Nonuniformly moving source in electromagnetic waveguides
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MEXICO

Abstract: We consider the electromagnetic wave propagation generated by a nonuniformly moving source in
homogeneous cylindrical waveguides. The asymptotic analysis of the problem with respect to a large parameter
which simultaneously characterizes the slowness of changing of the amplitude and speed of the source is given.

1 Introduction

In the paper we consider the problem of electromagnetic
wave propagation in the cylindrical waveguides with
arbitrary cross-section generated by nonuniformly
moving sources. This problem has a big theoretical and
applied interest in the many branches of theoretical and
applied physics, for example, in the satellite
communications, nuclear and relativistic physics.

It should be noted that the problem of
electromagnetic waves from moving electron is a
classical problem of electrodynamics (see, for instance,
[1]). The electromagnetic field from uniformly moving
source in homogeneous waveguides was considered in
the monograph [2], see, also papers devoted the well-
known Vavilov-Cherenkov effect in homogeneous
waveguides generated by moving sources ( see, for
instance, [4], [5], [3]).

We give here asymptotic solution of the problem
with respect to a large parameter A — + oo, which
characterizes simultaneously the large distance between
a moving source and a receiver, slowness of changing of
the vertical speed of the source, and narrow-bandness of
the amplitude of the source.

For asymptotic solution of the problem under
consideration we use the representation of the field in
the form of the double Fourier integral and use the
stationary phase method. For acoustic problems of wave
propagation in wave guides from moving source the
indicated approach was used in the papers [7], [8], [9],

[6].

2 Statement of the problem

We introduce the system of coordinates is in R as r = (
X , z ) where x = (x;, xp ). Let us consider a cylindrical
waveguide,

D={(x,z)eR3:er,ze {- o0, 0} }

(¢ and p constants) with an arbitrary cross-section
and ideal boundary.

We consider a source of electromagnetic vibrations
moving inside the waveguide with the following
trajectory,

r=r,(t)=(x/ (1), x;(1),2,(1)), t€R.

In what follows we suppose that v(¢) = 7" (¢) %0 for

each .
The sources of electromagnetic vibrations are
described as

p(r,1) = A@)5 (r —r, (1)) (M
J(r,20) = A()V(0)3 (r =1y (1)) @

where p(r,f) and J(r,f) are the charge and current

densities, and both are related by means of the continuity
equation
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In what follows we consider the propagation of
transverse electric (TE) and transverse magnetic (TM).



More specifically, for TE-waves the electric field is
transverse to the direction of the propagation. For TM-
waves, the magnetic field is transverse to the direction
of the propagation. By means of the TE and TM waves,
we can describe the B, and E, components, respectively.

It is well known that H, and F, satisfy the following
equations,
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where ¢ = is the speed of the light in the media.
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For the waveguides with the ideal boundary 0D we
have the following boundary conditions:

EZ

5 =0 = =0.
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3 Deriving of the asymptotic of the fields
generated by moving sources

3.1 Green Function for waveguides
The Green function g, =g, (w,x,x’,z)for the

electric waves in the wave guide D is the solution of the
boundary value problem for the Helmholtz equation:
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(x,z)e D, gE‘aD =0,

The following spectral problems are connected with
these equations:

Vie=ho,, xeM, o =0, (6)

It is well known that the spectral problem (6), have a

.}7:1, A, <0, and the orthonormal

discreet spectrum {k ;

in Ly(M) system {(p 1}0;:1 of eigenfunctions which are

complete in the space L,(M). Let A ;= —ujz,. Then it is

well-known that the Green function has the following
representations
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where v (®) = %—uf.

The terms in (7) are called the modes, and if j is such
that v ;(®) 20 the mode is called propagated, in the
opposite case they are called no propagated. The no

propagated modes are not interesting in the problem of
wave propagation on long distances.

3.2 Asymptotic of the E.-component
The components E, for the case of the moving source
satisfies the following equation
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where

J.(r,0) = A@0)2°(6)8 (r —r° (1))
p(r,0)= A3 (r—r°(t))

Let wus consider the case when A() and
r’(¢) = (x)(¢),x3(t),z°(t))depend on the large
parameter A > 1. We suppose that

A0 =a(t/X), x' ()= X} (1)) (®)
x5 (1) =X (t/N), z°(t) = Z°(t,\) 9)

where a(?), Xlo(t), Xg(t), Z°(t) are two times
differentiable on R functions bounded with its
derivatives. The dependence in (8), (9) on the large
parameter A means that the amplitude A(z) is slowly
varying, the vertical component of the speed is small,
and the horizontal acceleration is small if the parameter
A is large enough.

In what follows we suppose that sup,_g

v(t)‘ <c ,

that is the source moves with a sub-light velocity.



Applying the Fourier transform with respect ¢ we
obtain a representation of E_(#,X,z) in the form of the

double Fourier integral with respect the time and the
frequency and neglecting by the members with order
O(1/)), A — o we obtain that
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where B(t)=a(t ){ - l}. Applying the

decomposition for the Green function gz we obtain that

EZ ([,X’ Z) = 4;5: Oji ]‘ieﬂ'w(tfr)B(,E /x)efim(,r %
J=l —0—o0
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Let us introduce new variables z = AZ, ¢t = AT.
Making the change of variable in (10), T =t /A we
obtain the representation

E(T/%\X,Z/N)=Y EV(T/NX,Z/L) (11)
j=1
where
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The next step is the asymptotic analysis of
EV(T/NX,Z/X) if A — +oo. For asymptotic
analysis of modes EY(T/A,x,Z/\)we apply the

stationary phase method (see, for instance [10]).
The phase in the integral (12) is

S, (@1 =7,@)Z-Z,&')

—o(T-1")-o,s’

The stationary point (moj,r(') ;) of the phase

S ;(®,7") is the solution of the following system
Sio @1 =7 /(@) Z~Z,") - (T-1")=0
Sio@,1) =y, (@)Z;(t)sgn(Z - Z,(x)) .
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The Hess matrix of the phase § ;(@,1")is of the form
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One can show that in the case of a sub-light move of
the source the Hess matrix is not degenerated

(detS "((wy;,T;)) #0). Then it follows from the
stationary phase method that E(T/A,X,Z /L) has

the following asymptotic
. 1
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@ ;(X)sgn(z - AZ, (1)) X

eﬁv(}’,-(‘Do,-)‘Z*Zo(T(')/)‘*wo(T*T(')/)*on(’lf)

\/‘det§"(0)0j,r(')j)‘

T
+i—sgn 8" (w70

e "d+0a/20))

where sgn8"(w,;,7,,) is the difference between the

number of the positive and negative eigenvalues of the
Hess matrix.

Returning to the coordinates (=A7, z=AZ
T,; = ATg; we obtain that

N
E.(t,x,2)~ ) EP(t,x,2), (13)
Jj=1

where
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and (®,,,7,;) is a stationary point of the phase

S;(o,7) =yj(oa)‘z —20(1:)‘ -0 -1)-0,T,
which is defined as a solution of the system

Sy (@,1) =y (@)z-z,) - (t-1)=0
S (@,1) ==y (@)z, (1) sgn(z — z,(1)) .

+o-0,=0

It should be noted that only a finite number N of
members in the sum (11) have the stationary points of
the phase, thus summation in formula (13) is taken with
respect to a finite number of the mode such that the

stationary phase S, (w,7) has stationary points.

The parameter A has the following physical meaning.
If AL > o the distance between the moving source and
the receptor tends to infinity.

This parameter also characterizes the slowness of
changing of the amplitude and smallness of vertical
components of the speed with respect to horizontal one.

3.3 Asymptotic of the transversal components
Let

o, (t)e

E’(M
R O

'xHP(t,x,2), (14)

where H’“)—(OO H(M) V'= 0 0 ,0
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and
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Then the transversal components of the
electromagnetic waves radiated by moving source are
given by the formulas

N
E(1,x,2) = BV (6.x,2), (16)
Jj=1
N
HO@x,2)=3 B (x.,2), A7)
j=1

where E'j.(x)(t,x',z), H'j(k)(t,x',z), are defined by
(14) and (15).

3.4 Doppler shift and retarded time
We can obtain explicit expressions for the Doppler shift
and retarded time for the mode components of the
electromagnetic field.

Let

x’—xo'(t)‘ —0(-1)-0,T

be the phase of the mode with number j. This phase
depends on the time ¢ in the explicit form. It is
convenient this dependence to write as

Sj((D,T)ZSj((,O,’C,t).

Let (w,,(?),7,,(¢)) be a stationary point of this

phase. Then the instantaneous frequency is given by the
formula

dS (@, (1),T ,(1),1)
dt '

in) (1) —
") =-

Because (0, (?),T,;()) be a stationary point of the
; (in) —
phase Sj (w,7,)we obtain that o, (t)= ®; (0.

Hence the instantaneous frequency coincides with the
first component of the stationary point.

Thus we obtain the explicit formula for the mode
Doppler effect

A)=0,,()-0,.



It is easy to see that T () is the retarded time for the

mode with number j, that is the time of the radiation of
the signal for which the mode with number j arrives to
the receiver at the moment .

Thus the stationary phase point (®;,T,,)has the

following physical meaning: is an instantaneous
frequency and 1, is a retarded time for the mode with

number j, and A® ; =®, —®,; is the Doppler effect for

the frequency, and At ; =t—T1,, 1is the Doppler effect

for the time.

4 Moving source in a rectangular wave
guide

Let us consider a rectangular wave guide, the trajectory

of the source is

r=r,(t)=(x(t),x;(),vt), 0<v<e,
0<x)(t)<a, 0<x)(t)<bh
where x(t)? , xg (¢) depend on the parameter A as above.
The coordinates of the receptor are r = (x,,x,,0),
where 0<x, <a,0<x,<b. 1In this case

z,(t)=vt,zy(t)=v.
The phase is

Smn(a),r)=ymn(oa)‘vr\—co(T—r)—oaor
where
mr ) (nn ) ®?
o)=_ k-] —| - k* =
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The group velocity of the mode with number mn is
given by

2 2 2 2
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The point of stationary phase is a solution of the
following system:
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)be a solution of the system
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The solutions of these equations are
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The formula for (S

Then we should take plus in the last formula.
Then for this case, the point of stationary phase

) is found in an explicit form.

). (0,7) implies that ® > ®,,.

mn

(o

mn ’ mn

The Hess matrix for this case has a triangle form.
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Moreover, detS’ (®,,.T,.)= —(1 - V]
mn (G) mn )

S” (Q)

and

sgnS! (o, .7, )=0.

We have obtained the asymptotic formula for the
field in the rectangular waveguide:
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The mode Doppler effect produced by the moving
sources is given by

Amn(’o() :(’Omn _(’007 Amnt :Tmn -t

The formula for E;M(t,x,z)is very simple and
convenient for the numerical analysis.

4.1 Numerical Calculations
Let us consider as an example a rectangular wave guide
with the following characteristics: a=b=10 m,

e=(1/36n)x10"F/m and p=4nx10" H/m,
r’(t) = (5,5,vt), v=3070 m/s, o, =3x10°rad/s. The
receiver is located at the point » = (5,5,0). The behavior
of ‘EZ‘ as the function of the time is given by the

following graphic:
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Fig. 1. Behavior of the field for the speed of 3070
m/s

Next graphic shows the effect of the speed in the
behavior of the field, in this case the speed of the source
is 200 m/s.
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Fig. 2. Behavior of the field for the speed of 200 m/s

The graphics demonstrate a dependence of the field
structure from the speed of the source.
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