
A Solid Model Comparison Approach Based on a Model Tree Analysis

JEAN-FRANÇOIS CHATELAIN (1), ROLAND MARANZANA (2), SERGE ST-MARTIN

Mechanical Engineering Department (1)
Production Engineering and Automation Department (2)
École de Technologie Supérieure, Université du Québec

1100 Notre-Dame Street West
Montréal, Québec, H3C 1K3

CANADA
Tél. : (514) 396-8512
Fax : (514)396-8530

Abstract: This work presents an innovative approach to the solid model comparison problem which aims to detect
and extract all geometric differences between two successive versions of the same part. The automatic model
comparator has been developed to offer a standardized information about solid model evolutions to all engineering
teams concurrently involved in the product development process. The comparison approach is based on a
systematic analysis of both solid model trees belonging to each compared part in order to detect any change in the
primitives or Boolean operations used throughout the part modelling process. The model comparator has been
successfully applied to various aircraft structural parts which have been affected of multiple incremental changes in
their design. The comparator has been implemented to the CATIA v4 Computer Aided Engineering software.

Key-Words: Product development, CAD, Change management, Data management, PDM, Solid model, Checker

1. Introduction
The development cycle of a product produces lots of
data that is dynamically modified through the
complete cycle: each step going through the product
definition creates new revisions of different
documents. This data management becomes more
and more important as the product complexity
increases. On the other hand, to succeed in the
current market competitiveness, the reduction of the
product development cycle is a necessity and this one
cannot be realized without an efficient and reliable
data management.

The Product Data Management systems (PDM) are
software tools that facilitate the management of all
files involved in the product development cycle
which includes all the design and the manufacturing
processes required to deliver the product. Among
their principal functions, there is the management of
dependencies and links between files and the
management of the product configurations and
document releases [1]. The Computer Aided Design
and Manufacturing (CAD/CAM) data, which defines
the product as a geometric model, is one of the
major and central information managed by these
systems. The incremental design process generates

multiple CAD revisions from which it becomes
difficult to deal from a « client » point of view in a
concurrent engineering environment. For example, a
design revision may or may not alter an existing tool
path generated from the previous part model revision.
Without a systematic and reliable notification or
annotation system, it may become very tedious to
identify every change occurrence between two
successive revisions of a same part. This task of
identifying every geometric and cosmetic feature
difference between two models is difficult to keep
reliable and systematic under a manual process. It
greatly depends on the good behalf of every designer.
On the other hand, this comparison task cannot also
be ensured through the PDM systems, because of the
need to access the internal CAD database
implementation to extract the geometric data
representation for comparison. This can only be
realized through extended programming with the
Application Procedural Interfaces (API) of the
particular CAD implementation.

1.1 Existing Approaches
The comparison of solid models has been a problem
of interest in many researches. Most of the existing
works are based on the internal representation of the

compared solids. The main problem related to this
approach is that different data structures can
represent the same solid in the case of Boundary
Representation (B-Rep) models, while different
modelling trees can lead to the same product
involving the same primitives in the case of
Constructive Solid Geometry (CSG). In this
particular case, two different sets of primitives may
represent the same part. Due to this plurality of
solutions, most of the comparison algorithms refer to
a standardization step for the models before their
comparison. Among different techniques, Leinen [2]
proposes an original method based on the graph
theory to normalize models defined through a B-Rep
data structure. For CSG models, Perng and al. [3]
refer to a destructive solid geometry technique for the
model normalization. This technique subtracts
different primitives to a blank model in order to
obtain the solid model being the object of
comparison. Once normalized, the differences can be
found and interpreted. For the comparison, the
former research proposed by Leinen is based on the
resolution of constraints to relate the “PSC” graphs
of both compared models. Other techniques are
rather based on form features extraction and
comparison from the B-rep or the CSG structure of
the solid models [4], [5]. Although all of these
techniques have the benefits of being general with
the alternative of being applied to totally different
solid models, they seem to loose the design intent
through the normalization process, which is a major
concern in our comparison problem applied to
models of the same part in revision. In this context, a
counterbore added to a model is different than a
Boolean subtraction of a cylinder, even if the
geometrical result is the same. In the first case, the
design intent is properly expressed. Our proposed
algorithm is based on the systematic comparison of
the historical modelling information based on the
model trees. This approach properly translates the
design intent found into each revision by comparing
each primitive and operation, when required.

2. The Comparison Algorithm
An automated comparison approach is proposed in
this work to systematically extract all differences
between two successive revisions of a solid model.
The algorithm is based on an exhaustive model tree
analysis which verifies the correspondence between
each primitive and the Boolean operations applied on
them. From this approach the design intent related to
the modification can be properly captured. The

figure 1 shows a simple model with its corresponding
model tree. From such a model tree representation,
which is expressed though a matrix as the solid
model internal representation, all the required
geometrical information and Boolean operations
applied on the primitives are extracted for the
comparison process. The model tree and the matrix
representation shown in figure 1 have been generated
from the CATIA V4.0 CAD/CAM software within
which the comparison algorithm proposed in this
work has been fully implemented.

2.1 Parameters and Data Extraction
The algorithm is based on a systematic comparison
of the model tree matrix representation related to
each model being compared. It is based on an
exhaustive comparison of four parameters defining
the geometry and the location of each primitive in its
corresponding model tree. The first parameter of
importance is defined as being the type of primitive
belonging to the model, like a cylindrical, a
prismatic, a planar, or a lofted surface primitive, as
an example. The second most significant parameter
to consider through the comparison process is the
transformation matrix expressing the location of the
primitive with respect to the global reference frame.
The geometrical definition of the primitives and the
index number locating each of these into the model
tree are the remaining parameters referred in the
approach to identify any difference between the two
models in comparison. The former includes the
numerical values defining the primitives, e.g. the
length, the width, and the depth of a cube for
example, as well as the geometrical information
related to more complex elements, let say the spine
and the section of a swept primitive.

Depending on the CAD application, these
comparison parameters can take any figure, or simply
being inexistent. This is the case for the index
numbers in our application which are proposed to
locate each primitive in the model tree. In this
particular case, the API available with the CAD
system targeted for our application does not supply
any function to extract this kind of information.
Thus, a specially built routine has been developed to
define an index number for each primitive belonging
to a model tree. As shown in figure 1, the index is
defined based on the level in which the primitive sits
into the model tree, starting with level 1000 and
incrementing a value of 1000 for each additional
level of the tree.

Fig.1 Model tree and its matrix representation

When two compared models are found to be identical
based on these parameters comparison using the
sorting mechanism explained in the next section, the
Boolean operation affecting each leaf of the model
tree are next compared to validate the similitude of
both models.

The comparison parameters are extracted through the
proprietary CAD Application Procedural Interface
routines which give access to the model data. In this
work, the CATGEO routines of the CATIA
application software are utilized to extract the various
parameters required to sort the primitives. Such
routines require the type of primitive as input data in
order to output the size and the reference elements
required for its definition. The type, the
transformation matrix expressing the location of the
primitive with respect to the reference frame as well
as the operation applied to the primitive is extracted
from the model tree information expressed through a
three-column matrix as the internal representation of
the model tree. As shown in the matrix in figure 1,
the first column relates to the Boolean operation
number while the other two columns relate to an
identifier from which the entity type and all the
primitive definition data can be deduced. The
negative value for entity 1 in line 2 of the matrix
points toward the operation line number 1. In this
case, the first line of the model tree represents the
union between the sphere and the cube while line two
relates to the subtraction of a cylinder from this last
result expressed through the entity number -1.

2.2 Classification of the Primitives
The comparison of the solid models consists in
matching pairs of primitives having some identical
comparison parameters. It is a scanning process
checking one primitive of a model against all the
others belonging to the second model to find the
maximum number of identical parameters as
possible. Through the entire process, the sorting
algorithm will order each pair of primitives in one of
the 5 specific classes based on their similitude (figure
2). The primitives that are found to be exactly of the
same type, with identical numerical/geometrical
parameters and locating matrix, as well as being
symmetrically located in their respective model tree
(same index number) will be identified as class A
primitives. All primitives that comply to class A
except for the index number will be identified as
belonging to class B. Similarly, the primitives
complying to class B, except for the parameters, are
identified to be part of class C while the class D
includes primitives of the same type only. Finally,
the class X is reserved for the primitives remaining
after the sorting process is terminated.

The algorithm developed to find all the differences
between two solid models thus stacks pairs of
primitives into one of these 5 classes. This is done
through an iterative elimination process, sorting all
pair of primitives starting with class A and finishing
with class D. As shown in the flowchart (figure 3),
all the primitives are first stacked in class X for both
model trees. Then, a first primitive of model1 “Pr1”
is compared against all primitives of the revised
model for a match complying to class A definition.

Class C

Class B Class X

Class D
Model 1 Model 2 Model 2Model 1Model 1 Model 2

Model 1 Model 2 Model 2Model 1

C.I.: Typ, Mat, Par, Idx

C.I.: Typ, Mat, Par

C.I.: Typ, Mat C.I.: Typ

C.I.: nothing

Sphere2 Sphere2 Fillet2Fillet2 Plan12 Plan12
Prism4 Prism4
Cube6 Cube6
Fillet3 Fillet3
Cube13 Cube13

Fillet14Fillet14 Cube11 Cube11
Prism9 Prism9

Cylinder8 Cylinder8

Cylinder7 Prism17

Class A

Fig.2 Primitives classification

 Operation Entity 1 Entity 2
Line 1
Line 2

1 (union)
3 (subtraction)

45123 (sphere)
-1

348 (cube)
2316 (cylinder)

Model
tree

Index
2002

Index
1001

Final
result

Index
2001

Solid
model

Pr1=empty Pr1=empty Pr1=empty

Start

Start of 1X stackStart of 1X stack Start of 1X stack

Select next Pr2Select next Pr2Select next Pr2Select next Pr2

Extract Typ1 and Typ2

Pr2=emptyPr2=empty Pr2=empty Pr2=empty

Typ1=Typ2Typ1=Typ2Typ1=Typ2Typ1=Typ2

Mat1=Mat2 Mat1=Mat2 Mat1=Mat2

Par1=Par2Par1=Par2

Idx1=Idx2

Select next Pr1
Start of 2X stack

Select next Pr1
Start of 2X stack

Stack up Pr1 in 1D
stack
Stack up Pr2 in 2D
stack

Stack up Pr1 in 1B
stack
Stack up Pr2 in 2B
stack

Unstack Pr1 of 1X
stack
Unstack Pr2 of 2X
stack

Pr1=empty

Select next Pr1
Start of 2X stack

Unstack Pr1 of 1X
stack
Unstack Pr2 of 2X
stack

Stack up Pr1 in
1C stack
Stack up Pr2 in
2C stack

Start of 1X stack

Select next Pr1
Start of 2X stack

Unstack Pr1 of 1X
stack
Unstack Pr2 of 2X
stack

Yes

Yes

No

No

No

No

Yes Yes

No

No

No

Yes

No

No

Yes

Yes

Yes

Yes

Yes

No

No

Yes Yes

Yes

No

No

No

No

Yes

Yes

No

No

Yes

Yes

No

Extract Typ1 and Typ2 Extract Typ1 and Typ2

Extract Mat1 and Mat2

Extract Par1 and Par2

Extract Idx1 and Idx2

Extract Mat1 and Mat2

Extract Par1 and Par2

Extract Mat1 and Mat2

Extract Typ1 and Typ2

Stack up Pr1 in 1A
stack
Stack up Pr2 in 2A
stack

Unstack Pr1 of 1X
stack
Unstack Pr2 of 2X
stack

End

Fig.3 Sorting algorithm

The process is forwarded until all Pr1 are scanned.
For any match found, the corresponding primitives
Pr1 and Pr2 are un-stacked from their class X pile
and are each stacked into their respective Class A.
For two identical solid models, this process would
lead to two identical piles of class A. The remaining
primitives belonging to class X are then similarly
compared for a match complying with class B
definition. The process ends when there is no more
primitive to sort or when a tentative for a match has
been performed for all class definition. In this latter
case, the remaining elements in class X mean there is
some added or removed primitives to the revised
version of the solid model.

3. Aeronautical Applications
The solid model comparison approach has been
validated using several aeronautical examples related
to the Bombardier Aeronautic production. One of
these validation examples is presented below. For
more details, one can refer to St-Martin [6].

The aircraft frame showed in figure 4 includes 102
primitives distributed in a 23 levels model tree. There
have been four different revisions applied to the
original model. The first revision includes a
translation applied to one of its opening and a minor
change in the profile of its openings.

Fig.4 Aircraft frame solid model and its comparison report

These differences are so minor that they are
imperceptible to the designer. The algorithm takes
less than a minute to report these modifications. The
second and third sets of modifications respectively
add on top of the last ones, a primitive suppression
and a primitive addition. Both are compared with
success to the original model. To give an idea of the
algorithm behaviour and performance, the second
revision is about 2 minutes longer to compare than
the third set of modifications. This is due to the
scanning mechanism of the algorithm which
significantly depends on the model tree ordering of
the primitives (addition versus subtraction). Finally,
the last revision is the same as the third one except
for the added primitive which is moved to a higher
level of the model tree. Based on the sorting scheme
explained above, this actually accelerates the model
comparison since the primitive is higher in the model
tree related matrix from which the comparison is
done. It takes just more than a minute to report all the
differences.

The algorithm performance is found excellent when
compared to the manual process of identifying such
kind of modifications, which is quite tedious and
very much unreliable. In fact, the few minutes
required to compare complex models is nothing,
considering this calculation time largely depends on
the computer unit utilized for the implementation and
also that the calculation is concurrently done to the
designer tasks.

After the solid model differences are all found, the
model checker generates a comparison report. This
one takes two different aspects, a graphical and a
textual form. The former allows for a rapid check

through a colour coding identifying all types of
differences, as previously discussed. The primitives
found different are identified with a specific colour
within the compared model as well as within the
related model trees. For more detailed information,
the textual form of the report can be referred (figure
4). This latter can give as much detailed information
as it is available through the API routines utilized to
extract the primitives geometric information. This
important and very rich comparison information can
then be fed to a PDM system for rigorous historical
data archiving of the solid model evolution of a given
part.

4. Conclusion
An automatic comparison approach for CAD solid
models has been described in this paper. The
proposed algorithm systematically and reliably
extracts all the differences between models, based on
a concurrent engineering context involving
successive revisions of a same part. The model
checker prototype integrated to the CAD/CAM
software CATIA reports all the differences between
two models in a few seconds with complete
reliability as compared to a manual comparison
which is tedious, time consuming and not error
prone. The approach could also lead to an automatic
transfer to a PDM system of all the differences found
by the comparator to keep historical data related to
each part model of a product.

The proposed prototype has been validated through
various structural part models comparison belonging
to the Bombardier Canadair aircraft manufacturer.

Acknowledgements:
This project has been realized throughout a research
program regarding the CAD and PDM tools
enhancement with the collaboration of Bombardier
Aeronautic. We sincerely thank our partner
Bombardier Canadair for their assistance and the
Natural Science and Engineering Research Council
for their financial support.

References:
[1] PELTONEN H., PITKÄNEN O., SULONEN R.,

Process-based view of product data management,
Computers in Industry, vol. 31, no. 3, pp. 195-
203, 1996.

[2] LEINEN S., JUNG J-P, GARDAN Y.,
Comparaison de modèles de CAO par
normalisation de graphes, Revue de CFAO et
d’informatique graphique, vol. 12, no. 1-2,
pp.153-167, 1997.

[3] PERNG D.B., ZEN C., LI R.K., Automatic 3D
machining feature extraction from 3D CSG solid
input, Computer Aided Design, vol. 22, no. 5, pp.
285-295, 1990.

[4] LEE Y.C., FU K.S., Machine understanding of
CSG: extraction and unification of manufacturing
features, IEEE Computer Graphics and
Applications, vol. 7, no. 1, pp. 20-32, 1987.

[5] GARDAN Y., MINICH C., Feature-based
models for CAD/CAM and their limits, Computers
in industry, vol. 23, no.1-2, pp.3-13, 1993.

 [6] ST-MARTIN S., Maîtrise du changement dans
les modèles CAO, Projet d’application, Maîtrise
en technologie des systèmes, École de
Technologie Supérieure, Janvier 2001.

