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Abstract: - A numerical study is presented for relative velocity between particle and fluid in a grid-
generated turbulent flow field which is simulated by a two-equation turbulence (k-€) model. Spatial
behavior of this velocity is important in the determination of particle dispersion. Both linear and
nonlinear drag formulations are considered in detail. Numerical results show that, for nonlinear drag
formulation, the occurrence of the maximum value of relative velocity is well ahead of the location
where the particle dispersion measurement is taken in the experiment. Hence, better predictions
of particle dispersion obtained with the nonlinear drag formulation should be expected. it is also
found that the mean square relative velocity components in the gravity direction and in the direction
normal to the gravity reach the maximum values at different times.
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1 Introduction

Particle dispersion in turbulent flow can be
found in many industrial processes and in na-
ture. Relevant examples from industry are set-
tling and flocculation of “red muds” in the alu-
minum extraction, pneumatic transport of par-
ticles, and combustion of liquid and pulverized
solid fuels. In nature, convective transport and
settling of particulate phase in the atmosphere,
in oceans or in rivers are of extreme importance
in the analyses of environmental impact. For
the most part, attention had been focused in
the past on the dispersion of particles and the
settling velocity of particles by turbulence. In
the prediction of these properties, it is impor-
tant that the predicted results are free from the
effect of the initial conditions at which the par-
ticles are injected into the turbulent flow field.
One way to verify this condition is to calculate
the temporal behaviour of the relative velocity
between particle and fluid, and to find out the
maximum value of the relative velocity[1]. The
mean square relative velocity between the par-
ticle and the fluid, uiml(t), is defined as

u? e (t) = (upi(t) — ui(t))? (1)

where up;(t) and w;(t) are velocities of parti-
cle and fluid, respectively, and the overbar de-
notes ensemble average. Mean square relative
velocity was studied by Yeh and Lei[2] with
large eddy simulation (LES). Later, Elghobashi
and Truesdell[3] performed particle dispersion in
a decaying isotropic turbulence simulated with
direct numerical simulation (DNS). Elghobashi
and Truesdell[3]’s result also includes calcula-
tion of mean square relative velocity. This im-
portant property in turbulent two-phase flow,
however, has not been studied in the situation
where the turbulent flow field is simulated with
the Reynolds-averaged Navier-Stokes (RANS)
equation, even though RANS is still one of the
most popular methods to simulate turbulence in
Computational Fluid Dynamics (CFD) applica-
tion. In view of this, the paper presents a de-
tailed studies of mean square relative velocity
between the particle and the fluid in a turbulent
flow field which is simulated by using Reynolds-
averaged Navier-Stokes (RANS) equations with
the ke model. Experimental data of Snyder &
Lumleyl[4] is used for comparison purpose. The



grid-generated turbulent flow field used in the
experiment[4] is emulated numerically. For this
purpose a general CFD code[5] is used, along
with a low Reynolds number &-¢ model to take
into account the effect of turbulence upon the
mean flow field. The code adopts a finite vol-
ume technique to integrate the transport equa-
tions written in a generalized coordinate system.
The SIMPLEC algorithm is employed to couple
the momentum and the continuity equations.

2 Turbulence simulation using
two-equation k¢ model

The grid-generated steady-state turbulent flow
field of Snyder and Lumley[4] is simulated
by a general CFD code[5], which solves the
3-dimensional Navier-Stokes equations for a
generic mean Cartesian velocity component U;
given in tensor notation as
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where U; is the mean value of the instantaneous
velocity u; given by U; +u;, u) is the fluctuating
velocity, p is the density of fluid, I' = p + p¢ is
the effective viscosity which is the sum of dy-
namic viscosity, p, plus turbulent viscosity, pe,
k is the turbulent kinetic energy, and g; is the
gravitational constant.

Turbulence effects upon the mean flow are
modeled through the eddy viscosity concept,

which states that the turbulent stresses are re-
lated to the mean strain rate via the turbulent
viscosity . A low Reynolds number k¢ model
similar to the one proposed in [5] is used to
calculate the eddy viscosity, . The transport
equations of k£ and € are:
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where P, = —pu;u;-gTU;, Wy = g’*f—kQ, C, = 0.09,
C, = 145 Cy = 1.9, op = 1, 00 = 1.3,
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e and € is
the dissipation rate of turbulent kinetic energy.

3 Equations of particle motion

The motion of a single spherical solid particle in
the turbulent flow field is assumed to follow:

dupi _ Ui — Upj
dt Ta

f+gi (6)

Wy g
where up; is velocity of particle, 7, = ppd%/ 184
is the aerodynamic response time for the linear
Stokes drag, y; is the trajectory of the particle,
and f is a factor accounting for the inertial effect
of the drag term. f = 1 for linear drag law; for
nonlinear drag law, f = 1+ 0.15Re)%". This
expression tends to give reliable results for val-
ues of Rep, up to 1000[6]. Re, = pdplu; — upil /1t
is the Reynolds number based on the relative
velocities between fluid and particle, d, is diam-
eter of particle, and pj, is density of particle. The
density of particle is much denser than that of
the fluid such that the Basset force, inertia force
of added mass, buoyancy force, and force due to
pressure gradients in the flow are negligible. If



index notation 1 and 2 are used to represent the
horizontal directions, and 3 the vertical direc-
tion with positive upward, then

dupi U; — Upi
— — g6,

o - f =963 (8)

dy;
5 = Ui 9)

The initial conditions used are

yi = 0 at t=0 (10)
Up; = UZ(O,O) at t=0 (11)

4 Modelling of the particle dis-
persion

The motion of a dispersed particulate phase in
the turbulence is determined by the particle-
eddy interaction model proposed by Gosman
and Toannides[7]. The interaction between the
particle and the eddy for a period of time is the
minimum between an estimated particle tran-
sit time within the eddy, ¢, and an eddy life-
time, t,. The particle transit time is obtained as
the solution of the linearized equation of motion
of the particle with the assumption of Stoke-
sian drag and negligible body force. The La-
grangian time scale of the turbulent eddy is ob-
tained from the length and velocity scales of the
turbulence, which are extracted from the k¢ tur-
bulence model being employed. Thus,

tint = min(ttm te) (12)
where
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The eddy length macroscale, l., is defined in
terms of the kinetic energy of the turbulence,
k and its dissipation rate, €, as

lo=C> K32 e (15)

In the present study, the fluctuating component
of the fluid velocity, u}, is obtained from a Gaus-
sian distribution of values having a zero mean
and a standard deviation, |u}| given by

juf] = (2k/3)'/2 (16)

5 Validation of the numerical
model for turbulent flow

Detailed experimental measurements of heavy
particle dispersion in grid-generated turbu-
lence were made by Snyder and Lumley[4].
They studied the particle motion in a vertical
wind tunnel with air flowing upward (i.e., x3-
direction) and the gravity vector opposite to
the flow direction. The grid-generated turbu-
lent flow field of Snyder and Lumley[4] is sim-
ulated by the k-e model with the RANS equa-
tions of the present study. Figure 1 depicts the
predicted and experimental turbulence field de-
scribed in terms of k£ and e. The predictions
compare well with the experiments, with a max-
imum deviation of less than 5%. Figure 2 shows
the predicted energy decay curve along center-
line of test section of [4]. The quantity u3 is
assumed to be equal to u_%(i.e., isotropic turbu-
lence) in the present study. Also shown in this
figure are the experimental data for the ener-
gies of the longitudinal velocity component and
the lateral component obtained by Snyder and
Lumley[4]. Again, the present predicted results
are in good agreement with experimental find-
ings. Hence, it further proves that the simulated
turbulent flow field is ready for use later on in
the calculation of relative velocity between par-
ticle and fluid.

6 Results and discussion

Snyder and Lumley[4] obtained in their ex-
periment the mean square dispersion in the
direction perpendicular to the mean flow for
four types of spherical particles, -hollow glass
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Figure 1: Predictions and experiments of turbu-
lent kinetic energy and dissipation rate (x3 is the
streamwise direction and M=0.0254m is the grid
spacing used in [4]).
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Figure 2: Decay of turbulent energy, A, U? /u_g X
1073 O, U?/ud x 1073, U = 6.55m/s based on
Snyder and Lumley[4].

beads (diameter d, = 46.5um, relaxation time
Te = 1.7ms, terminal velocity Ur = 1.67e¢m/s),
solid glass beads (d, = 87.0um, 7, = 45ms,
Ur = 44.2em/s), corn pollen (d, = 87.0um,
To = 20ms, Up = 19.8em/s), and copper beads
(dp = 46.5um, 1, = 49ms, Ur = 48.3cm/s).
In simulating their experiment, the particles are
released at x3/M = 30, where M = 0.0254m
is the grid spacing used in [4]. The calculation
of particle dispersion should be started right af-
ter the particles pass x3/M = 68.4, which is
the location where Snyder and Lumley[4] started

performing their measurements. The calcula-

tion of the particle dispersion that is free from
the effect of initial condition can be achieved
only if calculation is performed after the value
of |up; — u;| has reached its maximum[1]. In or-
der to see if this condition is satisfied or not,
the spatial development of the mean square rel-
ative velocity between the particle and the lo-
cal fluid point is performed and the results are
presented in Figs. 3 and 4 for nonlinear and lin-
ear drag formulations, respectively. The occur-
rence of the maximum |up; — ;| is at the loca-
tion about x3/M = 35 — 37 for nonlinear drag,
and x3/M = 37 — 76 for linear drag, depending
on the values of 7, and Up. For the nonlin-
ear drag calculation, the occurrence of the max-
imum value of |up; —u;| is well ahead of the loca-
tion x3/M = 68.4, where the particle dispersion
measurement is taken. For the linear drag cal-
culation, however, the occurrence of the maxi-
mum value of |u,; —u;| is at a location right after
x3/M = 68.4 for heavy particles(i.e., solid glass
and copper), while for light particles(i.e., hollow
glass and corn), it is still well ahead the loca-
tion x3/M = 68.4. Hence, better predictions of
particle dispersion obtained with the nonlinear
drag formulation, especially for heavy particles,
should be expected.
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Figures 3 and 4 illustrate that, at zero time,
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Figure 5: Mean square relative velocity of the par-
ticle in the direction normal to the gravity, u% rel>
for nonlinear drag with gravitational effect.

dition. ﬁ goes to a maximum and then de-
cays to a constant asymptotically. The values of
the maximum and the constant depend on dif-
ferent types of particles. Both of them are larger
for particles with higher relaxation time(7,). It
is also noted from Figs. 3 and 4 that there are
differences in spatial development of u?ml be-
tween nonlinear and linear drag formulations for
each type of particle, with the possible excep-
tion of the hollow glass. These differences in
maximum values and asymptotic constants can
be attributed to the fact that particles settle
at a larger velocity in linear drag formulation

than that in nonlinear drag formulation[8]. It is
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Figure 6: Mean square relative velocity of the par-
ticle in the gravity direction, uirel, for nonlinear
drag with gravitational effect.

noted that Figs. 3, and 4 present more than one
local maximum value of |up; —u;| for heavy par-
ticles, these can be attributed to the fact that
the maximum value of |up — uq|(or Jupz — ual)
and |up3 — ug| occur at different locations. And
these are illustrated in Figs. 5 and 6, and Figs. 7
and 8 for nonlinear, and linear drag, respec-
tively. When comparing these figures, it is found
that, for both nonlinear and linear drag formu-
lations, uir .; feaches its maximum well ahead of

@ does. This phenomenon holds for all types
of particles with the exception of hollow glass.
It is also noted that “g,r .; approaches an invari-
ant value as time develops. But this invariant
value is different between nonlinear and linear
drag formulations. With a larger values of “g,r ol
for linear drag formulation as expected[§].

7 Concluding Remarks

Mean square relative velocity between parti-
cle and fluid in a grid-generated turbulent flow
field is studied numerically.  Simulation re-
sults with linear drag formulation using heavy
particles show that maximum value of mean
square relative velocity between particle and
fluid has not been reached at the location
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