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Abstract: We consider the electromagnetic wave propagation generated by a nonuniformly moving source in 
homogeneous  cylindrical  waveguides. The asymptotic  analysis  of  the  problem  with respect to a large parameter 
which simultaneously characterizes the slowness of changing of the amplitude and speed of the source is given. 
 
 
1  Introduction 
In the paper we consider the problem of electromagnetic 
wave propagation in the cylindrical waveguides with 
arbitrary cross-section generated by nonuniformly 
moving sources. This problem has a big theoretical and 
applied interest in the many branches of theoretical and 
applied physics, for example, in the satellite 
communications, nuclear and relativistic physics. 

It should be noted that the problem of 
electromagnetic waves from moving electron is a 
classical problem of electrodynamics (see, for instance, 
[1]). The electromagnetic field from uniformly moving 
source in homogeneous waveguides was considered in 
the monograph [2], see, also papers devoted the well-
known Vavilov-Cherenkov effect in homogeneous 
waveguides generated by moving sources ( see, for 
instance, [4], [5], [3]). 

We give here asymptotic solution of the problem 
with respect to a large parameter λ → + ∞, which 
characterizes simultaneously the large distance between 
a moving source and a receiver, slowness of changing of 
the vertical speed of the source, and narrow-bandness of 
the amplitude of the source. 

For asymptotic solution of the problem under 
consideration we use the representation of the field in 
the form of the double Fourier integral and use the 
stationary phase method. For acoustic problems of wave 
propagation in wave guides from moving source the 
indicated approach was used in the papers [7], [8], [9], 
[6]. 

 
 
 

 
 
2 Statement of the problem 
We introduce the system of coordinates is in R3 as r = ( 
x , z ) where x = ( x1 , x2 ). Let us consider a cylindrical 
waveguide, 

 
D = { ( x , z ) ∈ R3 : x ∈ Ω, z ∈ {- ∞, ∞} } 

 
(ε and µ constants) with an arbitrary cross-section 

and ideal boundary. 
We consider a source of electromagnetic vibrations 

moving inside the waveguide with the following 
trajectory, 
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In what follows we suppose that )()( 0 trt &=v ≠0 for 

each t. 
The sources of electromagnetic vibrations are 

described as 
))(()(),( 0 ttAt rrr −= δρ                    (1)              

))(()()(),( 0 tttAt rrvrJ −= δ              (2)     
                                                          
where ),( trρ  and  ),( trJ  are the charge and current 
densities, and both are related by means of the continuity 
equation 
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In what follows we consider the propagation of 

transverse electric (TE) and transverse magnetic (TM). 



More specifically, for TE-waves the electric field is 
transverse to the direction of the propagation. For TM-
waves, the magnetic field is transverse to the direction 
of the propagation. By means of the TE and TM waves, 
we can describe the Bz and Ez components, respectively. 

It is well known that Hz and Ez satisfy the following 
equations, 
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where 
µε
1

=c  is the speed of the light in the media. 

For the waveguides with the ideal boundary D∂  we 
have the following boundary conditions: 
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3  Deriving of the asymptotic of the fields 
generated by moving sources 

 
 

3.1 Green Function for waveguides 
The Green function ),,,( 0 zgg EE xxω= for the 
electric waves in the wave guide D is the solution of the 
boundary value problem for the Helmholtz equation: 
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The following spectral problems are connected with 

these equations: 
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It is well known that the spectral problem (6), have a 

discreet spectrum { } 0  ,
1

≤∞

= jjj λλ , and the orthonormal 

in L2(M) system { }∞

=1jjϕ  of eigenfunctions which are 

complete in the space L2(M). Let 2
jj µλ −= . Then it is 

well-known that the Green function has the following 
representations 
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The terms in (7) are called the modes, and if j is such 

that 0)( ≥ωγ j  the mode is called propagated, in the 
opposite case they are called no propagated. The no 
propagated modes are not interesting in the problem of 
wave propagation on long distances. 

 
 

3.2  Asymptotic of the Ez-component 
The components Ez for the case of the moving source 
satisfies the following equation 
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Let us consider the case when A(t) and 
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2
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0 tztxtxt =r depend on the large 
parameter λ > 1. We suppose that  
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where )(  ,)(  ),(  ),( 00

2
0
1 tZtXtXta  are two times 

differentiable on R functions bounded with its 
derivatives. The dependence in (8), (9) on the large 
parameter λ means that the amplitude A(t) is slowly 
varying, the vertical component of the speed is small, 
and the horizontal acceleration is small if the parameter 
λ is large enough. 

In what follows we suppose that ctvt <∈ )(sup R  , 
that is the source moves with a sub-light velocity. 



Applying the Fourier transform with respect t we 
obtain a representation of  ),,( ztEz x  in the form of the 
double Fourier integral with respect the time and the 
frequency and neglecting by the members with order 
O(1/λ), λ → ∞ we obtain that 
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decomposition for the Green function gE we obtain that 
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Let us introduce new variables  z = λZ, t = λT. 

Making the change of variable in (10), λττ /=′  we 
obtain the representation  
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The next step is the asymptotic analysis of  

)/,,/()( λλ ZTE j
z x  if  λ → +∞. For asymptotic 

analysis of modes )/,,/()( λλ ZTE j
z x we apply the 

stationary phase method (see, for instance [10]). 
The phase in the integral (12) is 
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The stationary point ),( 00 jj τω ′  of the phase 

),(~ τω ′jS is the solution of the following system 
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The Hess matrix of the phase ),(~ τω ′jS is of the form 
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One can show that in the case of a sub-light move of 

the source the Hess matrix is not degenerated 
)0)),((~(det 00 ≠′′′ jjS τω . Then it follows from the 

stationary phase method that )/,,/()( λλ ZTE j
z x  has 

the following asymptotic 
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where ),(~sgn 00 jjS τω ′′′  is the difference between the 
number of the positive and negative eigenvalues of the 
Hess matrix. 

Returning to the coordinates t=λT, z=λZ, 
jj 00 τλτ ′=  we obtain that 
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and ),( 00 jj τω is a stationary point of the phase 
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which is defined as a solution of the system 
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It should be noted that only a finite number N of 

members in the sum (11) have the stationary points of 
the phase, thus summation in formula (13) is taken with 
respect to a finite number of the mode such that the 
stationary phase ),( τωjS  has stationary points. 

The parameter λ has the following physical meaning. 
If λ → ∞ the distance between the moving source and 
the receptor tends to infinity. 

This parameter also characterizes the slowness of 
changing of the amplitude and smallness of vertical 
components of the speed with respect to horizontal one. 
 
 
3.3  Asymptotic of the transversal components 
Let 
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Then the transversal components of the 

electromagnetic waves radiated by moving source are 
given by the formulas 
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where ),,()( ztj xE ′′ λ , ),,()( ztj xH ′′ λ , are defined by 
(14) and (15). 
 

 
3.4   Doppler shift and retarded time 
We can obtain explicit expressions for the Doppler shift 
and retarded time for the mode components of the 
electromagnetic field. 

Let 
 

τωτωτωγτω 0
'0 )()()(),( −−−−′== tS jj xx  

 
be the phase of the mode with number j. This phase 
depends on the time t in the explicit form. It is 
convenient this dependence to write as 

 
),,(ˆ),( tSS jj τωτω = . 

 
Let ))(),(( 00 tt jj τω  be a stationary point of this 

phase. Then the instantaneous frequency is given by the 
formula 
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Because ))(),(( 00 tt jj τω  be a stationary point of the 

phase ),,(ˆ tS j τω we obtain that )()( 0
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Hence the instantaneous frequency coincides with the 
first component of the stationary point. 

Thus we obtain the explicit formula for the mode 
Doppler effect 
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It is easy to see that )(tjτ  is the retarded time for the 

mode with number j, that is the time of the radiation of 
the signal for which the mode with number j arrives to 
the receiver at the moment t. 

Thus the stationary phase point ),( 00 jj τω has the 
following physical meaning: is an instantaneous 
frequency and j0τ  is a retarded time for the mode with 

number j, and jj 00 ωωω −=∆  is the Doppler effect for 

the frequency, and jj tt 0τ−=∆  is the Doppler effect 
for the time. 

 
 

4 Moving source in a rectangular wave    
guide 

Let us consider a rectangular wave guide, the trajectory 
of the source is 
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where )(  ,)( 0

2
0
1 txtx depend on the parameter λ as above. 

The coordinates of the receptor are )0,,( 21 xx=r , 
where bxax <<<< 21 0  ,0 . In this case 

vtzvttz =′= )(,)( 00 . 
The phase is 
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The group velocity of the mode with number mn is 

given by 
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The point of stationary phase is a solution of the 

following system: 
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Let v > 0 and ),( mnmn τω be a solution of the system 
under consideration. Then 
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and mnω  is a solution of the quadratic equation 
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The solutions of these equations are 
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The formula for ),()( τωτ′mnS  implies that 0ωω > . 

Then we should take plus in the last formula. 
Then for this case, the point of stationary phase  

),( mnmn τω  is found in an explicit form. 
The Hess matrix for this case has a triangle form. 
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We have obtained the asymptotic formula for the 

field in the rectangular waveguide: 
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The mode Doppler effect produced by the moving 

sources is given by 
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The formula for ),,()( ztEz xλ is very simple and 
convenient for the numerical analysis. 

 
 

4.1  Numerical Calculations 
Let us consider as an example a rectangular wave guide 
with the following characteristics: a=b=10 m, 

910)36/1( −×= πε F/m and 7104 −×= πµ H/m, 
),5,5()(0 vtt =r , v=3070 m/s, 8

0 103×=ω rad/s. The 
receiver is located at the point r = (5,5,0). The behavior 
of zE  as the function of the time is given by the 
following graphic: 

 
Fig. 1. Behavior of the field for the speed of 3070 

m/s 
 
Next graphic shows the effect of the speed in the 

behavior of the field, in this case the speed of the source 
is 200 m/s. 

 
Fig. 2. Behavior of the field for the speed of 200 m/s 

 
The graphics demonstrate a dependence of the field 

structure from the speed of the source. 
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