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ABSTRACT
E.I.Verriest and F.L.Lewis have presented in [1] a new
method to approach the minimum-time control of lin-
ear continous-time systems avoiding the Bang-Bang
control. Their method relied on the optimization of a
cost including time energy and precisions terms. Then,
N.Elalami and N.Znaidi [2], extended these results to
the discrete-time linear systems. The objective of this
work is to propose an approach for minimal-fuel prob-
lem where the term of consumption is increased by an
energetic term in order to avoid Bang-off-Bang control
and singular intervals . Indeed we consider the equa-
tion of Hamilton-Jacobi-Bellman(HJB) relating to the
problem of minimal consumption. And by making use
of a nonlinear programming problem on a partition of
Rm, the solution of the minimum-fuel problem, ac-
cording to the Riccati matrix, is reduced to the reso-
lution of a system of differential equation.

KEY WORDS
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1 Introduction

In this work we consider problems in which control
effort required, rather than elapsed time, is the cri-
terion of optimality. Such problems arise frequently
in aerospace applications, where often there are lim-
ited control resources available for achieving desired
objectives. Let us assume that the state equations of
a system are of the form{

ẋ(t) = Ax(t) + bu(t)
x(0) = x0

(1)

where A is n×n constant matrix, x(t) ∈ Rnis the state
vector, b is n × 1 vecor, u(t) ∈ R is the control input
and t ∈ [0, T ]. The objective is to find the minimum
control that minimizes the performance measure

J(u) =
∫ T

0

(ρ|u(t)|+ ru2(t)) dt + xT (T )Gx(T ). (2)

where ρ > 0, r > 0 and G is a constant symetric
positive definite matrix.

2 Characterization of the Minimum-
Fuel

In this section the objective is to find the control that
minimizes (1) under (2). For this purpose, we will
consider the Hamilton-Jacobi-Bellman equation asso-
ciated with this problem:

∂V

∂t
+ min

u

{
ρ|u|+ ru2 +

∂V

∂x

T

(Ax + bu)

}
= 0. (3)

where:

V (t, x(t)) = min
u(τ)

∫ T

t

(ρ|u(τ)|+ru2(τ)) dτ+xT (T )Gx(T )

(4)
is the value function.
In practice, the numerical integration of an partial
derivative equation requires much calculations. We
will try to give an analytical method allowing to bring
back to differential equations. The optimal control
problem is reduced then to the following nonlinear op-
timization problem:

min
u∈R

{
g(u) = ρ|u|+ ru2 + ηu + c

}
, (5)

therfore:

g(u) =
{

(ρ + η)u + ru2 + c for u ≥ 0
(−ρ + η)u + ru2 + c for u ≤ 0.

From the Lagrange’s theory, it is necessary that:

u∗ =
{

0 for 0 ≤ |η| ≤ ρ
−1
2r (−ρ

|η| + 1)η for 0 ≤ ρ ≤ |η|.

where u∗ is the solution of (5). This yields to the
following result:

Proposition 1 The form of the optimal control is:

u∗ =

{
0 for 0 ≤ |(∂V

∂x )T b| ≤ ρ
−1
2r ( −ρ

|( ∂V
∂x )T b| + 1)(∂V

∂x )T b for 0 ≤ ρ ≤ |(∂V
∂x )T b|.



which when substituted in the (HJB)(3), leads to
consider the two following situations:

• case 1: 0 ≤ |(∂V
∂x )T b| ≤ ρ

∂V

∂t
+ (

∂V

∂x
)T Ax = 0

• case 2: 0 ≤ ρ ≤ |(∂V
∂x )T b|

∂V

∂t
+ (

∂V

∂x
)T Ax− 1

4r
(ρ− |(∂V

∂x
)T b|)2 = 0.

One way to solve the Hamilton-Jacobi-Bellman
equation is to guess a form of the solution and see if
it can be made to satisfy the differential equation and
the boundary conditions. Therfore, it is reasonable to
assume

V (t, x) = xT (t)K(t)x(t) + xT (t)s(t) + l(t) (6)

where K(t) is a real symetric positive-definite matrix,
s(t) is a n×1 vector and l is a scalar function, replacing
the value function(4) by(6), we get:

Proposition 2 In the case where (∂V
∂x )T b > 0, the so-

lution of the minimum-fuel problem (1)-(2),according
to the Riccati matrix, is reduced to the resolution of
the following system:

K̇ + KA + AT K − 1
r KbbT K = 0

ṡ + AT s− 1
r Kb(ρ + bT s) = 0

l̇ − 1
4r (ρ− sT b)2 = 0

K(T ) = G, s(T ) = 0, l(T ) = 0.

(7)

therfore the optimal control is given in feedback form
by:

u∗ =
1
r
2bT Kx− 1

r
(ρ− sT b) (8)

Moreover, the optimal equation becomes:

ẋ = (A− 1
r
bbT K)x +

1
2r

b(ρ− bT s)

and the minimal cost can be expressed by:

J(u∗) = xT
0 K(0)x0 + s(0)x0 + l(0)

.

Remark.1 It is known that the Riccati equation of
the form

K̇ + KA + AT K − 1
r
KbbT K = 0 (9)

may be transformed, in the case where K(t) is invert-
ible ∀t, into a Lyapunov equation, by multiplying left
and right sides of (9) by K−1(t).

Proposition 3 In the case where (∂V
∂x )T b < 0, it is

sufficient to replace ρ by −ρ.

Example A set of state equations for the dc motor
with constant armature current is:{

di(t)
dt = −R

L i(t) + 1
Lvin(t)

dw(t)
dt = K

I i(t)
(10)

where i is the induced current, w is the angular
velocity, the applied voltage vin is the input to the
system, R is the resistance of the circuit, L the self
inductance for the armature and K, I are constants
depending on certain physical properties of the motor.
Defining the state variable and the control as:
x1(t) = i(t), x2(t) = w(t) and u(t) = vin(t)
the state model of the system becomes:

ẋ(t) = (
−R

L 0
K
I 0

)x(t) + (
1
L
0 )u(t)

.
Our aim is to find the minimum control wich drives
the system (10) from x(0) = (x01 x02) and minimizes
the following cost:

J(u) =
∫ T

0

(ρ|u(t)|+ ru2(t)) ds + Gx2(T )0.

The Riccati equation, the differential vector s and the
scalar function l are found from system(7) with the
result:

K̇11 − 2R
L K11 − 1

rL2 K2
11 + 2K

I K12 = 0
K̇12 − R

L K12 − 1
rL2 K11K12 + K

I K22 = 0
K̇22 − 1

rL2 K2
12 = 0

ṡ1 − R
L s1 + K

I s2 + K11
rL (ρ− 1

Ls1) = 0
ṡ2 − K12

rL2 (ρ− 1
Ls2) = 0

l̇ − 1
4r (ρ− 1

Ls1)2 = 0

and from system(7) the boundary conditions are:
K(T ) = G, s(T ) = 0 and l(T ) = 0.
The optimal control law, obtained from (8), is

u∗ = − 1
rL

(K11x1 + K12x2) +
1
2r

(ρ− 1
L

s1)

finally, noting that with the control u∗ the states are
given by:{

ẋ1 = −(R
L −

1
rL2 K11)x1 − 1

rL2 K12x2 + 1
2rL (ρ− 1

Ls1)
ẋ2 = −K

I x1

3 Fuel-optimal problem with multiple-
input

In this section, we placed within a more general
framework, in which the process to be controlled is



described by the state equation:{
ẋ(t) = Ax(t) + Bu(t)
x(0) = x0

(11)

where A and B are n× n and n×m matrices
and the performance measure to be minimized is:

min
u

J(u) =
∫ T

0

(ρ
m∑

i=1

|ui|+uT Ru)(t)dt+xT (T )Gx(T ).

(12)
For a system (11) with several input, such a (HJB)
equation would have the following form

∂V

∂t
+min

u

{
ρ

m∑
i=1

|ui|+ uT Ru + (
∂V

∂x
)T (Ax + Bu)

}
= 0

(13)
this leads to solve the following nonlinear program-
ming problem:

min
u∈Rm

{
g(u) = ρ

m∑
i=1

|ui|+ uT Ru + (
∂V

∂x
)T (Ax + Bu)

}
.

(14)
In view to use the previous techniques, the idea is to
solve the programming problem on a partition of the
set Rm:

min
u∈Rm

g(u) = Inf(min
u∈P

g(u))P⊂Rm ,∪P = Rm (15)

this suggests to introduce these 2m applications:

{σk}2
m

k=1

with: σk(i) ∈ {1,−1} ∀i ∈ I ∀k ∈ L = {1, · · · , 2m}
and gives 2m parts of Rm:

{Pk}2
m

k

each σk corresponds to the Pk, indeed:

u = (u1, · · · , um) ∈ Pk ⇔
m∑

i=1

|ui| =
m∑

i=1

σk(i)ui.

We now define ρ̄k and Mσk
as follows:

ρ̄k = ρ

 σk(1)
...
σk(m)

 ∈ Rm,

Mσk
=

 σk(1) . . . 0
...

. . .
...

0 . . . σk(m),


Thus system (15) becomes:

min
u∈Rm

{
uT ρ̄k + uT Ru + (∂V

∂x )T (Ax + Bu)
ϕk(u) = −Mσk

u ≤ 0

}2m

k=1

.

To use the theory of nonlinear programming, we first
form the Lagrangien:

L(u, λ) = g(u) + λT ϕk(u) = g(u) +
m∑

i=1

λiϕik(u)

then we obtain a linear programming problem:{
ρ̄k + 2Ru∗ + BT ∂V

∂x −Mσk
λ = 0

λi = 0ou ui = 0 ∀i = 1, · · · ,m (16)

Proposition 4 The form of the optimal control is:

u∗ = −1
2
R−1Nσk

which when substituted in the Hamilton-Jacobi-
Bellman(13) gives:

∂V

∂t
− (

∂V

∂x
)T Ax− 1

4
N T

σk
R−1Nσk

= 0 (17)

where:

ρ̄k = Mσk
ρ̄1, ρ̄1 = ρ

 1
...
1

 .

and Nσk
= Mσk

(ρ̄1 − λ) + BT ∂V
∂x

Let us assume that a solution is of the form:

V (t, x) = xT (t)K(t)x(t) + xT (t)s(t) + l(t)

then we have:

Proposition 5 the solution of the minimum-fuel
problem (11)-(12),according to the Riccati matrix, is
reduced to the resolution of the following system:


K̇ + KA + AT K −KBR−1BT K = 0
ṡ + AT s−KBR−1Hσk

= 0
l̇ − 1

4H
T
σk

R−1Hσk
= 0

K(T ) = G, s(T ) = 0, l(T ) = 0.

therfore the optimal control is given in feedback form
by:

u∗ = −R−1BT Kx− 1
2
R−1Hσk

where:
Hσk

= Mσk
(ρ̄1 − λ) + BT s

4 Application to the minimum-fuel
problem of two input

In this section we are interested in the case m = 2.
Thus the linear programming problem(16) yields to
the following:

{
ρ̄k + 2Ru∗ + BT ∂V

∂x −Mσk
λ = 0

λi = 0 ou ui = 0 ∀i = 1, 2.



We find several cases for each of these following parts:

P1 =]−∞, 0]×]−∞, 0], P2 =]−∞, 0]× [0,+∞[
P3 = [0,+∞[×]−∞, 0], P4 = [0,+∞[×[0,+∞[.

Assume that the symmetric and positive definite
matrix R is of the form:

R =
(

r11 0
0 r22

)
we consider the space R2 endowed with the norm:

|x| = |x1|+ |x2|

where: x = (x1 x2)
in this section we investigate also the use of the
Hamilton-Jacobi-Bellman equation and the nonlinear
programming as a means of solving the minimum-fuel
problem of two-dimentionsional control, Then we have:

Proposition 6 The form of the optimal control is:

u∗ =



0 for |η| ≤ ρ
1
2R−1(ρ− η) for ρ ≤ |η| and η ≥ 0
−1
2 R−1(ρ + η) for ρ ≤ |η| and η ≤ 0
−1
2 R−1(

−ρ + η1

ρ + η2
) for ρ ≤ |η| , η2 ≤ 0 ≤ η1

−1
2 R−1(

ρ + η1

−ρ + η2
) for ρ ≤ |η| , η1 ≤ 0 ≤ η2

1
2r22

(
0

ρ− η2
) for |η1| ≤ ρ ≤ |η2| , η2 ≥ 0

−1
2r22

(
0

ρ + η2
) for |η1| ≤ ρ ≤ |η2| , η2 ≤ 0

−1
2r11

(
ρ− η1

0 ) for |η2| ≤ ρ ≤ |η1| , η1 ≥ 0

−1
2r11

(
ρ + η1

0 ) for |η2| ≤ ρ ≤ |η1| , η1 ≤ 0

which when substituted in the (HJB)(17), leads to
consider the two following situations:

• case 1: 0 ≤ |(∂V
∂x )T b| ≤ ρ

∂V

∂t
+ (

∂V

∂x
)T Ax = 0

• case 2: ρ ≤ |η| η ≤ 0

∂V

∂t
+ (

∂V

∂x
)T Ax− 1

4
N T

σ1
R−1Nσ1 = 0

η = BT (
∂V

∂x
), c = (

∂V

∂x
)T Ax.

In addition we have the optimal control in feedback
form, by making use of the Riccati equation.

Proposition 7 Then optimal fuel consomed is:

u∗ = −R−1BT Kx− 1
2
Hσ1

where:


K̇ + KA + AT K −KBR−1BT K = 0
ṡ + AT s−KBR−1Hσ1 = 0
l̇ − 1

4H
T
σ1

R−1Hσ1 = 0
K(T ) = G, w(T ) = 0, l(T ) = 0.

finally, the state equation become

ẋ = (A−BR−1BT K)x− 1
2
BR−1Hσ1

with:
Nσ1 = ρ̄1 + BT ∂V

∂x and Hσ1 = ρ̄1 + BT s
Remark.2 For the other remain-
ing situations, we find the case
(ρ ≤ |η| and (Mσ1η ≥ 0 or Mσ3η ≥ 0 or Mσ4η ≥ 0))
for wich it is sufficient to replace respectively ρ̄1 by
(−ρ̄1 or Mσ4ρ̄1 or Mσ3ρ̄1).
And the case |η1| ≤ ρ ≤ |η2for wich it is enough

to replace R−1 by (
0 0
0 1 )R−1 respectively by

(
1 0
0 0 )R−1 for the case |η2| ≤ ρ ≤ |η1| moreover ρ

can take the value −ρ.
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