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Abstract: - In this paper a class of adaptive H∞ control design is presented for linear systems. Numerical 
results display that the convergence obtained of the adaptive H∞  controller of the closed loop system for the 
unperturbed motion is faster than the classical H∞ control design, and improve the performance of the closed 
loop system for the perturbed motion too.  
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1   Introduction 
This paper is about the design of a class of adaptive 
H∞ controller for linear systems. This design is 
based in the methodology used in [1] where a class 
of adaptive sub-optimal control design is presented. 
The adaptation law used enables to the controller to 
operate with fast dynamics when the states of the 
motion are far a way from the equilibrium point and 
with slow dynamics when the states of the motion 
are close to the equilibrium point. This adaptation in 
the dynamics of the controller allows to the states of 
the closed loop systems to converge to the 
equilibrium point faster than the classical H∞ control 
design for the unperturbed motion case, and improve 
the performance of the closed loop system for the 
perturbed motion case too.  
 
 
 

2   Problem Formulation 
Consider the linear system be described by the 
following differential equations 
 
                                                                              
                                                                                (1)                         
                                           

where nRtx ∈)( is the state vector,  mRu ∈  is the 

control input, rRw ∈  is the unknown disturbance, 
lRz ∈  is the virtual output to be controlled. A, B1, 

B2, C, and D are known constant matrices with 
appropriate dimensions. 

The following assumptions on system (1) 
are used hereafter, 
 
 
 

A static controller of the form 
 

                                                                                (2) 
 
is said to be an admissible controller if the 
disturbance-free (w=0) of the closed loop system 
(1), (2) is asymptotically stable. 

Given a real number 0≥γ  , it is said that 
system (1), (2) has L2 gain less than γ  if the 
response z, resulting from w for initial state x(to)=0 
satisfies 
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for all t1>to≥0 and all piecewise continuous function 
w(t).  

The (classical) H∞ control problem consist 
to find such an admissible controller (2) that L2 gain 
of the closed loop system (1), (2) is less than γ . 

 
Theorem 1 Suppose that the systems (1) meets 
assumption A1) and A2). If there exist a positive 
definite matrix P for a given ε>0 and γ>0 satisfying 
the following Riccati equation 
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                                                                               (4) 
  
then the H∞ control problem is solvable and one 
state feedback solution is given by 
 
                                                   .                           (5) 
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Proof.- The above result is well know and for easy 
of reference, this result can be obtained from [2] 
using the appropriate modifications.  
 Suppose we augment the control law [1] 
 
                                                                               (6) 
 
where δ is updated according to the following 
adaptive algorithm 
 
 
                                                                                (7) 
 
where 
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and where α>0. 
 
Lemma 1. Suppose the ordinary differential equation 
in (7) has the initial condition δ(to)= δ0≥0, then δ≥0 
for all t>t0. 
 
Proof. See [1]. 
 
 

3   Main Result 
The adaptive admissible controller is the 

controller of the form (6), (7), (8) such that  the 
disturbance-free closed loop system (1), (6), (7), and 
(8) is asymptotically stable subject to δ(to)= δ0≥0. 
The adaptive H∞ control problem is to find an 
admissible controller  (6), (7), (8) such that given a 
real number 0≥γ , the response z, resulting from w 

for initial state x(to)=0 and δ0≥0 satisfies 
 

                                                                                (9) 
 
 
for all t1>to≥0 and all piecewise continuous function 
w(t), and where ϕ(.) is a nonnegative function. The 
second term on the right-hand side of equation (9) 
corresponds to the penalty contribution of the 
dynamic in (7). 

 
Theorem 2. Suppose that system (1) satisfies 
conditions A1) and A2). If there exist a positive 
definite matrix P for a given ε>0 and γ>0 satisfying 
the Riccati equation (4), then the controller (6), (7), 
(8) with δ(to)= δ0≥0 is a solution to the adaptive H∞  
control problem. 
 

Proof.- To begin with, let us introduce the function 
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which is quadratic in (w, u). The partial derivatives 
of H=H(x,δ, w, u) with respect to w, and u, yields, 
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Solving the above equations for w*, and u* 
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H(x, w ,u)  can be expressed as 
 

22 **)*,,(),,( wwuwxHuwxH −−= γ  

                                                                              (13)   
 
Next, let us define the function 
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where 
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and  
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Using *)1( uu δ+=  the above equation yields 
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From (10) and (17), the next equation is obtained 
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or 
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The time derivative of the Lyapunov function (14) is 
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Next we are going to prove asymptotic stability for 
the unperturbed motion (w=0). With w=0 and using 
(15), (6), and (7), the equation (20) yields, 
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Replacing the terms PAPAT +  in the above 
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per the ARE in (4) and using (8), equation (21) gives 
the result 
 
 
 
 
 

 
 
This proves asymptotic stability of the unperturbed 
motion subject to  δ(to)= δ0≥0. 
Finally, to establish (9), from equation (19) we have 
 
 
 
 
 

 
which we concluded 
       
                                  .         (22) 

 
Integration of (22) for any trajectory of the closed 
loop system (1), (6), (7) and (8) starting at x(t0)=0 
produce 
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From this last equation, we have 
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concluded proof theorem 2.♥  
 
 

4   Numerical example 
To support the controller obtained in Theorem 1, a 
numerical example is develop in this section. 
Suppose the system in (1) takes scalar values where 
A=0.5, B1=B2=1, C=[1 0]T, D=[0 1]T and α=0.5. 
With γ=2 and ε=0.1, the positive definite solution to 
the Riccati equation (4)  is P=2.0491. The 
simulation results for w=0 are shown in Fig.1, 
where the dotted line represents the classical H∞   
controller meanwhile the solid line represents the 
adaptive H∞ controller proposed in Theorem 1. 
Simulation results for w=1 are shown in Fig. 2, 
where solid line is the adaptive version and dotted 
line is the classical one. The initial condition for (7), 
in both simulations, was δ(0)= 0. 
 

 
Fig.1 Plots of the trajectory (x(t) versus time) for the 

non-disturbance case. 
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Fig. 2 Plots of the trajectory (x(t) versus time) for 
the permanent disturbance case. 

 

 
Fig. 3 Plots of δ versus time. Dotted line for the 

perturbed case and solid line for the un-perturbed 
case. 

 
 

4   Conclusions 
In this paper the idea presented  in [1] was extended 
for the H∞ control case. The result produced show 
that the adaptive H∞ controller, besides to have 
faster convergence for the un-perturbed case, it has 
more robustness for the perturbed case than the 
classical H∞  controller.  
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