,,Y,,¥,, Y, ¥ Ys (K=6) and
five dependent varisbles as nodal voltages
V..V, .V, V,, V. (M=5) a the nodes 1, 2, 3, 4, 5.
Non-linear circuit elements have dependencies:.

Yo =8y +hy >(V3 - V2)21 Yoz =8 thy, >(V4 - Vz)z-
Non-linearity parameters b, ,b,,, are equal to 1.0.
The system of the optimization procedure equations
and the system of the modd's equations have eleven
and five equations respectively.

The results of the analysis of the complete set of
the design strategies with the fixed value of the control
functions are given in Table 1. There are 32 different
strategies in this case. The first line of the table
corresponds to the traditiona design strategy. The last
line corresponds to the modified traditional strategy.
The other lines correspond to the intermediate
strategies. The optimal strategies from this table
(number 32, 32, 15 for three optimization methods
respectively) nevertheless are not optimal in general,
as for the previous examples. The optimal trajectories
were found by the additional optimization procedure
and the data of these time-optimal design Strategies
are given in Table 2. The optimal strategy for the
gradient method and for the Newton method has two

o— 1+
%

Fig. 1. Circuit topology for K=6 and M=5.

Table 1. Complete set of the design strategies for five-
nodes passive circuit.

N [Contolfunctions  |Gradient  method Newion method DFP method
vector lterations |Total design  |lterations | Total design | iterations | Total design
U ulu2u3udus) |number ftime(sec)  [number |time(sec)  |number |time (sec)
1 (00000) 24 4179 19 189 e 1012
2| (00001) 529 7627 19 1779 2 0521
3 (00010) 379 6989 7 1041 31 1031
4 (00011) 79 1036 1] 14859 27 0654
5 (00100) 172 21711 jll 1639 19 0601
6 (00101) 1543 20576 9 1214 3 0775
71 (00110) jess 13193 12 1617 19 0459
8 (00111) 14 1107] 19 1751 4 077
9 (01000) sl 5666 13 2331 ) 121
10 (01001) 371 4921 19 1.35 A 1.305
11 (01010) 153 2093 12 1619 13 0314
12 (01011) 59 5141 19 1751 77 1341)
13 (01100) 269 4.307] 19 1614 7| 0991
14 (01101) 207] 194 19 1754 74 1327
15 (01110) 198 0779 13 068]] 18 0141
16 (01111) o 0659 19 0934 233 1561
170 (10000) s 3674 9 1064 19 0391
18 (10001) 180 1837, 19 1627 13 0347]
19 (10010) 133 1762 9 1214 24 0581
20 (10011) 635 6423 22 257]] 44 0804
21 (10100) 4 3372 19 1.35 33 0801
22 (10101) 1144 10726 1] 1284 3 0542
23 (10110) 52 4924 19 1167 17 029%
24 (10111) 1349 8832 23 2224 5 0692,
25 (11000) 402 6443 14 2257 33 0957]
26 (11001) 1849 17295 9 1049 69 1201
27 (11010) 149 1385 1] 1289 49 0834
28 (11011) 1052 6837 14 155 127 1508
29 (11100) 159 1775 13 179 29 0578
30 (11101) 263 1722 19 1842 139 1739
31 (11110) 135 0439 14 0689 e 014
32 (11111) 161 019 24 0489 185 0611
Table 2. Data of the optimal design strategies.
N [Method Optimal control lterations | Switching | Total
functions vector number |points  [design
U (ul, u2, u3, u4, us) time (sec)
1| Gradientmethod [ (11111); (00000); (11111) 116 59, 60 0.161]
2[Newonmethod — [(11112); (10000); (11111) 12 3 4 0.341]
3] DFP method (01110), (11111) 22 7 0104

swithing points and for DFP method has one
switching point. The time gain of the optimal design
strategy is equa to 25.95, 5.09 and 9.73 for the
gradient, Newton and DFP methods respectively. The
optimum behavior of the control functions
u,U,,U;,U,,U; during the design process for the
DFP method are shown in Fig. 2.

tn, time

D-‘A= [=] i—‘vF

=]

tp, time

tp, time

i

orForFonrF

tp, time

Fig. 2. Optimum dependencies of the control functions
u,,u,,us,u,,us forthe DFP optimization method.



The optimal time dependencies of the control
functions u; for al examples don’'t have any definite

law and have been obtained by the additiona
optimization procedure. The results of al anayzed
passive circuits for M=1,2,3,4,5 are presented in Fig.
3 for three different optimization procedures. This is
the computer time gain of the optimum design
strategy with respect to the traditional design strategy
as the function of the dependent parameters number
M. The traditional design approach is not time-
optimal and the time gain increases very fast with the
M increasing.

Time

gain

40 1

30 + 1

20 1

10 7

0 L2 34
Fig. 3. Computer time gain of the optimal design strategy.

4.2 Active nonlinear circuits

In Fig. 4 thereis acircuit of the transistor amplifier
that consists of three transistor cells. The one, two
and three transistor cell circuits were anayzed
separately. The one transistor cell circuit was
analyzed as the first example. In this case the circuit
includes three nodes only. The second circuit includes
two transistor cells and the five-node circuit was
analyzed. The last situation includes the full circuit of
the Fig. 4 with three transistors and seven nodes and
was analyzed detailed below.

®

f f
| |
| |
| |
| |
| Q, |
| |
| |
| |
| |
T T

¥y

Fig. 4. Circuit topology for three-cell transistor amplifier.

The Ebers-Moll static model of the transistor has
been used. The anayzed circuit has seven
independent  variables  ¥1,¥,,Y, Y4 ¥6: Y6 Y7 8S
admittance (K=7) and seven dependent variables
V.V, V;,V,, V.V, Y, as nodal voltages (M=7). The
results of the analysis of the traditional design
strategy and 24 other drategies that have the
computer time less than the traditional strategy with

the fixed value of the control functions are given in
Table 3.

Table 3. Data of the three-transistor cell circuit analysis.

N |Control functions Gradient method DFP method

vector lterations | Total design  |lterations | Total design
U (uL,u2,u3,u4,u5,u6,u7) [number |time (sec) number _ [time (sec)

1 (0000000) 6379 321.09 84| 6447|
2| (0010101) 922 5453 764 5229
3 (0010110) 1667 80.71] 650 46.13]
4 (0010111) 767 3535 426 2264
5 (0011100) 3024 15967| 940 52.71
6 (0011101) 823 37.73 177 7.7
7 (0011110) 3068 86.87| 450 1456
8 (0011111) 553 15.75| 170 6.93
9 (0110101) 465 1001 101 264
10 (0110110) 1157 3192 11 385
11 (0110111) 501 882 124 264
12l (0111100) 2643 72.66| 314 9.24
13 (0111101) 507| 9.24) 170 462
14 (0111110) 3070 67.27| 423 12.25
15 (1010101) 1345 2807 397| 1694
16 (1010111) 615 1001 191 462
17 (1011101) 699 10.71] 197] 497
18 (1011111) 366 497 103 1.94
19 (1110101) 789 1043] 201 497
20 (1110110) 3893 6153 1158 18.06|
21 (1110111) 749 7.71 148 211
22 (1111100) 4325 90.72) eS| 19.18]
23 (1111101) 799 847| 133 231
24 (1111110) 2149 29.26| 1104 1344
259 (1111111) 2031 5.67| 180) 0.77]

The optimal strategies from this table (number 18
and 25 for two optimization procedures respectively)
are not optimal in genera and the data for the time-
optimal strategies are given in Table 4. The time gain
of the optimal design strategy with respect to the
traditional strategy is equal to 285 for the gradient
method and 200 for the DFP method. The potentia
computer time gan of the time-optima design
strategy with respect to the traditional design strategy
as the function of the transistor cell number Nr is
presented in Fig. 5.

Table 4. Data of the optimal design strategies.

N |Mehod Optimal control teraions | Sitching | Toial Compuer
functions vector b |ponts  |desgn  [timegan
U (W2 uB8LAU5U617) time (se0)
UGadentmehod | (1111111); (1111101) e sy 1127] 2
2DPmethad (1111111); (1110111) 6 69 032 20




Time
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200 T

100 +

Fig. 5. Optimal strategy computer time gain for the active
circuits. 1-Gradient method, 2-DFP method.

This result confirms the rule that the total computer
time gain of the timeoptima design drategy
increases when the complexity of the circuit
increases. The comparison of the results for passive
and active circuits shows that the computer time gain
is larger for the active circuits because of more
complexity in thislast case. The potential time gainis
redlized only in case when we found the agorithm for
the optimal trgectories systematically construction.
This problem can be solved on the basis of the
approximate methods of the optimal control theory
[11]. The formulation of the intrinsic properties and
restrictions of the optimal design trgjectory can be
defined as the first problem that needs to be solved on
thisway.

The above-described approach serves as the
theoretic foundation for the time-optimal design
algorithm searching and promises to improve the
design process characteristics when the optimal
design agorithm will be constructed.

5 Conclusion

The traditional approach for the analog circuit design
is not time-optimal. The problem of the optimum
algorithm construction can be solved more adequately
on the basis of the optimal control theory application.
The time-optima design agorithm is formulated as
the problem of the functional optimization of the
optimal control theory. In this case it is necessary to
elect one optimal trgjectory from the quasi-infinite
number of the different design strategies, which are
produced. The maximum principle can serves in this
case as the basis for the election of the optimal
dependencies of the control functions. This approach
reduces considerably the total computer time for the
system design. Anaysis of the different electronic

systems gives the possibility to conclude that the
potential computer time gain of the time-optima
strategy increases when the size and complexity of the
system increase. The above-described approach gives
the possibility to find the time-optimal agorithm as
the approximate solution of the typical problem of the
optimal control theory.
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