
Software development of components for complex signal analysis on the
example of adaptive recursive estimation methods.

SIMON BOYMANN, RALPH MASCHOTTA, SILKE LEHMANN, DUNJA STEUER

Institute of Biomedical Engineering and Medical Informatics
Ilmenau Technical University

POB 100565, D-98684 Ilmenau
GERMANY

Abstract: - One natural way to develop new complex signal processing strategies is to combine basic algorithms.
Therefore we need these algorithms as components. Using object-oriented technologies, it is easy to build components
from algorithms. This can be demonstrated by the example of adaptive recursive estimation methods. Components
must be able to dock to each other and to communicate. Furthermore, the components must detect some major sources
of errors and react effectively. With the help of these components we will show how complex adaptive recursive
estimation methods can be created and how they can be implemented.

Key-Words: - software development, signal analysis strategies, components, adaptive recursive estimation method,
object-oriented technologies,

1 Introduction

Recent developments of powerful computer
equipment combine with modern information processing
methods such as object-oriented technologies to
stimulate new opportunities for the design of algorithms
addressing complex signal and image processing
problems. Also, there is great interest from partners in
the industry in new algorithms that fit specific signal
processing problems. However, the technology transfer
from academia to industry was hampered by the lack of
a common interface. Both sides require algorithms that
come with an interface both of these partners can utilize.
One very natural approach to building complex signal
processing strategies is to concatenate basic algorithmic
components into a network that meets the set demands.
Using adaptive recursive estimation methods as an
example, we describe how such components may be
realized as object-oriented structures, and how they
could be combined.

2 Problem Formulation
2.1 Adaptive recursive estimation methods[1]

Adaptive recursive estimation methodes have a
common structure.

()11

00

, ++ ⋅+=
=

nnnnn xSKcSS
sS

 (1)

From these basics we can construct simple adaptive

procedures.

Adaptive Mean

()nnnn MxcMM −⋅+= ++ 11 (2)

Adaptive second moment

()nmnn ExcEE −⋅+= ++
2

11 (3)

Adaptive Quantil

()

<−⋅
>⋅+

=
++

+
+

nncn

nnn
n QxifQ

QxifcQ
Q

1

1
1 1 α

α
 (4)

Their structure makes them suitable for object-

oriented programming.

TAdapt
«base»

+Value

+Create()
+Plus()
+Correct()
+Mul tConst()

TAdaptMean TAdaptSecondMoment TAdaptQuantil

Fig. 1: Class diagramm of basic adaptic recursive
estimation methods

2.2 Complex signal processing strategy
Prerequisite to building signal processing strategies are
primitive algorithms implemented as components. These
components must be able to dock to each other and to
communitate with each other.

In figure 2 some simple components are docked to each
other. We will call the combination of components a
“pipeline”[2]. A component can have entrances and
gates. It is obvious that the components also have to
implement mechanisms to control the flow of the data.

Although the flow of the data is always from the data
source to the sink, the request to perform a calculation
could appear on both ends of the pipeline. The first
situation is an example for an offline analysis. The data
source is a file with megabytes of EEG-data for example.
The data sink is a viewer simple displaying the result of
the strategy. It is impractical to perform the calculation
on the entire data source. It is more effective to perform
the calculation only on the data currently displayed by
the data sink. Here, calculation is triggered by the sink.
The second situation is an example for an online
analysis. The data source produces a new data item from
time to time and the sink has to display the new result. In
this case the calculation is triggered by the source.

The remarks above indicates that the amount of data
transported through the pipeline changes. It could be an
single data item, a data block with a special size to
perform a FFT for example, full pictures or even series
of pictures.

Another fact we have to consider is that splitting of
the data flow and loops are definitely allowed and
wanted. Therefore, we have to provide mechanisms to
prevent deadlocks.

So far we discussed only components with one gate.
But imagine a data source representing again a file of
EEG data. In this file, more important information is
contained than just the readings, for example, the sample
rate. Thus we must design components with multiple
entrances and gates.

3 Problem Solution
3.1 Docking and communication
First we concentrate on the docking of the components
and the communication. We have already identified two
different requests to the pipeline causing it to perform
the calculation. The first one we will name a “call”
request (fig. 3). It starts from the source and causes all
components in the pipeline to perform their calculation,
including the data sink, and ends by returning to the
source. The result of one component is sent to the next
component as a parameter of their “call” method. The
second request we will name a “recall” request. Starting
from the end of the pipeline, this request will cause the
preceding component in the pipeline to deliver the result
of their calculation based on a block of data with a
special size and position within the available data. The
result of the preceding component is returned to the
requesting component by the preceding components
“recall” method.

this
 :FilterKontext

s ink
 :FilterKontext

algorithm
 :FilterKontext

+

cal l ()

cal l()

cal l ()

Fig. 3: Sequence diagramm of a “call” request

Now think of a split of the data flow. For example there
could be two different data sinks. Both request the result
of one preceding component based on the same data.
This will cause double calculations although the same
result will be displayed. We need to manage the results
of each component better. This is realized by adding a
component called “pipe”[2] between the components
performing a calculation. These components we will
name “filter”[2]. One other big advantage of these pipes
is that the filter whose major responsibility is the
calculation, freed from managing the data. The filters
calculate their results based on the data provided by their
entrance-pipes and submit the results to their gate-pipes.

Fig. 2: Example pipeline

Data
source

algorithm Data
sink

algorithm

this
 :FilterKontext

pipe
 :PipeKontext

algorithm
 :FilterKontext

+

+

+

cal l (): void

cal l ()

cal l (): void

recal l (): BaseMatrix

calculate(): void

Fig. 4: Sequence diagramm “call” request with
pipes and filters

The connection between the components is a simple
reference to each other. Every filter has a list of
references to its entrance-pipes and gates and every pipe
owns a list of its gate-filters and a reference to the
entrance-filter. The interface to the components is
realized by an abstract class. This result is in the class
diagram provided in fig. 4.

m_InputPipeList

0..*

m_OutputPipeList

0..*

m_OutputFilterList
0..*

m_InputFil ter

1..1

FilterKontext

PipeKontext

BaseFilterKontext
«interface»

+call ()
+addEingang()
+recal l()
+addAusgang()
+getDescription()

BasePipeKontext
«interface»

+cal l ()
+addEingang()
+addAusgang()
+cal l ()
+getDescription()

Fig. 5: Class diagram of the context

When a filter finishs its calculation, it will

sequentially call the “call” method of every referenced
gate-pipe in its list. So do the pipes. The “recall” request
works similar.

3.2 Pipeline control
To control the pipeline we add two more classes to our
class structure, a class to control the pipe and one class
to control the filter. By controling these components we
can control the whole pipeline. The control class of the
filter is also responsible for supplying the algorithm with
the correct data from the entrance-pipes. This is done by
a mapping from a description of the algorithm to the list
of entrance-pipes. But this topic is not discussed in this
paper.

A first error we would like to address is introduced
by backcoupling. This may cause a filter to request data
from itself. In the case of the first calculation requested
of the filter, it maybe sensible to use default data in
place of the data not yet available. Otherwise, the filter
will have to produce an error. This can be implemented
by defining two flags, "isrecalling" and "firsttime". The
very first time a filter asks an entrance pipe for data,
both flags will be set to “true”. The flag of “firsttime” is
set to “false” after the first calculation and “isrecalling”
is set to “false” evere time a request returned.

The next problem appears if a filter calls itself. We
define a flag “iscalling” which is set to “true” when the
filter calls its gate pipes, a reset if the calls returned
successfully. If the filter is called while “iscalling” is
“true”, the filter produces an error.

The following control mechanism is implemented in
the pipes. Think of a data source with two gates. One
delivers the readings and the other one the sample rate
of data acquisition. The next filter performs a FFT on
the data and also needs the sample rate. The data source
will call its first gate and the connected pipe the filter to
do the calculation. The filter requests through the pipes
the information from both gates of the source and
performs. In the next step the source will call the other
gate. The same happens again. The FFT-filter performs
the calculation two times with the same information.
This must be prevent by the pipes. A “call” request can
only pass a pipe if the data saved by the pipe is not
requested already by a special filter. Otherwise, the pipe
would not call this special filter, but all other filters
connected to it as gate-filter. Therefore, the pipe has to
identify the filter which is calling its “request” method
and mark the gate the filter is connected to as
“allreadyrecalled”. So we need a flag for every filter
connected to the pipe. These flags are reset every time
new data are written to the pipe.

The pipe also checks if requested data match the data
it has saved already. In this case the pipe return the data
without causing a new calculation of its entrance-filter.

3.3 Structure of components

m
_Filter

1..1

m_K
on

te
xt

1..
1

m
_P

ipe

1..1

m_Kontext
1..1

FilterKontext

#m_InputPipeList:BasePipeKontext &
#m_OutputPipeList:BasePipeKontext &
-m_Fi l ter:Fi l terState &

BaseFilterKontext
«interface»

BasePipeKontext
«interface»

PipeKontext

#m_OutputFi l terList:BaseFi l terKontext &
#m_InputFi l ter:BaseFi l terKontext &
-m_Pipe:PipeState &

FilterState

«interface»
«base»

BasicFilter
«controll»

ConcreteAlgorithm

+calculate(): void
+setDefaultValues(): void
+newBlockSize(): void

BasicPipe
«controll»

PipeState

«interface»
«base»

ConcretePipe

Fig. 6: Class diagram of the components

The class structure in figure 5 shows a component to

consists of three parts:
• The context responsible for the

communication and connection with the
neigbour components.

• The base classes doing the controlling the
pipeline, and

• the concrete classes implementing the
algorithm.

To implement an algorithm only the calculate method
must be implemented. If default values for the special
case discussed above shall be set, the method
“setDefaulfValues” must be implemented and if the
algorithm needs a special amount of data the
“newBlockSize” method will have to be invoken.

4 Conclusion
From the current state of development we can easily
create the basic adaptive recursive estimation methods
shown in figure 1 as components. The class “TAdapt”
will just have to inherit from “BasicFilter” and
implement the “calculate” method. Thus we build a
small library of basic adaptive recursive methods.

4.1 Signal processing strategies by aggregation
A simple example for a combination of basic

components is the adaptive variance.

[] () () ()()2
,

12

21
XMXEXV CC

CC −= (5)

This arithmetic expression can be transformed in a
pipeline as shown in figure 6.

Building pipelines from basic components is
especially useful during the initial stages of development
of a new signal processing strategy. This approach
allows frequent changes to components and subsequent
observation of the resulting performance of the strategy.

Obviously, the control mechanisms within the
components cause some performance drawbacks. At
runtime, a single module executing the job of the
pipeline will always yield superior performance.
Therefore, after satisfactory evaluation of the strategy,
you may want to reimplement it for optimized
execution.

4.2 Implemention of complex signal processing

methods
The use of object-oriented techniques encourages the

implementation of complex algorithms. Two main parts
of the adaptive variance are implemented already, the

Fig. 7: adaptive variance pipeline

Data
source

(X)

Data
source
(C1)

Data
source
(C2)

()XE C ()XM C

2X

ba −

Data sink
(V)

adaptive mean and the adaptive second moment. To
implement the adaptive variance the new class must
inherit from the class “BasicFilter” and implement the
“calculate” methode using the adaptive mean and the
adaptive second moment. The adaptive variance can in
turn be used as a component in other signal processing
strategies.

In the future we plan to implement librarys with

various signal processing algorithms these supplemented
by an application to manage and combine these
components. Based on the structure of the components,
we hope that this application can fullfill the demands of
a wide variety of today’s and tomorrow’s signal
processing problems. Because the interfaces of the
components were designed in close contact with our
partners from industry we hope to improve
ourcooperation.

Supported by TMWFK: B699-00011

References:
[1] D. Steuer, G. Grießbach; Object-oriented realization

of complex adaptivee recursive estimation methods
in biosignal analysis, Proceedings of 3rd
International Workshop on Biosignal Interpretation
(BSI99), Chicago 1999, 245-248

[2] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, M. Stal ; A System of Patterns: Pattern-
Oriented Software Architecture, West Sussex,
England, John Wiley & Sons. 1996

