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Abstract: - In the present paper an H∞ control design is presented for DC-DC Ćuk converter using its average 
model. Lyapunov equation is used to derivate the controller and to estimate the L2 gain too.  Theoretical result 
is supported by numerical simulations.  
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1   Introduction 
The Ćuk converter is usually controlled by means of 
finite sampling frequency pulse-width-modulation 
(PWM) control schemes. In the present paper we 
develop a PWM control scheme using an H∞ control 
law to regulate the Ćuk converter affected by  an ac 
disturbance (ripple) in its DC source. This ripple 
disturbance is considered in the average model of 
the Ćuk converter, where this model was used to 
obtain  the H∞ control law. Our propose differs from 
the propose in [3] from the point of view that we use 
a Lyapunov equation to derivate our controller and 
to estimate the L2 gain too. Different controllers are 
obtained for different Lyapunov equations given us 
more flexibility in the design procedure. A computer 
program for simulating the Ćuk converter was 
developed to support our theoretical result.  
 
 

2   Problem Formulation 
The PWM Ćuk convert system is shown in Fig. 1 
where r1 and r2 are internal resistances of inductors 
L1 and L2 respectively, E is the DC source voltage 
and w(t) is the disturbance on the system. This 
disturbance can be some ac variation (ripple) 
presented in the DC source E. 
 
The switching operation is described in Fig. 2 where 
Ts is the switching period divided in two time 
intervals, one is uTs where the transistor (TR) is ON 
and the Diode (D) is OFF, the second one is (1-u)Ts 
where the operations is reversed, that is, Tr is OFF 
and D is ON. It is assumed that 0<u<1. 
 

 

 
 

Fig.1 PWM Ćuk converter system. 
 
 

 
 

Fig. 2 Time ratio of switching operation. 
 
The state space average model of the Ćuk converter 
system is described by the following equations [1] 
 

                                                                  (1) 
                    
with gxAxax += 0)( , xAxb 12 )( = , where A0, A1, b1 

and g are the circuit parameters given by 
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and the state vector is  ][ 54321 xxxxxxT =  

[ ]LL viivi 211= . 
 
Assume that x=xs, u=us, and w=0 denotes the 
operating point of the Ćuk converter. Then, via 
change of variables z=x-xs and v=u-us, the system 
(1) in the new variables z and v is given by 
 
                                                                                (5) 
 
with zuAAza sz )()( 10 +=  and )()( 12 sxzAzb += . 

 
The system  
                                                                               (6) 
 
is asymptotically stable for any constant u=us [1],  
this means that next Lyapunov equation 
 
                                                                               (7) 
 
where sz uAAA 10 +=  presents a unique positive 

definite symmetric solution P for any given positive 
definite symmetric matrix Q (see theorem 3.6 in 
[2]), and the next  
 
                                                                               (8) 
 
is a Lyapunov function for the system (6). In 
resume, the next equality is obtained 
 
                                                                  .             (9) 
 
To postulate  the H∞ control problem it is required to 
define the virtual output to be controlled, we 
propose this as follows: 
 
                                                                              (10) 

 
 
where δ is a positive constant less than one. 
 
The H∞ control problem is as follows. Given a scalar 
γ>0, design a smooth state feedback control law 
v=v1(x) for (5) and (10) with v1(0)=0, and such that: 
1) With w=0 the origin is asymptotic sable 
equilibrium of the closed loop system, 
2) The L2 gain from w to k of the closed-loop system 
is not longer than γ, i.e., there exist a function 
β:R5→R, with β(0)=0  and such that for any initial 
condition zo of (5), the inequality 
 
 
                                                                              (11) 
 
 
is satisfied for all t>0 and all piecewise continuous 
functions w(t). 

 
 

3   Problem Solution 
Next is our main result. 
 
Theorem 1.- Given a positive definite symmetric 
matrix Q , the control law  
 
                                                                              (12) 
 
where P is the unique positive definite symmetric 
solution to the Lyapunov equation (7), is a solution 
to the H∞ control problem with 
 
 
                                                                              (13) 
 
 
where λmax(*) and λmin(*) denote the maximum and 
minimum eigenvalues respectively of the matrix *. 
 
proof.- Using equation (8), its time derivative along 
of the trajectory of the system (5) yields, 
 
                                                                              (14) 
 
Define 
 
                                 
 
                                                                            (15) 
 
 
Then, using (14), we have 
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Solving 0=
∂
∂

w

H  and 0=
∂
∂

v

H
 for w and v, 

respectively, we obtain 
 
                                                                              (17) 
 
and  
 
                                                             .                (18) 
 
 
Next considerer  
 
 
 
 
 
                                                                              (19) 
 
Using (9) the above equation yields 
 
 
 
                                                                             (20) 
 
utilizing (8), we get 
 
 
 
 
 
 
 
 

 
                                                                (21) 
 

Since w1 is the maximizing w for H(z,w,v), then 
H(z,w,v)≤H*(z,w1,v1) for any w. Hence, we have 
 
 
 
 
 
 
 
                                   
                                                                              (22) 

Now, we show that the origin of the closed-loop 
system is globally asymptotic stable. When w=0, it 
follows from (22) that 
 
 

 

where the condition in (13) secures that  V& is 
negative definite. This proves asymptotic stability. 
Next, taking integration on both sides of the 
equation (22), from 0 to t>0, it results that 
 
 
 
where zo is the initial condition of the system (5). 
Since V(z)>0 for any z≠0, the above implies that  
 
 
 
 
for any 2Lw ∈  , where )()( 00 zVz =β . This 

conclude proof theorem 1. ♦  
 
 

4   Simulation results 
Our theoretical result is supported by the next 
simulation example. A computer program for 
simulating the Ćuk converter system of Fig. 1 was 
developed with parameters (taken from [1]) 
L1=L2=1mH, C1=100µF, C2=10µF, Rl=15Ω, 
r1=1Ω, r2=0.5Ω, LL=10mH, E=30V, and with 
operating point  
 
 
 
and 

75.0=su . 

The modulation frequency is chosen as 50kHZ. The 
control law in theorem 1 was developed solving the 
Lyapunov equation (7) with Q=I5x5. Fig.3 shows the 
simulation results with w(t)=0 and Fig.4  for the 
case when w(t)=1sin(2πft) with f=60Hz.  
 

5   Conclusion 
In the present paper we developed an H∞ controller 
for the DC-DC Ćuk converter using a Lyapunov 
equation. The estimation of the L2 gain is given in 
function to the solution to this Lyapunov equation. 
Simulation results are presented to support our 
theoretical result. The procedure presented here can 
be easily extended for the Buck-Boost and Boost 
converter systems. 
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Fig. 3 Simulation results for the unperturbed case: 
Upper picture is VL vs time (in seconds) and bottom 

picture is i1 vs time (in seconds). 
 
 

 
 
 

Fig. 4 Simulation results for the perturbed case: 
Upper picture is VL vs time (in seconds) and bottom 

picture is i1 vs time (in seconds). 
 
 
 

 
 

Fig.5 Plot of the control law u vs time (in seconds) 
for the perturbed case. 
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