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Abstract: - In this paper a cdass of adaptive H., control design is presented for linear systems. Numerical
results display that the convergence obtained of the adaptive H,, controller of the daosed loop system for the
unperturbed motion is faster than the classicd H., control design, and improve the performance of the closed

loop system for the perturbed mation too.
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1 Introduction

This paper is about the design of a dass of adaptive
H. controller for linear systems. This design is
based in the methodology used in [1] where a class
of adaptive sub-optimal control design is presented.
The adaptation law used enables to the controller to
operate with fast dynamics when the states of the
motion are far a way from the equilibrium point and
with slow dynamics when the states of the motion
are close to the equilibrium point. This adaptation in
the dynamics of the controller allows to the states of
the closed loop sysems to converge to the
equilibrium point faster than the classical H., control
design for the unperturbed motion case, and improve
the performance of the closed loop system for the
perturbed motion case too.

2 Problem Formulation
Consider the linear system be described by the
following differential equations

X=Ax+B,w+ B,u
z=Cx+Du (1)

where X(t) OR"is the state vector, uJR" is the

control input, wOR" is the unknown disturbance,
zOR' isthe virtual output to be controlled. A, By,
B, C, and D are known constant matrices with
appropriate dimensions.

The following assumptions on system (1)
are used hereafter,

A)C'D=0
A2)D'D=I.

A static controller of the form
u=K(x) %)

is said to be an admissible controller if the
disturbance-free (w=0) of the closed loop system
(1), (2) isasymptotically stable.

Given areal number y =0 , it is said that
system (1), (2) has L, gain less than y if the
response z, resulting from w for initial state x(t,)=0
satisfies

ty t
[z dt < y? [ wo)] o 3)
to to
for al t;>t,=0 and all piecewise continuous function
w(t).
The (dassicd) H. control problem consist
to find such an admissible controller (2) that L, gain
of the closed loop system (1), (2) islessthan y .

Theorem 1 Suppose that the systems (1) meets
assumption Al) and A2). If there exist a positive
definite matrix P for a given €>0 and y>0 satisfying
the following Riccati equation

AP+ PA+P(i2|3151T—BZB;)P
y
+C'C+d =0 (4)

then the H., control problem is solvable and one
state feedback sol ution is given by

u=-BIPx(t) . ©)



Proof.- The above result is wel know and for essy
of reference, this result can be obtained from [2]
using the appropriate modifications.

Suppose we augment the control law [1]

u=-(1+3)B; Px(t) (6)

where & is updated according to the following
adaptive algorithm

1

o = —alog(l+d) + —————
oo(1+9) log(1+ ) +1

f(0,x) (7

where

£(3,%) =x"[{2(l+ 3) -1 PB,B] P +CC]x
®

and where a>0.

Lemma 1. Suppose the ordinary differential equation
in (7) has theinitia condition dt,)= =0, then 020
for al t>t,.

Proof. See[1].

3 Main Result

The adaptive admissible controller is the
controller of the form (6), (7), (8) such that the
disturbance-free closed loop system (1), (6), (7), and
(8) is asymptoticaly stable subject to Jto)= &=0.
The adaptive H,, control problem is to find an
admissible controller (6), (7), (8) such that given a
real number y = 0, the response z, resulting from w

for initid state x(t,)=0 and =0 satisfies

sz(t)szts yszvx(t)szt+j52¢(x)dt 9)

for al t;>t,20 and al piecewise continuous function
w(t), and where ¢(.) is a nonnegative function. The
second term on the right-hand side of equation (9)
corresponds to the penaty contribution of the
dynamicin (7).

Theorem 2. Suppose that system (1) satisfies
conditions Al) and A2). If there exig a positive
definite matrix P for a given €>0 and y>0 satisfying
the Riccati eguation (4), then the contraller (6), (7),
(8) with dt,)= &=0 is asolution to the adaptive H..
control problem.

Proof.- To begin with, let us introduce the function
ov
HOw) = 2 LA B Bl 27 -y’

= & {ax + Byw + BLul+ ox |

o O e ' (10)

which is quadratic in (w, u). The partia derivatives
of H=H(x,J, w, u) with respect tow, and u, yidds,

oHp oV —B, -2y’w*" =0
wl,.. ox

oH =6—VBZ+2u*T=O.
ou|,. OX

Solving the above equations for w*, and u*

1

2y (7) (11)
ur=- BT (—) (12)

H(x, w,u) can be expressed as

H (x,w,u) = H (X, W*,u*) — yZHW—W*H2
+|u- u*H2 (13)

Next, let us define the function

V(x,0) = x"Px + (1+ 0)log(1+ J) (14)
where
AVAREE
and
)Y
5—1+Iog(1+5) _ (16)
With
x"[PA+A"P-P(B,B] —izBlBlT)P+
C'C+4d]x=0
we have

H 06w, u) ==
and equation (13) reduceto
H(x,w,u) = —gMz - }/ZHW—W*HZ

+u-uf



Using u =(1+Jd)u* theabove equation yidds

H (x,w,u) = —ngH2 —yzHW—W*H2 + JZHU*HZ

= —&|x|* - y?|w-w*|" + 2" PB,B] Px  (17)

From (10) and (17), the next equation is obtained
& [ axce B+ Bl = =gl -y w-wf
+ 3 PBBy x= O [uf + " (19)
or

aaLX[Ax + B,w + B,ul < -¢l|jx|’

+3°xTPB ,B]Px ~ |z + ¥ 2 |w|’ 9

Thetime derivative of the Lyapunov function (14) is
N \VJ .
V= &[Ax+ B,w+ B,u] + J[1+ log(1+ J)] . (20)

Next we are going to prove asymptotic stability for
the unperturbed motion (w=0). With w=0 and using
(15), (6), and (7), the equation (20) yidds,

V =x"[PA+ ATP-2(1+ 3)PB,B] P]x

—alog@+9d)[1+logd+ )]+ f(I,X) 1)

Replacing the tems A'P+PA in the above

equation with - P(i2 BB/ -B,B,)P-C'C-d
y

per the ARE in (4) and using (8), equation (21) gives

the result

1

y2

—alog(1+9)[1+log(1+9)]

< —¢¥" - alog(1+ )[1+ log(1+ )]

This proves asymptotic stability of the unperturbed
motion subject to Jt,)= =0.
Findly, to establish (9), from equation (19) we have

V =x'[-= PB,B/P-4d]x

V < —,s||x||2 +Jd*x"PB ,B] Px - ||z||2
+ y2||w||2 < +90°x"PB ,B]Px - ||z||2

oy w”

which we concluded
V <+32%"PB,BIPx |7 + ¥ w*. (22

Integration of (22) for any trgectory of the closed
loop system (1), (6), (7) and (8) starting at x(to)=0
produce

by
[ + v + 528 Pt 2
tD

V(x(t)) =V (x(t,)) 2 0
From this last equation, we have

el ot < 497 [l et + f 021 ot
t, to to

where we obtain (9) with ¢(x)=[B]Px|". This
concluded proof theorem 2.v

4 Numerical example

To support the controller obtained in Theorem 1, a
numerical example is develop in this section.
Suppose the system in (1) takes scdar values where
A=0.5, B;=B,=1, C=[1 0], D=[0 1]" and a=0.5.
With y=2 and €=0.1, the positive definite sol ution to
the Riccati equation (4) is P=2.0491. The
simulation results for w=0 are shown in Fig.1,
where the dotted line represents the classica H.
controller meanwhile the solid line represents the
adaptive H,, controller proposed in Theorem 1.
Simulation results for w=1 are shown in Fig. 2,
where solid line is the adaptive version and dotted
lineisthe classical one Theinitial condition for (7),
in both simulations, was 0)= 0.

:

Fig.1 Plots of the trgjectory (X(t) versustime) for the
non-disturbance case.




Fig. 2 Plats of thetrgjectory (x(t) versus time) for
the permanent disturbance case.

]
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Fig. 3 Plots of o versustime. Dotted line for the
perturbed case and solid line for the un-perturbed
case.

4 Conclusions

In this paper the idea presented in[1] was extended
for the H,, control case The result produced show
that the adaptive H.. controller, besides to have
faster convergence for the un-perturbed case, it has
more robustness for the perturbed case than the
classical H,, contraller.
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