
Planning in multi-agent environment as inverted
STRIPS planning in the presence of uncertainty

ADAM GALUSZKA, ANDRZEJ SWIERNIAK
Institute of Automatic Control

Silesian University of Technology
Akademicka 16, 44-100 Gliwice,

POLAND

Abstract: - In multi-agent (multi-robot) environment each agent tries to achieve its own goal and it implies that
in most cases the agent goals conflict. However, there exists a group of problems where it is possible to find a
way to satisfy all goals even in conflict situations. Such problems can be modelled as a STRIPS system (for
instance Block World environment). If STRIPS planning problem is invertible than it is possible to apply
planning under uncertainty methodologies to solve inverted problem and than find a plan that solves multi-agent
problem. In the paper multi-agent Block World environment as an invertible STRIPS system is presented. Two
cases are considered and simulated: when goals conflict and do not conflict. Necessary and sufficient conditions
of plan existence are formulated.

Key-Words: - multi-agent environment, STRIPS system, invertible planning problems

1 Introduction

In multi-agent (multi-robot) environment each
agent tries to achieve its own goal (Boutilier and
Brafman 2001, Kraus et al. 1998). It leads to
complications in problem modelling and searching
for solution: in most cases agent goals conflict,
agents have usually different capabilities and goals
preferences, agent interact with problem
environment simultaneously.
In our case problem environment was modelled as
Block World with STRIPS representation. This
domain is often used to model planning problems
(Boutilier and Brafman 2001, Kraus et al. 1998,
Smith and Weld 1998, Galuszka and Swierniak
2001) because complex actions definition but
simple physical interpretation. Starting from 1970s
STRIPS formalism (Nilson 1980) seems to be the
most popular for planning problems (Weld 1999).
Planning problems algorithms usually are NP- hard,
even in block world environment.
In general, STRIPS system is represented by four
lists (P; O; I; G) (Bylander 1994, Nilson 1980):
- a finite set of ground atomic formulas (P), called
predicates;
- a finite set of operators (O);
- a finite set of predicates that denotes initial state
(I);
- a finite set of predicates that denotes goal state
(G).

1.1 Problem definition
Initial state describe physical configuration of the
blocks. Description should be complete i.e. should
deal with every true predicate corresponding to the
state. Goal state is a conjunction of predicates. In
multi-agent environment each agent defines own
goal. This description does not need to be
complete. The algorithm result is an ordered set of
operators which transform initial state into goal
state. Operators in STRIPS representation consist
of three sublists: precondition list, delete list and
add list. The precondition list is a set of predicates
that must be satisfied in world-state to perform this
operator. The delete list is a set of predicates that
stay false after performing the operator and the add
list is a set that stay true. Two last lists show effects
of operator performing in problem state. Follow
(Koehler and Hoffmann 2000) set of actions in a
plan is denoted by PO.
It is assumed agents can have different capabilities
(i.e. can deal with limited problem elements) and
no negotiations are allowed. Goal preferences are
not considered.

2 Invertible planning problems

Definition of Invertible Planning Problem
(Koehler and Hoffmann 2000) The problem (O, I,
G) is called invertible if and only if

sPPssultsultPPs
OOOO =∃∀∀)),,((ReRe:::

mailto:agaluszka@ia.polsl.gliwice.pl

Definition of Inverse Operator (Koehler and
Hoffmann 2000) Let an operator Oo ∈ takes the
form pre(o) → add(o), del(o). An operator Oo ∈ is
called inverse if and only if has the form

)(),()(odeloaddopre → and satisfies the conditions:
1.)(\)()()(odeloaddopreopre ∪⊆
2.)()(odeloadd =
3.)()(oaddodel = .

Under closed world assumption condition applying
an inverse operator leads back to previous state. It
is proved that if there is an inverse operator for
each operator, then the problem is invertible.
There are assumed four classical operators in Block
World:

- pickup(x) - block x is picked up from the table;
precondition list & delete list:

ontable(x), clear(x), handempty
add list: holding(x)

- putdown(x) - block x is put down on the table;
precondition list & delete list: holding(x)
add list: ontable(x), clear(x), handempty

- stack(x,y) - block x is stacked on block y;
precondition list & delete list:
holding(x), clear(y)
add list: handempty, on(x,y), clear(x)

- unstack(x,y) - block x is unstacked from block y;
precondition list & delete list:

handempty, clear(x), on(x,y)
add list: holding(x), clear(y).

It is easy to see that unstack is an inverse operator
for stack and pickup is an inverse operator for
putdown. We have defined Block World as an
invertible planning problem because it allows to
apply conformant planning methodology to search
for solution of inverted multi-agent problem and
then to extract solution for the right multi-agent
problem.

3 Conformant plan as an inverted
plan in multi-robot environment

Contingent planning algorithms handle planning
problems with uncertainty in the initial conditions
(e.g. Weld et al. 1998). In this case algorithm seek
to generate a robust plan by thinking over all
eventualities. This approach is called Conformant
planning (Smith and Weld 1998). Conformant
planning algorithms develop non-conditional plans
that do not rely on sensory information, but still

succeed no matter which of the allowed states the
world is actually in.
The problem where there are some possible initial
states and one goal state is conformant planning
problem. The inverted problem is the situation with
one initial state and more possible goal states. It
corresponds to multi-robot Block World problem
where each robot wants to achieve its own goal. If
we are able to find a plan for conformant planning
problem then it is possible to extract solution for
multi-agent problem.

4 Simulation results

Block world environment was implemented using
PDDL language (Planning Domain Definition
Language) extended for handling uncertainty in
the initial state (Yale Center… 1998). Sensory
Graphplan algorithm was used to solve block world
problems with uncertainty in initial state
(www.cs.washington.edu/research/projects/www/sg
p.html).
Two different problems are presented below. In
both cases 2 robots are operating in an
environment. Robot 1 is capable of moving blocks
A,B and C whereas robot 2 can move blocks D, E
and F. In Problem 1 goals of the robots do not
conflict (Fig.1 and 2), in Problem 2 they do conflict
(Fig. 3, 4 and 5). In both cases definitions of the
operators are inverted (operator names are changed
between unstack and stack and between pickup and
putdown). It implies that plan for inverted problem
is extract just by executing founded plan in inverted
order.

Problem 1.

Fig.1. Initial state

a) robot 1 b) robot 2
Fig.2. Goal state of robots

(goals do not conflict)

A

E D

B

F

C

A

E

D

B

FC

http://www.cs.washington.edu/research/projects/www/sgp.html
http://www.cs.washington.edu/research/projects/www/sgp.html

Definition of the operators:

(define (domain galuszka5)
(:requirements :strips :equality :uncertainty :typing)
 (:predicates (on ?x ?y)

 (on-table ?x)
 (clear ?x)
 (arm1-empty)
 (arm2-empty)
 (holding1 ?x)
 (holding2 ?x)))

 (:action put-down1
 :parameters (?ob)
:precondition (and (not (= ?ob D)) (not (= ?ob

E)) (not (= ?ob F)) (clear ?ob) (on-table ?ob) (arm1-
empty))

 :effect
 (and (not (on-table ?ob))

 (not (clear ?ob))
 (not (arm1-empty))
 (holding1 ?ob)))

 (:action pick-up1
 :parameters (?ob)
 :precondition (holding1 ?ob)
 :effect
 (and (not (holding1 ?ob))

 (clear ?ob)
 (arm1-empty)
 (on-table ?ob)))

 (:action unstack1
 :parameters (?ob)
 :precondition (and (holding1 ?ob) (clear ?sunderob))
 :effect
 (and (not (holding1 ?ob))

 (not (clear ?sunderob))
 (clear ?ob)
 (arm1-empty)
 (on ?ob ?sunderob)))

 (:action stack1
 :parameters (?x)
 :precondition (and (not (= ?x D)) (not (= ?x E)) (not (=
?x F)) (clear ?x) (arm1-empty) (on ?x ?y))
 :effect
 (and (holding1 ?x) (not (clear ?x)) (not (arm1-empty))
(clear ?y) (not (on ?x ?y))))
 (:action put-down2
 :parameters (?ob)
 :precondition (and (not (= ?ob A)) (not (= ?ob B))
 (not (= ?ob C)) (clear ?ob) (on-table ?ob) (arm2-empty))
 :effect
 (and (not (on-table ?ob))
 (not (clear ?ob)) (not (arm2-empty)) (holding2 ?ob)))
 (:action pick-up2
 :parameters (?ob)
 :precondition (holding2 ?ob)
 :effect
 (and (not (holding2 ?ob))

 (clear ?ob) (arm2-empty)
 (on-table ?ob)))

 (:action unstack2
 :parameters (?ob)
 :precondition (and (holding2 ?ob)

(clear ?sunderob))
 :effect
 (and (not (holding2 ?ob))
 (not (clear ?sunderob)) (clear ?ob)
 (arm2-empty) (on ?ob ?sunderob)))

 (:action stack2
 :parameters (?x)
 :precondition (and (not (= ?x A)) (not (= ?x B))
 (not (= ?x C)) (clear ?x) (arm2-empty) (on ?x ?y))
 :effect
 (and (holding2 ?x) (not (clear ?x)) (not (arm2-empty))
(clear ?y) (not (on ?x ?y)))))

Definition of initial and goal state of the inverted
problem:

(define (problem simple6)
 (:domain galuszka5)
 (:objects A B C D E F)
 (:init (clear A) (clear D) (arm1-empty)

(arm2-empty) (on-table C) (on-table F)
(on A B) (on B C) (on D E) (on E F))

 (:goal (and (on A E) (on B D) (on C F)
(on-table E) (on-table D) (on-table F))))

Solution to two-robot problem 1 (steps from1 to 8):

(plan 'simple6)
1 context
Levels
***** 1 *****Actions: 12 Propositions: 20
***** 2 *****Actions: 30 Propositions: 30
***** 3 *****Actions: 48 Propositions: 42
***** 4 *****Actions: 74 Propositions: 58
***** 5 *****Actions: 104 Propositions: 74
***** 6 *****Actions: 134 Propositions: 88
***** 7 *****Actions: 160 Propositions: 100
***** 8 *****Actions: 172 Propositions: 100

step 8 - ((((stack1 a b)))
step 7 - (((stack2 d e)) ((pick-up1 a)))
step 6 - (((pick-up2 d)) ((stack1 b c)))
step 5 - (((stack2 e f)) ((unstack1 b d)))
step 4 - (((pick-up2 e)) ((put-down1 a)))
step 3 - (((put-down2 f)) ((unstack1 a e)))
step 2 - (((pick-up2 f)) ((put-down1 c)))
step 1 - (((unstack1 c f))))

Problem 2.

Fig.3. Initial state

Fig.4. Desired goal state of robot 1
(goal conflicts with goal of robot 2)

A

E D

B

F

C

A

C

E

D

FB

Fig.5. Desired goal state of robot 2
(goal conflicts with goal of robot 1)

Definition of the operators:

(define (domain galuszka6)
 (:requirements :strips :equality :uncertainty :typing)
 (:predicates (on ?x ?y)

 (on-table ?x)
 (clear ?x)
 (arm1-empty)
 (arm2-empty)
 (holding1 ?x)
 (holding2 ?x)
)

 (:action put-down1
 :parameters (?ob)
 :precondition (and (not (= ?ob d)) (not (= ?ob e))
 (not (= ?ob f)) (clear ?ob) (on-table ?ob) (arm1-
empty))
 :effect
 (and (not (on-table ?ob)) (not (clear ?ob))

 (not (arm1-empty)) (holding1 ?ob)))
 (:action pick-up1
 :parameters (?ob)
 :precondition (holding1 ?ob)
 :effect
 (and (not (holding1 ?ob)) (clear ?ob) (arm1-empty)

 (on-table ?ob)))
 (:action unstack1
 :parameters (?ob)
 :precondition (and (holding1 ?ob) (clear ?sunderob))
 :effect
 (and (not (holding1 ?ob)) (not (clear ?sunderob))
 (clear ?ob) (arm1-empty) (on ?ob ?sunderob)))
 (:action stack1
 :parameters (?x)
 :precondition (and (not (= ?x d)) (not (= ?x e))
 (not (= ?x f)) (clear ?x) (arm1-empty) (on ?x ?y))
 :effect
 (and (holding1 ?x) (not (clear ?x)) (not (arm1-empty))

 (clear ?y) (not (on ?x ?y))))
 (:action put-down2
 :parameters (?ob)
 :precondition (and (not (= ?ob a)) (not (= ?ob b))
 (not (= ?ob c)) (clear ?ob) (on-table ?ob)
 (arm2-empty))
 :effect
 (and (not (on-table ?ob)) (not (clear ?ob))
 (not (arm2-empty)) (holding2 ?ob)))
 (:action pick-up2
 :parameters (?ob)
 :precondition (holding2 ?ob)
 :effect
 (and (not (holding2 ?ob)) (clear ?ob)
 (arm2-empty) (on-table ?ob)))
 (:action unstack2
 :parameters (?ob)
 :precondition (and (holding2 ?ob) (clear ?sunderob))
 :effect

 (and (not (holding2 ?ob)) (not (clear ?sunderob))
 (clear ?ob) (arm2-empty) (on ?ob ?sunderob)))
 (:action stack2
 :parameters (?x)
 :precondition (and (not (= ?x a)) (not (= ?x b))
 (not (= ?x c)) (clear ?x) (arm2-empty) (on ?x ?y))
 :effect
 (and (holding2 ?x) (not (clear ?x)) (not (arm2-empty))

 (clear ?y) (not (on ?x ?y)))))

Definition of initial and goal state of the inverted
problem:

(define (problem simple7)
 (:domain galuszka6)
 (:objects a b c d e f)
 (:init (clear a) (clear e) (arm1-empty) (arm2-empty)
 (on-table b) (on-table f)

(or (and (on a d) (on d b) (on e c) (on c f)
(not (on a c)) (not (on e d)))
 (and (on a c) (on c f) (on e d) (on d b)
(not (on a d)) (not (on e c)))))

 (:goal (and (on a e) (on b d) (on c f) (on-table e)
 (on-table d) (on-table f))))

Solution to two-robot problem 2 (steps from1 to 5):

(plan 'simple7)
using backtracking csp solver
using induced mutexes
2 contexts
levels
***** 1 *****actions: 28 propositions: 24
***** 2 *****actions: 66 propositions: 38
***** 3 *****actions: 118 propositions: 58
***** 4 *****actions: 184 propositions: 78
***** 5 *****actions: 262 propositions: 94

step 5 - ((((stack2 e)))
step 4 - (((pick-up2 e)) ((stack1 a)))
step 3 - (((stack2 d)) ((unstack1 a)))
step 2 - (((pick-up2 d)) ((put-down1 b)))
step 1 - (((unstack1 b))))

5 Discussion

Results obtained for Problem 1 and Problem 2
should be interpreted in different ways. In Problem
1 both robots achieve their goals whereas in
Problem 2 founded plan can be apply by both
robots to achieve their goals but not at the same
time. For problem 2 plan exists only if operators
stack and unstack have only 1 parameter so they do
not precise from which and on which block is
stacked or stacked out. It implies that after applying
plan in Problem 2 only one of robots achieves its
goal but both have the same chances. In the case
where goal preferences would be considered it
influences on final state of the problem
Moreover it see that necessary and sufficient
condition that plan exists is that all top and on-table

A

D

E

C

BF

blocks of all goals of the agents have to be the same
(for problem 2 both robots have clear blocks A and
E, and on-table blocks F and B):

Theorem
Let n be a number of agents (robots) and Gi is a
goal definition of i-agent (i=1,2,…,n) and Gj is a
goal definition of j-agent (j=1,2,…,n), j≠i. The
necessary and sufficient condition that plan of the
defined problem exists is:

VYZX
jjii GVontableGZclearGYontableGXcleari

==

∃∀∀
∈∈∈∈

,
)(,)()(,)(

Prove
Let the conditions formulated above are not
satisfied for example block X is clear in goal
description of agent 1 but is not clear in goal of
agent 2. Then it is impossible to apply the same
operator to achieve both goals until the closed
world is assumed (if clear(X) is not mentioned in
goal definition then is assumed to be false).

It should be noted that these conditions have to be
satisfied only if agent goals conflict. If agent goals
do not conflict then class of solvable problems is
unlimited.

6 Conclusion

Defining Block World environment as an invertible
STRIPS planning problem allows to apply
conformant planning methodology to search for
solution of inverted multi-agent problem and then
to extract solution for the right multi-agent
problem.
Necessary and sufficient condition that plan exists
were formulated.
Cases where agent goals have different preferences
were not explored.

Acknowledgement
This work has been supported by BK and KBN
8T11A01219 grants.

References

[1] Boutilier C., Brafman R.I. 2001. “Partial-Order
Planning with Concurrent Interacting Actions”.
Journal of Artificial Intelligence Research,
14:105-136.

[2] Bylander, T. 1994. „The Computational
Complexity of Propositional STRIPS
Planning.“ Artificial Intelligence, 69:165-204.

[3] Galuszka, A. A. Swierniak. 2001. “Uncertain
information in modelling and simulation of
STRIPS planning problems”, Proc. of
European Control Conference, Porto 2001,
CD-ROM.

[4] Koehler, J.; J. Hoffmann. 2000. „On
Reasonable and Forced Goal Orderings and
their Use in an Agenda-Driven Planning
Algorithm“. Journal of Artificial Intelligence
Research, 12 (2000), pp. 339–386.

[5] Kraus, S.; K. Sycara; A. Evenchik. 1998.
“Reaching agreements through argumentation:
a logical model and implementation.” Artificial
Intelligence, 104:1-69.

[6] Nilson, N.J. 1980. Principles of Artificial
Intelligence. Toga Publishing Company, Palo
Alto, CA.

[7] Smith, D.E.; D.S. Weld. 1998. „Conformant
Graphplan”. Proc. 15th National Conf. on AI.

[8] Weld, D.S. 1999. “Recent Advantages in AI
Planning.” Technical Report UW-CSE-98-10-
01; to appear in AI Magazine, 1999.

[9] Weld, D.S., C.R. Anderson i D.E. Smith. 1998.
„Extending Graphplan to Handle Uncertainty
& Sensing Actions”. Proc. 15th National Conf.
on AI, 897-904.

[10] Yale Center for Computational Vision and
Control. 1998, PDDL – The Planning Domain
Definition Language, Tech Report CVC TR-
98-003/DCS TR-1165.

Appendix

Simulation results for 2 agents and 8 blocks (robot
1 is capable to move blocks A,B,C,D, robot 2 –
blocks E,F,G,H).

Definition of initial and goal state of the inverted
problem:

(define (problem simple8)
 (:domain galuszka7)
 (:objects A B C D E F G H)
 (:init (clear A) (clear B) (clear C) (arm1-empty) (arm2-
empty)
 (on-table D) (on-table E) (on-table F)
(or (and (on A G) (on G D) (on B H) (on H E) (on C F)
(not (on A H)) (not (on B G)))

 (and (on A H) (on H E) (on B G)
 (on G D) (on C F)

(not (on A G)) (not (on B H)))))
 (:goal (and (on A B) (on C D) (on E F) (on H G) (on-
table B) (on-table D)(on-table F) (on-table G))))

Solution to the problem (steps from1 to 8):

(plan 'simple8)
2 contexts
Levels
***** 1 *****Actions: 36 Propositions: 30
***** 2 *****Actions: 92 Propositions: 54
***** 3 *****Actions: 192 Propositions: 85
***** 4 *****Actions: 320 Propositions: 119
***** 5 *****Actions: 460 Propositions: 149
***** 6 *****Actions: 552 Propositions: 163
***** 7 *****Actions: 582 Propositions: 164
***** 8 *****Actions: 584 Propositions: 164
***** 9 *****Actions: 584 Propositions: 164
step 8- ((((STACK1 B))) (((PICK-UP1 B)))
step 7- (((STACK1 A)))
step 6- (((STACK1 A)) ((STACK2 G)))
step 5- (((PICK-UP2 G)) ((UNSTACK1 A)))
step 4- (((STACK1 C)) ((STACK2 H)))
step 3- (((UNSTACK2 H)) ((UNSTACK1 C)))
step 2- (((STACK1 C)) ((PUT-DOWN2 E)))
step 1- (((UNSTACK2 E)) ((UNSTACK1 C))))

