
Software architecture for modular, extensible and reusable signal 
processing components 

 
RALPH MASCHOTTA, SIMON BOYMANN, DUNJA STEUER 

Institute of Biomedical Engineering and Medical Informatics (BMTI) 
Ilmenau Technical University 

POB100565, D-98693 Ilmenau  
GERMANY 

 
 

Abstract: A common way to develop new signal processing strategies is to build libraries with various 
signal processing components to combine these components. The requirements for the software architecture of 
those components are quite extensive and sometimes conflicting. With the help of object oriented methods and 
common architectural and design patterns we create a software architecture to fulfill these requirements. The 
software architecture are modeled in Unified Modeling Language (UML). 

 
Key-Words: Software architecture, Architectural pattern, Design pattern, Pipes and Filters, Reflection, 

Microkernel, Signal processing, Object oriented technology, UML 

 

1 Introduction 
The requirements concerning signal processing 

software often include fast processing of huge 
amount of data, fast implementation of new 
algorithms, real time processing and so on. 

Some tools like MATLAB® allow the user to 
create and test new algorithms easily. To use these 
experimental algorithms it is necessary to transform 
these algorithms into professional software. But 
professional software have some more requirements. 
After all you have to fulfill all of them. 

There are a lot of signal processing algorithms at 
the Institute of Biomedical Engineering and Medical 
Informatics (BMTI), especially in the field of 
adaptive recursive signal processing. The algorithms 
are implemented in different programming 
languages, in different ways of software design and 
after all without adequate documentation. Thus it is 
ineffective to reuse the existing  algorithms. 

Over the last 20 years, the BMTI has developed 
the signal processing tool ATISA (adaptive time 
series analysis). The main aim of this tool was the 
implementation of new signal processing algorithms 
and the use of this algorithms in different projects. 
But there was no consistent maintenance of the 
software architecture. Meanwhile various people 
were implementing several parts of the tool with 
different software techniques in different 
programming languages and with insufficient 

documentation. There are also different versions 
based on different operating systems. The result of 
this expansion is a “Big Ball of Mud”[1]. 

Therefore we want to create a software 
architecture which uses the newest software 
development techniques to prevent such a expansion. 

2 Problem Description 
The power and flexibility of modern signal and 

image processing tools based on the possibility to 
combine native algorithms is a common way to 
design complex signal processing strategies. 

So we postulate for the new tool to be a 
component based signal processing tool with the 
following attributes: 

• to have a library of native signal processing 
algorithms, 

• to have an interface to add new algorithms to the 
tool, 

• to have the ability to combine these components 
with each other, 

• to import external functions like MATLAB® for 
example. 

The requirements for such signal processing 
software architectures are quite extensive and 
sometimes conflicting. On the one hand there are the 
requirements concerning signal processing. On the 
other hand there are the requirements concerning 
modern software architecture. 



Signal processing software demands some 
important qualities: fast creation of new algorithms, 
fast processing of data, the ability of real-time 
processing and the possibility of hardware 
implementation. 

Modern object oriented software has to fulfill 
requirements like reuse and extensibility of 
components, safe program processing, usable 
documentation and so on. 

The required fast creation of new algorithms can 
be fulfilled by modern software architecture. But the 
performance of object oriented algorithms can be 
lower than the performance of other algorithms 
which are not based on object oriented technology. 
That’s why it is necessary to test the real time ability 
of the algorithms. 

Furthermore it is difficult to use object oriented 
algorithms for hardware implementation. 

This shows the necessity to balance the several 
requirements of a modern signal processing software 
architecture. 

3 Problem Solution 
Because of the advantages of the object oriented 

paradigm we decided to create an object oriented 
architecture. With the Unified Modeling Language 
(UML)[4] we have a standard language to describe 
this architecture. In assistance of an UML based 
modeling software we have the basis to create a 
modern object oriented software. 

Another advantage of the UML is the possibility 
to model the natural relations between signal 
processing algorithms. 

Furthermore there exists a large collection of 
patterns which describe solutions of several 
architectural and design problems. So we selected 
and combined some appropriate patterns which fulfill 
our requirements. 

3.1 Used architectural Patterns 

We decided to use a composition of three 
architectural patterns. To serve the problems of 
combining several signal processing algorithms we 
use the Pipes and Filters pattern. To create an 
adaptive system we use the Reflection pattern. And 
finally to manage the system we use the Microkernel 
pattern. In assistance of additional design patterns we 
modeled the following software architecture. 

3.1.1 Pipes and Filters 

“The Pipes and Filters pattern provides a structure 
for systems that process a stream of data. Each 
processing step is encapsulated in a filter component. 
Data is passed through pipes between adjacent filters. 
Recombining filters allows you to build families of 
related systems.”[2] 

A filter may enrich, refine, or transform its input 
data [2]. There are two different types of filters: the 
active and the passive filters. Active filters are 
autonomous algorithms like threads. For parallel 
processing it is necessary to create active filters. 
Passive filters are implemented like normal functions 
or procedures. 

The pipes are the connectors between a data 
source and the first filter, between filters, and 
between the last filter and a data sink. As needed, a 
pipe synchronizes the active elements which are 
connected together[2]. 

It is an important requirement at the signal 
processing software architecture to create new signal 
processing strategies easily. It is useful to combine 
several existing algorithms to new signal processing 
strategies or append new algorithms. The Pipes and 
Filters architectural pattern fulfills this requirement. 

We use a special type of the Pipes and Filters 
architectural pattern called Tee- and Join- Pipeline 
(Fig. 1). Every filter has a different number of data 
input and output channels. The possibility to 
combine two filters depends on the input and output 
data formats of the filters. So it is possible to create 
switches or loops. Thereby it is possible to create 
complex processing pipelines. 

 

W
el

l d
ef

in
ed

 G
lo

ba
l O

bj
ec

t’
s 

Source Filter 

Processing Filter 

Output Filter 

Processing Filter 

Pipeline 

Processing Filter 

Data Access  
Fig. 1 Example of a Tee-and-Join-Pipeline with acess 
to global objects 

We implemented the functionality to create push 
and pull pipelines to be able to start the pipeline at 
the beginning, at the end in between. 



The signal processing algorithms can be 
implemented as filters. The administrative overhead 
to connect the filters, to call filters and so on is 
implemented in base classes. To create a new filter it 
is only necessary to inherit from these base classes. 

Presently there are only passive pipes and filters 
implemented. But the implementation of active 
components is conceivable. 

The Pipes and Filters architectural pattern provide 
the following advantages [2]:  

• intermediate files unnecessary, but possible, 
• flexibility by filter exchange, 
• flexibility by recombination, 
• reuse of filter elements, 
• rapid prototyping of pipelines, 
• and perhaps efficiency by parallel processing. 

But there are also some disadvantages: 

• sharing state information is expensive or 
inflexible, 

• efficiency gain by parallel processing is often an 
illusion, 

• data transformation overhead,  
• error handling. 

To reduce the disadvantages we use defined 
global singleton objects to throw messages. We have 
also a singleton object as an interface to store 
constant parameters (Fig. 1). 

To connect different Pipes and Filters it is 
necessary to verify the compatibility between two 
filters. 

3.1.2 Reflection 
“The Reflection pattern provides a mechanism for 
changing structure and behavior of software systems 
dynamically. It supports the modification of 
fundamental aspects, such as type structures and 
function call mechanisms. In this pattern, an 
application is split into two parts. A meta level 
provides information about selected system 
properties and makes the software self-aware. A base 
level includes the application logic. Its 
implementation builds on the meta level. Changes to 
information kept in the meta level affect subsequent 
base-level behavior”.[2] 

All pipes and all filters consists of two 
components: the description as meta level component 
and the implementation of a signal processing 
algorithm as base level component (Fig. 2). 

 
Fig. 2 Parts of the Reflection pattern 

The description contains the name of the filter, 
the cardinality of the calculation, the number of 
inputs and outputs and their data types. 

The processing algorithm is part of the 
implementation. The algorithm uses only the 
described input and output data. During the 
execution of the pipeline the description are used to 
identify the input and output channels. 

Based on the description we can verify the 
connection between the filters and the functionality 
of the whole pipeline. 

It may be useful to optimize the connection 
between filters by inserting a special pipe. Such 
pipes can be buffered pipes or synchronization pipes. 

After the verification of the pipeline the pipeline 
can be executed. Up to now only the description of 
the algorithm was needed. Now the filter object with 
the signal processing algorithm must be created. This 
lazy creation can be realized with the state design 
pattern [3] (Fig. 3). 

_Description 

1..1

_Filter 

1..1

_Discription 

1..1

FilterState
«interface»

MetaFilter BasicFilter

ConcreteFilterDiscription ConcreteFilter

FilterDiscription

FilterKontext

 
Fig. 3 The implementation of the Reflection pattern 
by using the State pattern. 

The MetaFilter is the interface for Metaobjects 
and the BasicFilter is the interface for the 
implementation of the processing algorithms. 



3.1.3 Microkernel 

 “The Microkernel pattern applies to software 
systems that must be able to adapt to changing 
system requirements. It separates a minimal 
functional core from extended functionality and 
customer-specific parts. The microkernel also serves 
as a socket for plugging in these extensions and 
coordinating their collaboration” [2] (Fig. 4). 

 
Fig. 4 The Microkernel Architecture [2] 

The Microkernel is the central component. It 
creates pipelines based on the available pipes and 
filters, starts pipelines and observes them during the 
execution. The Microkernel is the interface between 
clients and the internally processing. It manages the 
communication with clients. 

The Microkernel is implemented as Singleton [2] 
to ensure that only one Microkernel object is exists at 
runtime (Fig. 5). 

m_microKernel 

1..1

AtisaMicroKernelInterface

MicroKernel
«Singleton»

#m_microKernel: MicroKernel

+getMicroKernel(): void

 
Fig. 5 The Microkernel implemented as Singleton 

The internal servers are libraries of several pipes 
and filters. Such libraries includes various basic 
algorithms, signal processing algorithms picture 
processing algorithms or other special algorithms. 
All libraries are Dynamic Link Libraries (DLL). The 
Microkernel loads all existing libraries at runtime. 

The external servers are existing tools which 
provide interfaces to allow the access to its internal 
algorithms. MATLAB® can be such an external 
Server. To use external functions within the Pipes 
and Filters system it is necessary to implement a 
filter. These kinds of filters are interfaces between 
the external server and the internal Pipes and Filters 

System. Those interface filters can also be a part of 
an internal server. 

To unify the communication protocol between the 
Microkernel and the connected clients, the 
Microkernel receives all requests from an Adapter 
[3]. A client must implement an adapter to 
communicate with the Microkernel. 

Another part of the Microkernel is the so called 
Builder [3] (Fig. 6). It is responsible for creating 
pipes and filters, for connecting the filters and finally 
for creating and verifying the pipeline. The Builder 
receives description of a pipeline. Based on this 
description the Builder creates the pipeline and 
allocates the constants. After that the pipe is ready to 
execute. 

m_microKernel 

1..1

m_Direktor 

0..1

m_builder 

0..1

MicroKernel
«Singleton»

AtisaMicroKernelInterface

PipelineDirektorInterface

ConcretePipelineDirektor

PipesAndFiltersBuilderInterface

ConcretePipesAndFiltersBuilder

 
Fig. 6 The implementation of the Pipeline Builder [3] 

The input and output of a pipeline depends on the 
operating system. To separate the calculation from 
the representation of the pipeline and of the results it 
is advisable to create a separate Microkernel. The 
other algorithms are located in a central Microkernel. 
Thereby, we get a distributed Microkernel system. 
The several Microkernels are connected by a Bridge 
[3]. 

3.2 Collaboration 

First, the client starts the Microkernel. The 
Microkernel loads all existing internal servers and 
connects the external servers. It also connects other 
existing Microkernels to get the access to pipes and 
filters implemented there. After that the Microkernel 
has a list of all available pipes and filters. 

The client asks the Microkernel about all 
available pipes and filters. Based on this information 
it creates a request of a pipeline to the Microkernel. 
The Builder translates the request and creates and 
verifies the pipeline based on the description of the 
pipes and filters. If there are errors, the Microkernel 
returns the messages to the client. If there are no 
errors the client can create a request to run the 
pipeline. In that case the Microkernel starts the 
pipeline. At this point the pipe and filter objects are 



created with the implementation of the processing 
algorithm. Messages which are created during the 
execution of the pipeline will be return to the client. 
Please note: The input and output of the calculation 
are filters and part of internal servers. 

4 Conclusion 
The shown software architecture composed of the 

three described architectural patterns, the Pipes and 
Filters, the Reflection and the Microkernel pattern. 
This compositions of patterns is the basis to create 
modular, extensible and reusable signal processing 
components. 

This architecture is based on the newest software 
modeling techniques. The object oriented model was 
created in assistance of UML and common 
architectural and design patterns. 

First implementations of signal processing pipes 
and filters demonstrate usability of this architecture. 
The architecture could be an interface to build a large 
library of different signal processing algorithms to 
solve different problems in the research and in the 
industry. 

 

Supported by TMWFK: B699-00011 

 
References: 
[1] Brian Foote and Joseph Yoder. Big Ball of Mud. 

Fourth Conference on Patterns Languages of 
Programs (PLoP '97/EuroPLoP '97),Monticello, 
Illinois, September 1997; Technical Report 
#WUCS-97-34 

[2] F. Buschmann, R. Meunier, H. Rohnert, P. 
Sommerland, M. Stahl; A System of Patterns: 
Pattern-Oriented Software Architecture, West 
Sussex, England, John Wiley & Sons, 1996 

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides; 
Design Patterns: Elements of Reusable Object-
Oriented Software; Addison-Wesley; 1995 

[4] Unified Modeling Language; Version 1.3. 
www.omg.org 


