
'63�LPSOHPHQWDWLRQ�RI�UHDO�WLPH�HGJH�GHWHFWRUV

V. GEMIGNANI (1), M. DEMI(1)(2), M. PATERNI(1), M.GIANNONI(1), A. BENASSI(1)

(1) CNR - Institute of Clinical Physiology , v. Moruzzi 1, Pisa
(2) Esaote SpA, Florence

ITALY

$EVWUDFW: - In image processing, the real time execution of contour tracking algorithms is a challenging
operation. In fact, the detection and tracking of an edge through a sequence of images, require the
performing of demanding algorithms. This paper presents the real time implementation of the two
mathematical operators which we commonly use to detect edges: (i) the “gradient of Gaussian”, which is the
operator mostly used in literature and (ii) the “E operator”, a new operator which we have been using for a
few years. Their algorithms are implemented on the TMS320C64x, which is a state of the art DSP in image
processing applications. Timings are reported of the two algorithm implementations.

.H\�:RUGV: edge detector, DSP, real time, contour tracking.

��,QWURGXFWLRQ

Image analysis often involves the automatic
contour tracking of the object under investigation.
Usually, a contour tracking algorithm requires: 1)
ILOWHULQJ the images by means of a derivative
operator to obtain image maps where the
discontinuities between the gray levels of different
structures are enhanced, and 2) ORFDOL]LQJ the
points of the contour one is looking for by
examining the previous maps [1,2]. According to
this approach, many authors have faced the
problem and many contour tracking procedures
have been proposed. For example, the magnitude
of the gradient of Gaussian (GoG) is one of the
edge operators most widely used in the filtering
process. As regards the localization procedure,
many authors have faced the problem of locating
the contour by starting from an approximate
contour of the object under investigation. The
approximate starting contour on one frame is
usually obtained by exploiting the contour data
computed on the previous frames. Other authors,
however, have exploited the availability of a priori
knowledge of the global shape of the objects to
develop localization procedure based on a model
of the object.

However, no matter which localization
procedure is chosen, they frequently include
complex regularization algorithms, so that large
computational resources are necessary to obtain
real time implementations. In a previous paper
[3], a system for real time contour tracking was

presented. The hardware platform adopted was a
standard Personal Computer equipped with a
Digital Signal Processor (DSP) board based on the
TMS320C80 multi processor. A new
mathematical operator, which we will call ³E
operator”, was used in the filtering process. A
contour which had been determined on a frame of
the sequence was used as the approximate starting
contour to locate the contour on the subsequent
frame and the operator proved to be robust to
noise and particularly suitable for a real time
implementation. Additional constraints on the
movement and on the shape of the contour were
introduced to regularize the procedure and
consequently, to increase its robustness to noise.
The system was tested on sequences of clinical
images and it proved to be a versatile tool to
evaluate vascular silhouettes in real-time.
However, when further developments of the real
time procedure were considered, we ran into two
problems: the computational resources were
insufficient to obtain real time performances when
using more demanding regularization algorithms
and the work necessary to implement more
complex algorithms on the DSP we adopted was
quite onerous indeed.

Nowadays, the Texas Instruments
TMS320C6000 platform provides some of the
fastest DSPs on the market, so that the
TMS320C64x was considered to re-implement a
new procedure. In this paper, however, only the
filtering process is considered and the
implementations of the GoG operator and of the E

operator are presented. The execution time of the
two algorithms is computed and a comparison is
reported. Moreover, a comparison with a software
implementation on a standard Personal Computer
is reported. It is a known fact that the CPUs of the
PC are becoming more and more powerful and
consequently, it is important to take into account
a PC implementation also since it is almost always
the simplest and most reasonable solution.

 To conclude, finally, a comparison is
reported with the implementation of the E
operator on the TMS320C80 which we illustrated
in a previous paper.

���(GJH�'HWHFWRUV

In this section, the edge detection algorithms
based on the GoG operator and on the E operator
are briefly described.

Let I�Q�P� be the gray level map of an image
and let J�Q�P� be a Gaussian function. The square
magnitude of the gradient of Gaussian of the
function I�Q�P� is defined as:

2
)(JI* ∗∇= (1)

From (1) we obtain equation (2) which is used
to perform the filtering process.

2

2

),(

),(

),(),(

),(),(

),(

 ⋅−−+

+

 ⋅−−=

=

∑∑

∑∑

Θ∈

Θ∈

ON

ON

ONJOPNQI

ONJOPNQI

PQ*

\

[

(2)

J[�N�O� and J\�N�O� are the derivatives of the
Gaussian function with respect to [and \ and they
are defined in a neighborhood Θ of the point
�Q�P�.

To introduce the E operator, let us consider
two circular domains Θ1 and Θ2 of the point �Q�P�.
Let J��N�O� and J��N�O� be two Gaussian weight
functions with a unitary summation on Θ1 and Θ2

respectively. Let us compute the mean value of
I�Q�P� on the circular domain Θ1 at a point
S=(Q�P)

),(),()(11 1),(
ONJOPNQII

ON∑∑ Θ∈ −−=S (3)

Let us now associate every pixel of the
circular domain Θ2 to a mass function K�S�N�O� so
that:

),(),()(),,(21 ONJOPNQIIONK −−−= SS (4)

The function K�S�N�O� represents the spatial
distribution of the variability of the gray levels of
the domain Θ2 with respect to the local mean I��S�
computed at point S. The center of mass of the
function K�S�N�O� is computed as:

0 if0

0 if),(),,(
),(

1

)(

2

=

≠Θ∈

=

∑∑
H�Q�P�

H�Q�P�ON ONK
PQH

S

SE

where Γ is a discrete vector with components
(-k,-l) and:

∑∑ Θ∈=
2),(),,(),(ON ONKPQH S (6)

Both the GoG and the E operators can be used
to localize a point of a discontinuity by starting
from a point S of an approximate contour.
However, there are significant differences
between the two localization procedures. The
GoG magnitude provides a function which
enhances the points of the gray level
discontinuities with local maxima. Therefore,
given a starting point S, the nearest contour point
can be located by dragging point S to the nearest
local maximum of the function. In other words we
need to compute the magnitude of the GoG
operator along a path which joins point S to the
nearest local maximum of the function. The
search direction can be computed either by
exploiting a priori knowledge of the shape of the
object we are looking for or the image data itself.
In the first case, the search direction is generally
selected perpendicular to the approximate starting
contour. In the second case, it can be obtained by
computing the gradient of the GoG magnitude at
the points of the starting contour.

When computed at a point S close to a
discontinuity, the E operator provides a vector.
This vector locates a new point S¶ which is nearer
to the discontinuity than the starting point S.
Therefore, the nearest point of the discontinuity
can be located by iteratively computing the mass
center of the gray level variability. When any new
iteration occurs, the starting point is the mass
center which is determined by means of the
previous iteration. The procedure converges fast
and few iterations are sufficient to reach the
discontinuity.

To summarize, when the GoG operator is
used, the filtering process is performed at all the
points of a search path. On the contrary, the E

(5)

operator allows us to “jump” to the discontinuity
in just a few steps.

However, no matter which operator is used,
we can assume that the time necessary to locate a
point of a discontinuity is approximately equal to
the time necessary to perform the filtering process
at a single point S, multiplied by the number of
steps necessary to reach the discontinuity. In the
next section the time necessary to execute the
filtering process at a single point is considered.

It is worth noting that a few papers, which
deal with the problem of obtaining real time
performances, adopt a one dimensional (1D) edge
detection operator [4,5]. This approach drastically
reduces the computational requirements of the
edge operator. However, the performance and the
robustness to the noise also decrease so for this
reason, in this paper we adopted 2D edge
detection operators.

���,PSOHPHQWDWLRQ

The algorithms were implemented on the new
TMS320C64x DSP (Figure 1). The device
belongs to the second generation of fixed point
DSPs of the high performance Texas Instruments
DSP platform. The core of these new devices is
based on an advanced Very Long Instruction
World (VLIW) architecture, which has special
features to speed-up image processing algorithms
[6]. In particular, the new core can perform
multiple operations with 8-bit packed data. This
feature was widely exploited in our software
implementation because our data are 8-bit gray
scale values. Furthermore, the clock frequency of
the new DSPs has increased significantly: a 600
MHz version of the devices is available today and
a 1.1GHz version is planned for the near future.

)LJXUH� �� The C64x has a cache-based
architecture, with a separate level-one program
and data caches. The core has eight functional
units (L1 S1 M1 D1 L2 S2 M2 D2) and can
execute up to eight 32-bit instructions per cycle.

Both algorithms were implemented in a fully
optimized hand–coded assembly. This solution
was chosen to efficiently exploit the resources of
the DSP and to achieve the best performances.
The procedures were made C-callable so that they
can be easily used in a program coded in C. The
GoG algorithm requires two convolutions of the
image data with the masks J[and J\ . These
convolutions are computed locally at the point Q�P
of the image. In other words, the convolution
algorithm performs a point-by-point
multiplication of the mask with the image data on
the neighborhood Θ, and then sums the results.
This operation is efficiently performed by the
DOTPU4 instruction, which returns the dot-
product between four sets of packed 8-bit values
(figure 1-a). Two DOTPU4 instructions can be
performed in parallel so that eight sets of packed
8-bit values can be multiplied and accumulated in
a single cycle. Therefore, the convolution
algorithm processes 8 pixels of the neighborhood
Θ per cycle or, in other words, it requires
1/8=0.125 cycles per pixel (cpp). Consequently,
the execution time of both the two convolutions of
the GoG algorithm is about 0.25cpp which, in
turn, gives rise to a total execution time equal to
0.25 cycles multiplied by the number of pixels of
Θ. This result takes into account only the main
loops of the code we implemented. A few further
cycles are necessary to set up the loops and to
compute the final square values and the sum.
More exact results are shown in the next
paragraph.

)LJXUH� �� �D�� The DOTPU4 instruction returns
the dot-product between four sets of values. The
source operands Di and Mi are 8-bit packed
unsigned data. The destination operand is a 32-
bit unsigned value. �E� The SUBABS4
instruction calculates the absolute value of the
differences between 8-bit data. Both the source
operands Di and Mi and the destination operand
are 8-bit packed unsigned data.

Abs(D3-M3) Abs(D2-M2) Abs(D1-M1) Abs(D0-M0)

D3 D2 D1 D0

M3 M2 M1 M0

8 bit

�D�

8 bit 8 bit

D3·M3 + D2·M2 + D1·M1 + D0·M0

D3 D2 D1 D0

M3 M2 M1 M0

8 bit

�E�

The computation of the E operator requires a
rather more complex algorithm. First of all, a
convolution algorithm is necessary to compute the
value I��Q�P�. Once this value is calculated, the
absolute values of the differences between the
data and I� must be computed on Θ2. This task was
efficiently executed by the SUBABS4 instruction.
This new instruction performs, in a single cycle,
the absolute values of the differences of four sets
of packed 8-bit data (figure 2-b). While these
absolute values are computed at every point of
Θ2, the obtained values are also multiplied by the
coefficients of the mask g2(k,l) to compute
H�Q�P� and then by the coefficients -k and -l to
compute the two Cartesian components of the
vector E�Q�P�. To summarize, the E algorithm is
split into two parts: (i) a convolution performed
on Θ1 and (ii) a summation performed on Θ2. As
we mentioned above, the convolution requires
about 0.125cpp. As regards the summation, a
software implementation was obtained in which
the inner loop of the code is three instructions (i.e.
three cycles) long. At each iteration of the loop,
four pixels of Θ2 are processed, so that 3/4=0.75
cycles per pixel are necessary to perform the
summation on the neighborhood Θ2. In
conclusion, when Θ1 =Θ2, the E algorithm
requires about:
0.125 cpp + 0.75 cpp = 0.875 cpp.

���5HVXOWV

In Table1, the timing of the two algorithms for
sizes of the neighborhoods Θ=Θ1=Θ2 varying
from 132 to 492 is reported. As regards the c64x,
the timing was performed using a simulator of the
device (when this paper was written, silicon was
not yet available). When evaluating the
performances of an algorithm implementation, the
results also depend on where the data are stored.
In this paper, we assumed that all the data were
stored in the level one (L1) cache memory, which
is the memory accessed directly by the CPU. This
condition provides the best results. On the
contrary, if a value is not in the L1 cache (cache
miss condition), then the code execution is
suspended until the value is retrieved.

A comparison with an implementation of the
two algorithms on a standard Personal Computer
is also reported. The PC processor was an AMD
Athlon 850MHz and the algorithms were coded in
C. As far as the data caching is concerned, the
function runs repetitively with the same data so
that only the internal cache memory is used.

Having carried out the testing in this way, the
results obtained can be compared correctly to
those obtained with the c64x.

7DEOH��� Timing of the two operators. All times are
in µs.

Size of
Θ

706���&��[
���0+]

706���&��
��0+]

132 0.31 8.1
252 0.88 16
372 1.8 29
492 3.1 46

7DEOH��� a comparison between the performances
of the two DSP is reported. The timing refers to
the execution of the E operator. All times are in
µs.

As previously mentioned, the results of table
1 are obtained when all the data are in the L1
cache memory. However, if the code runs with
new data, then some cache misses can occur and
the execution time increases. To be able to
account for this additional overhead is not easy
without performing a complete simulation of the
system, although an estimate can be reported. Let
the image data be in the L2 internal SRAM and let
the L1 cache memory be empty. This situation
gives rise to a “cache miss” in all the first accesses
to the data and can be considered the worst case.
However, no matter which operator is used, the
first access to the data occurs in a convolution
algorithm. When using the GoG the first access to
the data occurs in the first of the two convolutions
with the masks J[and J\ while when using the E
operator the first access to the data occurs in the
convolution necessary to compute I��Q�P�. In this
sort of algorithm, which performs multiple
memory accesses, the cache misses are pipelined
and the code execution is suspended for two
cycles per memory access [7]. Therefore, the time
necessary to execute the first convolution triples
and, consequently, it will require 0.375 cpp. This
loss of performances involves an overhead of up
to 100% in the GoG based algorithm, and an

706���&��[
���0+]

$WKORQ
���0+]

Size of Θ GoG E GoG E
132 0.19 0.31 7.3 15
252 0.38 0.88 26 52
372 0.69 1.8 57 113
492 1.1 3.1 98 198

overhead of up to 29% in the E� operator based
algorithm.

In the final, table 2 reports a comparison
between the performances of the TMS320C64x
and of the TMS320C80, which we used in a
previous paper. The timing of the c80 does not
include the time necessary to move the data to the
inner high-speed memory. This additional
overhead was about 100% in the real-time
applications we implemented.

���&RQFOXVLRQV

In this paper, we presented the software
implementation of two edge detection operators
(the GoG and the E operator) on a state of the art
DSP device. The former is one of the operators
most widely used to locate a discontinuity in
contour tracking applications. The latter is a new
operator which we are using in our real time
contour tracking system.

The timing of the two algorithms shows that
the computation is about two-three times more
demanding when the E operator is computed.

However, in order to make the right choice,
when focusing on a specific application we must
consider the problem of implementing the entire
algorithm. When using the GoG operator, as well
as when using the E operator, the localization
procedure is iterative. That is, the PD[LPXP
number of steps necessary to reach the
discontinuity is another important parameter of
the procedure. This parameter depends on the
mathematical operator chosen and can vary a lot.
For example, tests on synthetic and clinical
images revealed that three steps of the E operator
are enough to locate the discontinuity even when
the starting contour is far from the final contour.
On the contrary, when using the GoG the
maximum number of steps strictly depends on the
length of the search path which can be rather long.
Therefore, when focusing on a specific
application this parameter must be carefully
considered.

 As far as the architecture of the C64x is
concerned, special features, which improve the
implementation of the algorithms, were
highlighted. The comparison with the C80
revealed the remarkably better performances of
the new device. This improvement was due to
both the new architecture and the higher clock
frequency. Moreover, the implementation work
was much simpler on the c64x.

Ultimately, the results we obtained show that
the use of the new DSP is a good answer to the

problem of real time contour tracking. In fact, the
procedures are so onerous that the computational
resources of a standard PC are insufficient to
obtain real time performances and special
hardware devices are required. On the other hand,
these algorithms are quite complex and they
cannot be easily implemented on programmable
logic (FPGA, CPLD) or on custom devices
(ASIC). Therefore, a software solution, such as
the use of a DSP device, is a good compromise as
regards flexibility and computational power.
Moreover, the flexibility of a software solution is
important for another reason. In fact, the contour
tracking procedures depend on the sort of object
under examination. In particular, information on
the shape and on the movement of the object can
be added to the contour estimation algorithms to
regularize and, consequently, to increase the
robustness of the procedure. Therefore, if we want
to use the same system to deal with several
contour tracking problems, then we need to
implement more than one procedure. A software-
based system remarkably simplifies this work.

5HIHUHQFHV�
[1] J. Canny, A computational approach to edge

detection, ,(((� 7UDQV�� � � 3DWWHUQ� � � $QDO�
0DFKLQH� � � ,QWHOO., vol. PAMI-8, 1986, pp.
679-698.

[2] V. Torre and T. Poggio, On edge detection,
,(((� 7UDQV�� � � 3DWWHUQ� � $QDO�� � 0DFKLQH
,QWHOO., vol. PAMI-8, 1986, pp. 147-163.

[3] V. Gemignani, M. Demi, M. Paterni, A.
Benassi, 5HDO�7LPH�,PSOHPHQWDWLRQ�RI�D�1HZ
&RQWRXU� 7UDFNLQJ� 3URFHGXUH� LQ� D� 0XOWL�
3URFHVVRU� '63� 6\VWHP� Proc. of CSCC2000
pp. 3521-3526.

[4] Z.Li, H.Wang, Real time 3D Motion
Tracking with Known Geometric Models,
5HDO�7LPH�,PDJLQJ, 1999, �, pp. 167-187.

[5] M.Vincze, M. Ayromlou, W. Kubinger,
Improving the Robustness of Image-based
Tracking to Control 3D Robot Motions, 3URF�
,&,$3����9HQLFH��,WDO\��1999, pp.274-279.

[6] Texas Instruments, 706���&�����&38�DQG
,QVWUXFWLRQ�6HW�5HIHUHQFH�*XLGH, SPRU189F

[7] Texas Instruments, 706���&����
3HULSKHUDOV�5HIHUHQFH�*XLGH, SPRU190D

