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Abstract: - In this paper, we present a new method of speech compression and decompression based on a Neural 
Predictive Coding of speech signals. The NPC system is designed to predict the samples of a speech signal window 
from previous ones. In the coder/decoder that we proposed  the transmitted data is computed from the prediction error 
of the NPC (difference between the sample and its corresponding prediction calculated by the NPC ).  

The initial goal of the NPC is to extract the signal discriminative features relative to the database which it is 
extracted. After a precise description of NPC coding, we discuss about the first phase of the algorithm: the adjustment 
of the parameters of the coder. Then we explain the compression and decompression algorithms. To finish, we present 
an example and some results on this technic of compression. 
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1   Introduction 
Speech transmission and storage constitute an important 
field of research. In these applications, the first stage 
consists in compressing the speech signal and, more 
generally, the audio signal. The main goal of this 
compression is to reduce the rate of the transmission. Of 
course the decompressed speech signal must be of the 
same quality that the original speech signal. 
 
In the first part, we will describe the coder NPC. In the 
second part, we will present the compression and 
decompression algorithms. Finally, we will discuss 
about the results of this coding.  
 
 
2   NPC Presentation 
The function of the NPC is to compute a vector of 
parameters [1] extrated from a frame (20ms) of the 
speech signal. This vector is a discriminant feature of 
signal and can be used in an application of speech 
recognition [2].    
 
The NPC is a non linear predictive coding, so it 
preserves the non linearities of the signal [3,4]. One 
problem that occurs with most of the non linear 
predictive models is that they generate a great number of 
parameters. So another aim of this NPC coding is to 
limit this number. 

NPC is based on a two layers perceptron. It is trained to 
predict a signal sample from the previous ones. The key 
idea is that weights of the second layer are proper to 
each window, and constitute the coding coefficients, 
while the weights of the first layer are common to all the 
windows, and constitute the fixed part of the system : the 
NPC is a discriminant coder. The pocessing is 
decomposed in two phases : 

- the training phase : is intended to adjust the  
first layer weights (computation of the fixed part of the 
coder) 

- the coding phase : determination of the 
parameters representing the speech signal. 
 
 
2.1 Training phase 
We extract a great number of windows of L samples 
each. Let P be the inputs neuron number, N the neuron 
number in the hidden layer and ( )kyi  the kth sample of 
the ith window. P is also called the predictor memory. 
The  samples k-P to k-1 of the ith window form the 
vector : 

( ) ( ) ( ), , 1 ,..., 1i
k P i i iy k P y k P y k= − − + −  Y   

which is also the prediction window.  
 
A second layer is associated with each window. Let iA  
be the vector of the N weights of the second layer 
associated with the window i. So there is one first layer 



and there are as many second layers as there are 
windows ( see figure 1). 
We present the first P samples of a window to the MLP 
(Multi Layers Perceptron) constituted by the common 
first layer, and the second layer associated with this 
window. The neuron outputs of the hidden layer are : 

( ) ( )BWX +⋅= i
P,k

i Yfk   (1) 
where f is the activation function, W  the matrix 

NP × of the first layer weights, and B  the vector of the 
N first layer biases. 
Then, the prediction of the k th sample of the window i 
is: 

( ) ( )( )kfkŷ ii
i XA ⋅=   (2) 

The MLP is trained to predict the next sample, so the 
prediction error is : 

( ) ( ) ( )ˆi i ie k y k y k= −   (3) 
The criterion to minimize for the second layer associated 
with the window i is: 

( )∑=
k

2
i

i
2 keJ    (4) 

I.e. the sum of (3) on all the samples of the window i. 
On the other hand, the first common layer is optimized 
for the prediction of all the samples of all the windows. 
So for the first layer the criterion to minimize is: 

( )∑∑=
i k

2
i1 keJ   (5) 

I.e. the sum of (3) on all the samples of all the windows. 
We modify weights to minimize these criteria by using 
the backpropagation algorithm. 
k varies from P+1 to L, so each analysis window 
provides L-P pairs (input vector-target output) for the 
predictive neural network. 
Once this weights optimization is done, we obtain a first 
layer (W  and B ) that constitutes the fixed part of the 
coding system. W  and B  will be no longer updated. 
Then, the system is ready to code. 
 
From a connectionist viewpoint, the first layer captures 
the common information. From a signal viewpoint, the 
first layer does non linear optimal transformations for 
the prediction of all the windows. 
 

 
2.2    Coding phase 

The iA  previously computed are not used for the coding 
phase, they are only used for the first layer adjustment ( 
see figure 2 ). For each window to code we use W  and 
B  previously computed, and we initialize at random iA . 
Then we minimize the criterion : 

( )∑=
k

2
i

i
2 keJ    (6) 

 
This is done by modifying the weights of the second 

layer ( iA ) with the Madaline rule I.  
iA  constitute then the coding coefficients of the 

window i. So the number of coefficients generated is 
the same as the number of neurons in the hidden layer 
which is N. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig. 1 : Architecture of the NPC Model 
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Fig. 2 : several kinds of window for the NPC algorithm, 
the numbers in brackets are the width of each window. 

 
 

3  Compression and decompression of the 
speech signal 

Speech signals compression brings the following 
advantages : 
- the reduction of the rate during the data transmission 

from the transmitter to the receiver. 
- a saving place in data storage over physical supports 

(such as : hard drives, cdrom, ...). 
 
In this chapter, we are going to shortly describe the 
speech compression and decompression methods. Then 
we will present the algorithms and, finally, we will give 
the results obtained.  
 
 
3.1 Principle  
The method that we propose is based on the property 
that two consecutive samples of a speech signal are 
correlated.  
 
According to this observation, this compression method 
is close to the others methods based on the prediction of 
the speech signal (ADPCM, CELP,…) [5,6]. The aim is 
to quantify and to transmit (or to store) the following 
prediction error : ˆi i ie y y= − , where ˆiy  is a prediction 

of iy (ith sample of the speech signal). By this way, we 
reduce the amplitude of the data to transmit and thus we 
reduce the flow. 
We have represented, on the figure 3, the compression 
block diagram with the predictor NPC. 

 
                 Fig. 3 : Compression block diagram 
 
where yi is the ith sample of the signal and Z-1 represents 
the time delay. 

Q and BC are respectively the quantifier and the binary 
coder used before the transmission of the                   
error prediction, ei, to the receiver. 
As we can observe, on this figure 3, we have introduced 
the decoded signal, iy% . In fact it is necesssary, at the 
reception, to excited the coder NPC with datas deduced 
from the quantified error. It is why the "NPC input 
block" is a vector of M samples of decoded speech 
signal. By this way, we are sure that the  predictor is 
robust and the prediction is optimize for a good 
reception and hearing.  
 
Here, is an important difference between the original 
version of NPC : during the  coding phase, the samples 
of the initial speech signal iy  are repaced by their 
"estimates" iy% .  
 
So, the algorithm which has been used during the coding 
phase is close to the NLOE (Non-Linear Output Error) 
algorithm. The main difference with the NLOE is that 
the predicted signal ˆ iy  (input of the networks) is 
replaced by the decoded signal iy% . 
On the figure 4, we have represented the decompression 
block diagram.  
                  

 
Fig. 4 : Decompression block diagram 

 
At the reception, the error is decoded by a binary 
decoder (BD) then we applied an inverse quantization 
with Q-1. Finally, the signal wich will be heard is the iy% . 
About the quantization we have used the european A-
law. For a given signal x, the output of the A-law 
compression is : 
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Where A is the A-law parameter of the compander, xmax 
is the maximum value of the signal x, log is the natural 
logarithm and sgn is the signum function. We easily 
notice that the more we have quantization levels, more 
the coded signal is close to the original signal. The error 
produced during the quantization is called quantization 
noise. 
 
 
3.2 Algorithms 
 
 
3.2.1 First layer of the NPC 
In a first time, it is necessary to compute the first layer 
of weights of the NPC. For that, we have used the 
DARPA-TIMIT database. This base contains 8 
American dialects (New-england, Northern,…). There 
are 630 men and women speakers. Each speaker says 10 
sentences. For each sentence, a segmentation by 
phoneme is given.  
Using the segmentation file, we have extracted 100 
examples for each reduced phoneme (39). As presented 
in part 2, each example is divided into several windows 
(20ms) with an overlapping of 50%. So, we have 
realized the learning database for the NPC. 
The training is stopped after 40000 epochs because the 
backpropagation error don't significantly decrease. Then 
the weights of the first layer are fixed and could be used 
in the second stage : the compression/decompression.    
 
3.2.2 Compression 
Let N be the number of samples of the speech signal and 

iy  the ith sample. Let A be the second layer of weights 
and I the NPC input vector.  
The speech signal compression algorithm is described 
below : 
 
Initialization 

• A with zeros. 
• I with zeros 

For each sample of the signal  
• Prediction of ˆi iy y→  ,from I with NPC 

• Calculation of prediction error ˆi i ie y y= −  

• Quantization of the prediction error : ( )q
i ie Q e=  

• Transmission  of q
ie to the receiver. 

• Inverse quantization : 1( )qe Q ei i
−= . 

• Modification of the second layer of NPC by 
backpropagation of ie . 

• Calculation of the decoded signal : ˆi i iy e y= +%   

• Introduction of iy%  in I :  

 
End 
 
3.2.3 Decompression 
The speech signal decompression algorithm is described 
below : 
 
Initialization 

• A with zeros. 
• I with zeros 

For each sample of the signal  
• Prediction of ˆi iy y→  from I with NPC 

• Reception of q
ie to the receiver. 

• Inverse quantization : 
1( )q

i ie Q e−= . 
• Modification of the second layer of NPC by 

backpropagation of ie . 

• Calculation of the decoded signal : ˆ
i i iy e y= +%   

• Introduction of iy%  in I :  

End 
 

The mean difference between these two algorithms  is 
that the steps of calculation and quantization of the 
prediction error are not necessary in decompression.  
Of course, the performance of this compression strongly 
depends of the ability of NPC to predict the speech 
signal. 
After this presentation of the NPC compression, we are 
going to present some results obtained on sentences 
extracted from the DARPA-TIMIT database. 
 
 
3.3 Results 
 
3.3.1 Signals and errors  
We have represented on figure 5 a speech signal to 
compress.  
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Fig. 5 : Original speech signal yi 

 

out i My −%   iy%    in 
1          2    …           M 
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The decoded signal is represented on the figure 6, with 
the same scale. 
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Fig. 6 : Decoded speech signal iy%  

For this example, the error prediction is quantified with 
4 bits whereas each sample of the original signal is 
coded with 16 bits. So the rate is reduced by a factor 4 
and, as we can see on the figure 6, with a minimum of 
degradation for the decoded signal. 
 
The figures 7 and 8 respectively represent the prediction 
error ei and the compression error xi which are defined 
by : 
  ˆi i ie y y= −   and   i i ix y y= − %  
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Fig. 7 : Prediction error ei 
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Fig. 8 : Compression error xi 

 
It can be noticed, on these two last figures, that the 
compression error xi is smaller than the prediction error 
ei. This result is due to the correction of the predicted 
signal given by the quantization error ie . 
 
In order to evaluate the performances of the compression 
and decompression of the signals, we propose to study 
the two following criterions : 
 
The prediction gain : Gp 
The prediction gain is calculated from the signal to 
prediction error ratio. This ratio is calculated in dB. 

2

10 210log
i

i
p

i
i

y
G

e

 
 =  
  

∑
∑

  (7) 

This criterion is appropriate to test the NPC 
performances, i.e to check the ability of the NPC to 
predict precisely a speech signal.  
 
The quantization gain : Gq 

This criterion evaluates the deterioration inflicted to the 
decoded signal compared to the original by the 
quantization. Gq is calculated from the ratio between the 
power of the speech signal and the power of the 
compression error xi. 
Gq is writen (in dB) : 

2

10 210log
i

i
q

i
i

y
G

x

 
 =  
  

∑
∑

  (8) 

 
 
3.3.2 Performances   
In the table 1, we present the results obtained for the two 
criterions Gp and Gq and for two quantizations on 3 and 
4 bits. 
 
For these tests we have used five sentences extracted 
from DARPA-TIMIT. Of course, these sentences has 
not been introduced in the training phonemes database. 
These sentences has been classified by levels of 
prediction gain.  
 

Compression  
Sentence 

 
Quantization 
with 3 bits 

Quantization 
with 4 bits 

 Gp  (dB) Gq (dB)  Gq (dB) 
1 12.1 20.8  27.6 
2 13.5 21.9  28.4 
3 14.0 22.7  29.8 
4 14.2 23.2  30.1 
5 14.3 24.7  31.1 

 
Table 1 : Results obtained  for Gp and Gq for two 

quantizations and five sentences 
 
About these results we can do several observations: 
 

o The prediction gain is as much more 
important than the number of voiced 
phonemes is greater than the number of 
unvoiced  phonemes. 

o According to audio tests realized, we can 
noticed that the decoded signal is very close 



to the initial signal (for the human ear) when 
Gq is at least equal to 20 dB. 

 
 
4   Conclusion and futures works 
We have presented in this paper a new speech 
coder/decoder based on the a Neural Pedictive Coding. 
This coder is interesting for differents reasons :  
- The weak complexity of the algorithms allow to use 

the coder/decoder in a real time application (after 
computation of the first layer of the NPC). 

- The flow of transmission of data is divided by a 
factor 4. So the rate is of 16 kb/s, with a good 
restitution of the decoded signal for the human ear. 

 
About our future works we will interest to the structure 
of the NPC. As we have discussed in chapter 3.3.2, the 
power of the prediction error depends on the kind of 
phoneme. So the prediction error of the NPC is more 
important for unvoiced sound than for voiced sound. 
This result is linked to the fact that a voiced sound is 
more adapted to a predictible model.  
Consequently, in the future coder/decoder, we will 
increase the number of NPC predictor. Each NPC will be 
trained on a particulary class of phoneme (voiced and 
unvoiced):  

- fricative, liquid, nasal, occlusive and vowels. 
 
After that, each windows (about 20ms) of speech signal 
will be coded by all NPC predictors. Then the 
quantization error, associated to the most effective NPC,  
will be transmitted. This method need to introduce 
a delay time of one window (20ms) and it will be 
neccessary to transmit, at the beginning of each window, 
the NPC coder which must be active in reception. 
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