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MEXICO

Abstract: - The formulation of the process of analog system design has been done on the basis of the control theory
application. This approach produces many different design strategies inside the same optimization procedure and
allows determine the problem of the optimal design strategy existence from the computer time point of view.
Different kinds of system design strategies have been evaluated from the operations number. This analysis shows
that the traditional approach is not time-optimal at least for the electronic circuit design. General methodology for
any system design was formulated by means of optimum control theory. This approach generates practically infinite
number of the different design strategies. The problem of the time-optimal design algorithm construction is defined
as the problem of functional minimization of the optimal control theory. Numerical results of some nonlinear
passive and active electronic circuit design demonstrate the efficiency of the proposed methodology and prove the
non-optimality of the traditional design strategy. These examples show that the potential computer time gain of the
optimal design strategy with respect to the traditional design strategy increases when the size and complexity of the
system increase.

Key-Words: - Time-optimal design algorithm, control theory formulation.

1 Introduction
The problem of the computer time reduction of a large
system design is one of the essential problems of the
total quality design improvement. This problem has a
special significance for the VLSI electronic circuit
design. Any system design methodology includes two
main parts as a rule: the model of the system, which
can be simulated as algebraic equations or
differential-integral equations and a parametric
optimization procedure that achieves the objective
function optimal point. The traditional design strategy
for the system design has two fixed determined parts.
The first part is the mathematical model of the
physical system and the second one is the optimization
procedure. In limits of this conception it is possible to
change optimization strategy and use different models
and different analysis methods. However, the time of
the large-scale circuit analysis and the time of
optimization procedure increase when the network
scale increases.

There are some powerful methods that reduce the
necessary time for the circuit analysis. Because a
matrix of the large-scale circuit is a very sparse, the
special sparse matrix techniques are  used

successfully for this purpose [1]-[2]. Other approach
to reduce the amount of computational required for
the linear and nonlinear equations is based on the
decomposition techniques. The partitioning of a
circuit matrix into bordered-block diagonal form can
be done by branches tearing as in [3], or by nodes
tearing as in [4] and jointly with direct solution
algorithms gives the solution of the problem. The
extension of the direct solution methods can be
obtained by hierarchical decomposition and
macromodel representation [5]. Other approach for
achieving decomposition at the nonlinear level
consists on a special iteration techniques and has been
realized in [6] for the iterated timing analysis and
circuit simulation. Optimization technique that is used
for the circuit optimization and design, exert a very
strong influence on the total necessary computer time
too. The numerical methods are developed both for the
unconstrained and for the constrained optimization [7]
and will be improved later on. Meanwhile, it is
possible to reformulate the total design problem and
generalize it to obtain a set of different design
strategies inside the same optimization procedure. It is
clear that a finite but a large number of different



strategies include more possibilities for the selection
of one or several design strategies that are time-
optimal or quasi-time-optimal ones. This is especially
right if we have infinite number of the different design
strategies. On the contrary of the traditional design
strategy, the modified traditional design strategy has
only one part, because all system parameters are
determined as independent and the objective function
of the optimization procedure includes additional
penalty functions that describe the model of the
physical system. In this case the equations of the
model of the physical system disappear. On the other
hand, it is possible to re-determine the total design
problem, to generalize it, to obtain a set of the
different design strategies. First of all, we define the
time-optimal design strategy as the algorithm that
achieves the optimum point of the objective function
of the design process at the minimal computer time.
The main problem of this formulation is the search of
the special conditions, which need to be satisfied for
the optimal algorithm construction.

The idea of the control theory use, which was
introduced in [8] is developed now for the design of
the systems that are described by the non-linear
algebraic equation model. This methodology
generalizes the design problem and can reduce the
total necessary computer design time.

2 Problem Formulation

The design process for any analog system design can
be defined as the problem of the objective function

( )C X  minimization for X R N∈   with the system
of constraints. It is supposed that the minimum of the
objective function ( )C X  achieves all design objects
and the constraint system is the mathematical model
of the physical system. It is supposed also, that the
system model can be described as the system of
nonlinear equations:

( )g Xj = 0 j M= 1 2, , . . . ,   (1)

The vector  X  can be separated in two parts:
( )X X X= ′ ′′, . The vector ′ ∈X RK  can be named as the

vector of independent variables, where K is the
number of independent variables, and the vector

′′ ∈X E M  is the vector of dependent variables, where
N K M= + . This separation is very conditional,
because any variable can be defined as independent or
dependent parameter. If the electronic system is

described, it is more traditional and natural to define
the system elements as independent variables and the
physical parameters (voltages, currents, and so on) as
dependent variables, but it is not obligatory.

The optimization process for the objective function
( )C X  minimization for two-step procedure can be

defined as following vector equation:

X X t Hs s
s

s+ = + ⋅1
  (2)

with constraints (1), where  s  is the iterations
number, t s  is the iteration parameter, t Rs ∈ 1,  H is
the direction of the objective function  ( )C X
decreasing. The vector H  is the function of  ( )C X .
This is a typical formulation for the constrained
optimization problem. This problem can be
transformed to the unconstrained optimization
problem for K=N-M variables. In this case the design
problem is defined in more traditional form as an

unconstrained optimization process in the space KR :

′ = ′ + ⋅+X X t Hs s
s

s1
  (3)

with the system (1) which is solved at each step of the
optimization procedure.

The specific character of the design process at
least for the electronic systems consists in the fact that
it is not necessary to fulfill the condition (1) for all
steps of the optimization process. It is quite enough to
fulfill these conditions for the final point of the design
process.

The problem (1), (3) can be redefined in form
when there is no difference between independent and
dependent variables. All components of the vector X
can be defined as independent. This is the main idea
for the penalty function method application.  In this
case the vector function H is the function of the
objective function ( )C X  and the additional penalty

function ( )ϕ X : ( ) ( )( )H f C X Xs s s= ,ϕ . The

penalty function structure includes all equations of the
system (1) and can be defined for example as:

( ) ( )ϕ
ε

X g Xs
i

s

i

M

=
=
∑1 2

1

  (4)

In this case we define the design problem as the
unconstrained optimization (2) in the space R N

without any additional system but for the other type of
the objective function ( )F X . This function can be



defined for example as an additive function:
( ) ( ) ( )F X C X X= + ϕ . In this case we achieve the

minimum of the initial objective function ( )C X  and
comply with the system (1) in the final point of the
optimization process. This method can be named as
modified traditional design method and it produces
another design strategy and another trajectory line in
the space R N . On the other hand, it is possible to
generalize the idea of the additional penalty function
application if to make up the penalty function as one
part of the system (1) only, and the other part of this
system is defined as constraints.  In this case the
penalty function includes first Z items only,

( ) ( )ϕ
ε

X g Xs
i

s

i

Z

=
=
∑1 2

1

 where [ ]Z M∈ 0,  and

M-Z equations make up one modification of the
system (1):

 ( )g Xj = 0 j Z Z M= + +1 2, , . .. , (1')

It is clear, that each new value of the parameter  Z
produces a new design strategy and a new trajectory
line. This idea can be generalized more in case when
the penalty function ( )ϕ X  includes Z arbitrary
equations from the system (1). The total number of
different design strategies is equal to 2 M , if

[ ]MZ ,0∈ . All these strategies exist inside the same

optimization procedure. The optimization procedure is
realized in the space R K Z+ . The number of the
dependent variables  M  increases rapidly with the
system complexity increasing.  In this case the
number of different design strategies increases
exponentially. These different strategies have various
computer times because they have different operations
number. It is appropriate in this case to define the
problem of the search of an optimal design strategy
that has the minimal computer time. The most general
approach can be constructed on the basis of the design
problem formulation as the problem of optimal
control [8]-[9]. It is possible to define a design
strategy by equations (1'), (2) with the variable value
of the parameter Z during the all optimization process.
It means that we can change the number of
independent variables and the number of the terms of
the penalty function at each point of the optimization
procedure. It is convenient to introduce in
consideration a vector of the special control functions

( )MuuuU ,...,, 21=  for this aim, where u j ∈ Ω;

{ }Ω = 0 1; . These control variables are introduced

artificially to generalize the design process. The sense
of the control function  u j   is next: the equation

number  j  is present in the system (1')  and the term
( )g Xj

2   is removed from the right part of the

formula  (4)  when   u j = 0, and on the contrary, the

equation number  j  is removed from the system  (1')
and is present in the right part of the formula  (4)
when  u j = 1.  In this case we have the following

formulas for the model of the system and for the
penalty function:

( ) ( )1 0− =u g Xj j j M= 1 2, , . . . ,   (5)

( ) ( )ϕ
ε

X u g Xs
j j

s

j

M

= ⋅
=

∑1 2

1

  (6)

All control variables  u j  are the functions of the

current point of the optimization process. The vector
of the directional movement H is the function of the

vectors X and U in this case: ( )H f X U= , .  The
total number of the different design strategies, which
are produced inside the same optimization procedure,
is practically infinite. Among all of these strategies
exist one or few optimal strategies that achieve the
design objects for the minimum computer time. So,
the problem of the time-optimal design strategy
finding is formulated as the typical minimal-time
problem of the control theory. The main problem of
this definition is unknown optimal dependencies of all
control functions. The solution of this problem may be
finding by some approximate methods of the optimal
control theory.

3 Time-Optimal System Design
Problem Formulation

3.1 Continuous form
It is possible to determine the problem of any analog
system design as the problem of the optimal control.
The principal system of equations in this case
consists of two parts and  can be determined by two
systems of equations:

( )dx

dt
f X Ui

i= , , i N= 01, ,...,              (7)

( ) ( )1 0− =u g Xj j , j M= 1 2, , ... ,          (8)



where N=K+M, x0  is the additional variable,
U is the vector of control variables,

( )U u u u M= 1 2, , . . . , , { }u j ∈ =Ω Ω; ;0 1 .

The functions of the right hand part of the system
(7)  are determined as:

( ) ( ) ( )f X U b
x

C X u g Xi
i

j j
j

M

, = − +






=

∑δ
δ ε

1 2

1

              (9)
for    i K= 1 2, , ... ,  ,

( ) ( ) ( )

( )
( ){ }

f X U b u
x

C X u g X

u

dt
x X

i i K
i

j j
j

M

i K
i i

,

'

= − ⋅ +








+
−

− +

−
=

−

∑δ
δ ε

η

1

1

2

1

               (9')
for     i K K N= + +1 2, , ... , ,

where b is the iteration parameter; the

operator 
δ

δx i

 hear and below means

( )
( ) ( )δ

δ
ϕ

∂ϕ
∂

∂ϕ
∂

∂

∂x
X

X

x

X

x

x

xi i pp K

K M
p

i

= +
= +

+

∑
1

,

x i
'   is equal to  ( )x t dti − ;   ( )η i X   is the implicit

function  ( ( )x Xi i= η  )  that is determined by the
system (8).

The sense of the control variables u j  is provided in

section 2. These variables have the time dependency
in general case. The equation number  j is removed
from (8) and the dependent variable xK j+  is

transformed to the independent when u j =1. This

independent parameter is defined by the formulas (7),
(9'). In this case there is no difference between
formulas  (9) and (9'), because the parameter xK j+  is

an ordinary independent parameter. On the other
hand, the equation (7) with the right part (9') is

transformed to the identity 
dx

dt

dx

dt
i i= , when u j =0,

because ( ) ( ) ( )η i i i i iX x x t x t dt dx− = − − =' . It
means that at this time moment the parameter xi  is
dependent one and the current value of this parameter
can be obtained from the system (8) directly. This
transformation of the vectors ′X  and ′′X  can be
done at any time moment. The function ( )f X U0 ,  is
determined as the necessary calculation time for one

step of the system (7) integration. This function
depends on the concrete design strategy. The
additional variable x0  is determined as the total
computer time  T  for the system design. In this case
we determine the problem of the time-optimal system
design as the classical problem of the functional
minimization of the optimal control theory. In this
context the aim of the optimal control is to result each

function ( )f X Ui ,  to zero for the final time tfin , to

minimize the objective function, and to minimize the
total computer time x0 . By this formulation the
general design strategy of the previous section is the
particular case only.  It is possible to re-determine this
general design strategy as method with the fixed
values of all control functions  u j  . The total number

of the different design strategies, which is produced
by the general design strategy, is equal to 2 M . On the
contrary, the idea that defined the design process by
means of equations (7)-(9) generates practically an
infinite number of the different design strategies. Each
design strategy has its own trajectory in space R N . It
is clear, that the time comparison of the different
trajectories is adequate only in case when the final
trajectory point is the same. On the other hand, the
objective function  C(X)  has a set of local minimal
points, because the design problem is a non-linear
problem in general. It is necessary to put the
additional simple conditions to achieve the same point
of the objective function for the different design
strategies. However, the non-simple problem is not a
specific feature of new design problem formulation.
We have this type of problem always when we begin
the design process from the different start points. It is
supposed below that the simple conditions are
provided.

To minimize the total design computer time it is
necessary to find the optimal behavior of the control
functions u j  during the design process. The functions

( )f X Ui ,  are piecewise continued as the temporal
functions because the control functions u j  have

discontinuities. The problem for the system (7) with
the non-continued or non-smoothed functions (9), (9')
can be solved most adequately by means of
Pontryagin’s maximum principle [10].

The idea of the system design problem
formulation as the functional minimization problem
of the control theory can be embedded into different
optimization procedures. In this paper three



optimization algorithms were selected as the typical
representatives of three main groups of the
optimization procedures. There are the gradient
method, the Newton’s method and the Davidon-
Fletcher-Powell (DFP) method. These optimization
algorithms serve well both independent methods and
as the basis for the  different others optimization
methods.

3.2 Discrete form
The continuous form of the problem is transformed in
next subsections to the discrete form for three
optimization methods.

3.2.1 Gradient method
The discrete form of this method for each component
of the vector  X  is determined by the following
equations:

( )UXftxx is
s
i

s
i ,1 ⋅+=+ ,    NKKi ,...1,,...,2,1 += (10)

( ) ( )1 0− =u g Xj j ,     j M= 1 2, , . . . , (11)

where  the components ( )UXf i ,  are given by:

( ) ( )UXF
x

UXf
i

i ,,
δ
δ

−= (12)

for    i K= 1 2, , ... , ,

( ) ( )

( ) ( ){ }Xx
t

u

UXF
x

uUXf

i
s
i

s

Ki

i
Kii

η

δ
δ

+−
−

+

−=

−

−

1

,,

       (12´)

for     i K K N= + +1 2, , ... , ,

where ( ) ( ) ( )∑
=

+=
M

j
jj XguXCUXF

1

21
,

ε
.

The control variables u j  have dependency from the

step number  s  in general case. The dependent
variable xK j+  is transformed to the independent when

u j =1. This independent parameter is defined by the

formulas (10), (12'). In this case there is no difference
between formulas (12) and (12'), because the
parameter xK j+  is an ordinary independent variable.

On the other hand, the equation (10) with the right

part (12') is transformed to the identity 11 +
+

+
+ = s

jK
s

jK xx ,

when u j = 0. It means that at this step of the design

process the equation number K+j disappear from the
system (10),  parameter jKx +  is a dependent one and

the current value of this parameter can be obtained
from the system (11) directly. This transformation can
be done at any step.

3.2.2 Newton’s method and DFP method
Two main systems are (10) and (11) as for gradient
method, but the functions ( )UXf i ,  are given by:

( ) ( )UXF
x

bUXf
k

N

k
iki ,,

1 δ
δ∑

=

−=

for   i K= 1 2, , ... , ,

( ) ( )

( ) ( ){ }Xx
t

u

UXF
x

buUXf

i
s
i

s

Ki

k

N

k
ikKii

η

δ
δ

+−
−

+

−=

−

=
− ∑
1

,,
1

for     NKKi ,...,2,1 ++= ,

where ikb  is the element of the matrix

( ){ } 1,´´ −UXF for the Newton’s method and the

element of the matrix B(X,U) for the DFP method. In
the last case this element is defined by following

expression ( )
( )

( )( )
( ) s

s

Ts

Ts
s

s
s

sTs

Tss

ss
QBQ

QBQB

QR

RR
BB −+=+1

,

where  0B  is the unit matrix, ,...1,0=s  and
sss XXR −= +1 ,    ( ) ( )sssss UXFUXFQ ,´,´ 11 −= ++ .

4 Examples

Some passive and active non-linear electronic circuits
have been analyzed to demonstrate this system design
approach based on the optimal control theory. The
passive circuits have various nodal numbers from 1 to
5, ])5,1[( ∈M . Three examples of the transistor

circuits have three, five and seven nodes respectively.
The design process has been realized on DC mode for
all circuits. The detailed analysis of the passive
electronic circuit for  M = 5 is presented below in
sections 4.1. The active circuit analysis is presented in
sections 4.2 for M =7. The objective function ( )C X

has been determined as the sum of the squared



differences between beforehand-defined values and
current values of the nodal voltages for some nodes
with additional inequalities for some circuit elements.
It is supposed also that the additional physical
constraints for the passive element are provided. All
these elements are positive. To obtain this property it
is convenient to change all admittance values  yi   to

xi
2 . The iteration parameter t s was adapted on the

basis of well-known idea to minimize the objective
function at each point of the optimization process as
one variable function.

4.1 Passive nonlinear circuits
In Fig. 1 there is a circuit that has six independent
variables as admittance y y y y y y1 2 3 4 5 6, , , , ,   (K=6) and
five dependent variables as nodal voltages
V V V V V1 2 3 4 5, , , ,   (M=5) at the nodes 1, 2, 3, 4, 5.
Non-linear circuit elements have dependencies:

( )2
23111 VVbay nnn −⋅+= , ( )2

24222 VVbay nnn −⋅+= .

Non-linearity parameters b bn n1 2,  are equal to 1.0.
The system of the optimization procedure equations
and the system of the model's equations have eleven
and five equations respectively.

The results of the analysis of the complete set of
the design strategies with the fixed value of the control
functions are given in Table 1. There are 32 different
strategies in this case. The first line of the table
corresponds to the traditional design strategy. The last
line corresponds to the modified traditional strategy.
The other lines correspond to the intermediate
strategies. The optimal strategies from this table
(number 32, 32, 15 for three optimization methods
respectively) nevertheless are not optimal in general,
as for the previous examples. The optimal trajectories
were found by the additional optimization procedure
and the data of these time-optimal design strategies
are given in Table 2. The optimal strategy for the
gradient method and for the Newton  method  has  two

Fig. 1. Circuit topology for  K=6 and M=5.

Table 1. Complete set of the design strategies for five-
nodes passive circuit.

Table 2. Data of the optimal design strategies.

swithing points and for DFP method has one
switching point. The time gain of the optimal design
strategy is equal to 25.95, 5.09 and 9.73 for the
gradient, Newton and DFP methods respectively. The
optimum behavior of the control functions
u u u u u1 2 3 4 5, , , ,  during the design process for the
DFP method are shown in Fig. 2.

Fig. 2. Optimum dependencies of the control functions
u u u u u1 2 3 4 5, , , ,   for the DFP optimization method.

N Method Optimal control Iterations Switching Total
functions vector number points design

   U (u1, u2, u3, u4, u5 )  time (sec)
1 Gradient method (11111); (00000); (11111) 116     59;  60 0.161
2 Newton method (11111); (10000); (11111) 12       3;   4 0.341
3 DFP method (01110); (11111) 22 7 0.104

N Control functions Gradient method Newton method DFP method
vector Iterations Total design Iterations Total design Iterations Total design

 U (u1,u2,u3,u4,u5) number time (sec) number time (sec) number time (sec)
1     ( 0 0 0 0 0 ) 214 4.179 15 1.839 29 1.012
2     ( 0 0 0 0 1 ) 529 7.627 15 1.775 20 0.521
3     ( 0 0 0 1 0 ) 378 6.986 7 1.041 31 1.031
4     ( 0 0 0 1 1 ) 78 1.036 11 1.485 27 0.654
5     ( 0 0 1 0 0 ) 1172 21.711 11 1.638 18 0.601
6     ( 0 0 1 0 1 ) 1548 20.576 9 1.216 32 0.775
7     ( 0 0 1 1 0 ) 995 13.198 12 1.617 19 0.459
8     ( 0 0 1 1 1 ) 118 1.107 15 1.751 44 0.771
9     ( 0 1 0 0 0 ) 251 5.666 13 2.331 30 1.211

10     ( 0 1 0 0 1 ) 371 4.921 10 1.351 54 1.305
11     ( 0 1 0 1 0 ) 158 2.093 12 1.618 13 0.314
12     ( 0 1 0 1 1 ) 549 5.141 15 1.751 77 1.341
13     ( 0 1 1 0 0 ) 268 4.307 10 1.616 34 0.991
14     ( 0 1 1 0 1 ) 207 1.944 15 1.754 76 1.327
15     ( 0 1 1 1 0 ) 198 0.779 13 0.681 18 0.141
16     ( 0 1 1 1 1 ) 204 0.659 19 0.935 233 1.561
17     ( 1 0 0 0 0 ) 255 3.674 9 1.064 15 0.391
18     ( 1 0 0 0 1 ) 180 1.887 15 1.627 18 0.347
19     ( 1 0 0 1 0 ) 133 1.762 9 1.214 24 0.581
20     ( 1 0 0 1 1 ) 685 6.423 22 2.571 46 0.804
21     ( 1 0 1 0 0 ) 254 3.372 10 1.351 33 0.801
22     ( 1 0 1 0 1 ) 1144 10.726 11 1.284 31 0.542
23     ( 1 0 1 1 0 ) 526 4.926 10 1.167 17 0.296
24     ( 1 0 1 1 1 ) 1349 8.832 23 2.226 55 0.692
25     ( 1 1 0 0 0 ) 402 6.443 14 2.257 33 0.957
26     ( 1 1 0 0 1 ) 1849 17.295 9 1.049 69 1.201
27     ( 1 1 0 1 0 ) 148 1.385 11 1.283 48 0.836
28     ( 1 1 0 1 1 ) 1052 6.887 16 1.551 127 1.598
29     ( 1 1 1 0 0 ) 156 1.775 13 1.795 28 0.578
30     ( 1 1 1 0 1 ) 263 1.722 19 1.842 138 1.736
31     ( 1 1 1 1 0 ) 135 0.436 14 0.689 29 0.194
32     ( 1 1 1 1 1 ) 161 0.199 24 0.485 185 0.611



The optimal time dependencies of the control
functions u j  for all examples don’t have any definite

law and have been obtained by the additional
optimization procedure. The results of all analyzed
passive circuits for M=1,2,3,4,5 are presented in Fig.
3 for three different optimization procedures. This is
the computer time gain of the optimum design
strategy with respect to the traditional design strategy
as the function of the dependent parameters' number
M. The traditional design approach is not time-
optimal and the time gain increases very fast with the
M  increasing.

Fig. 3. Computer time gain of the optimal design strategy.

4.2 Active nonlinear circuits
In Fig. 4  there is a circuit of the transistor amplifier
that consists of three transistor cells. The one, two
and three transistor cell circuits were analyzed
separately. The one transistor cell circuit was
analyzed as the first example. In this case the circuit
includes three nodes only. The second circuit includes
two transistor cells and the five-node circuit was
analyzed. The last situation includes the full circuit of
the Fig. 4 with three transistors and seven nodes and
was analyzed detailed below.

Fig. 4. Circuit topology for three-cell transistor amplifier.

The Ebers-Moll static model of the transistor has
been used. The analyzed circuit has seven
independent variables 7654321 ,,,,,, yyyyyyy  as

admittance (K=7) and seven dependent variables

7654321 ,,,,,, VVVVVVV  as nodal voltages (M=7). The

results of the analysis of the traditional design
strategy and 24 other strategies that have the
computer time less than the traditional strategy with
the fixed value of the control functions are given in
Table 3.

Table 3. Data of the three-transistor cell circuit analysis.

The optimal strategies from this table (number 18
and 25 for two optimization procedures respectively)
are not optimal in general and the data for the time-
optimal strategies are given in Table 4. The time gain
of the optimal design strategy with respect to the
traditional strategy is equal to 285 for the gradient
method and 200 for the DFP method. The potential
computer time gain of the time-optimal design
strategy with respect to the traditional design strategy
as the function of the transistor cell number NTR is
presented in Fig. 5.

Table 4. Data of the optimal design strategies.

N Control functions Gradient method DFP method
vector Iterations Total design Iterations Total design

 U (u1,u2,u3,u4,u5,u6,u7) number time (sec) number time (sec)
1     ( 0 0 0 0 0 0 0 ) 6379 321.09 854 64.47
2     ( 0 0 1 0 1 0 1 ) 922 54.53 764 52.29
3     ( 0 0 1 0 1 1 0 ) 1667 80.71 650 46.13
4     ( 0 0 1 0 1 1 1 ) 767 35.35 426 22.68
5     ( 0 0 1 1 1 0 0 ) 3024 159.67 940 52.71
6     ( 0 0 1 1 1 0 1 ) 823 37.73 177 7.71
7     ( 0 0 1 1 1 1 0 ) 3068 86.87 450 14.56
8     ( 0 0 1 1 1 1 1 ) 553 15.75 170 6.93
9     ( 0 1 1 0 1 0 1 ) 465 10.01 101 2.66

10     ( 0 1 1 0 1 1 0 ) 1157 31.92 111 3.85
11     ( 0 1 1 0 1 1 1 ) 501 8.82 124 2.66
12     ( 0 1 1 1 1 0 0 ) 2643 72.66 314 9.24
13     ( 0 1 1 1 1 0 1 ) 507 9.24 170 4.62
14     ( 0 1 1 1 1 1 0 ) 3070 67.27 423 12.25
15     ( 1 0 1 0 1 0 1 ) 1345 28.07 397 16.94
16     ( 1 0 1 0 1 1 1 ) 615 10.01 191 4.62
17     ( 1 0 1 1 1 0 1 ) 699 10.71 197 4.97
18     ( 1 0 1 1 1 1 1 ) 366 4.97 103 1.96
19     ( 1 1 1 0 1 0 1 ) 789 10.43 201 4.97
20     ( 1 1 1 0 1 1 0 ) 3893 61.53 1158 18.06
21     ( 1 1 1 0 1 1 1 ) 749 7.71 148 2.11
22     ( 1 1 1 1 1 0 0 ) 4325 90.72 945 19.18
23     ( 1 1 1 1 1 0 1 ) 796 8.47 133 2.31
24     ( 1 1 1 1 1 1 0 ) 2149 29.26 1104 13.44
25     ( 1 1 1 1 1 1 1 ) 2031 5.67 180 0.77

N Method Optimal control Iterations Switching Total Computer
functions vector number points design time gain

  U (u1,u2,u3,u4,u5,u6,u7)  time (sec)  
1Gradient method  (1111111); (1111101) 363 350 1.127 285
2DFP method  (1111111); (1110111) 69 66 0.322 200



Fig. 5. Optimal strategy computer time gain for the active
circuits. 1-Gradient method, 2-DFP method.

This result confirms the rule that the total computer
time gain of the time-optimal design strategy
increases when the complexity of the circuit
increases. The comparison of the results for passive
and active circuits shows that the computer time gain
is larger for the active circuits because of more
complexity in this last case. The potential time gain is
realized only in case when we found the algorithm for
the optimal trajectories systematically construction.
This problem can be solved on the basis of the
approximate methods of the optimal control theory
[11]. The formulation of the intrinsic properties and
restrictions of the optimal design trajectory can be
defined as the first problem that needs to be solved on
this way.

The above-described approach serves as the
theoretic foundation for the time-optimal design
algorithm searching and promises to improve the
design process characteristics when the optimal
design algorithm will be constructed.

5 Conclusion
The traditional approach for the analog circuit design
is not time-optimal. The problem of the optimum
algorithm construction can be solved more adequately
on the basis of the optimal control theory application.
The time-optimal design algorithm is formulated as
the problem of the functional optimization of the
optimal control theory. In this case it is necessary to
elect one optimal trajectory from the quasi-infinite
number of the different design strategies, which are
produced. The maximum principle can serves in this
case as the basis for the election of the optimal
dependencies of the control functions. This approach
reduces considerably the total computer time for the
system design. Analysis of the different electronic

systems gives the possibility to conclude that the
potential computer time gain of the time-optimal
strategy increases when the size and complexity of the
system increase. The above-described approach gives
the possibility to find the time-optimal algorithm as
the approximate solution of the typical problem of the
optimal control theory.
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