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Abstract: - This paper presents a new approach to robustly track a robot’s location in indoor environments using
a partially observable Markov model. This model is constructed from topological representation of the
environment, plus actuator an sensor characteristics. The system takes into account various sources of
uncertainty to maintain a probability distribution over all possible locations of the robot. A novel feature of our
approach is the integration of visual information to augment the robustness of the system. We show the first
results of this approach in localizing an actual mobile robot navigating corridors.
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1   Introduction
While the state of the art in autonomous indoor
navigation is fairly advanced [1], there are not good
solutions to overcome errors in perception and action
that permit the robot to traverse corridors for long
periods of time without getting lost. For this reason,
robot localization techniques explicitly dealing with
perceptual and motor uncertainty have received
considerable attention in the last few years [2],[3].

Research in this area can be broadly categorized with
respect to the environment representation technique
adopted. The two most popular representation
schemes are the occupancy grid and the topological
map. Both of them can be formulated with a
probabilistic state transition network in order to cope
with uncertainty in the real sensory data. Into the
problem of using metric maps, Thrun et al. [2]
introduced this kind of probabilistic formulation with
good results. However, this kind of metric
representation, in which a state consist of a precise
location (x,y) and a heading θ of the robot, is still
time consuming. On the other hand, for many tasks in
many environments, it is not necessary to know the
robot’s pose in detail. Given robust low-level routines
that can, for example, use local sensors to drive along
a corridor, it is only necessary to know that the robot
is in some region to allow the navigation task. In such
cases, a more coarse-grained uncertainty model may
be appropriate, using a topological representation of
the connectivity of the environment.

In the framework of probabilistic navigation with
topological  maps, the Markov foundations for robot
localization adopt the form of Partially Observable

Markov Decision Processes (POMDP’s). The
Dervish project at Stanford University [4] and the
Xavier project at Carnagie-Mellon University [5]
used these kind of navigation strategies for
localization and path planning. The major
contribution of this paper is to augment the Markov
model with visual information of natural landmarks
in order to increase state recognizability.

The paper is organized as follows. After a brief
overview of POMDP’s foundations (section 2), we
describe the Markov model construction adding
visual information (section 3). In section 4 we resume
the steps to perform robot localization using Markov
state estimation. Finally, we show some experimental
results (section 5), whereas a final conclusion
summarizes the paper (section 6).

2   POMDPs Review
Before describing how we construct the Markov
model of an indoor environment, we introduce some
terminology and foundations.

A Markov Decision Process (MDP) is formally
defined as a triple {S,A,T}, where S is a finite set of
states, A is a finite set of actions, and T are transition
matrixes that contain the transition probabilities
p(s’|s,a) for all s,s’∈S and a∈A (the probability that
new state is s’ if action a is executed in state s). For
each state s∈S,  it’s possible that only a subset of all
actions are feasible.

Additionally, Partially Observable Markov Decision
Processes (POMDPs) are used under domains where
there is not certainty about the actual state of the



system. Instead, the agent can do observations and
use them to compute a probabilistic distribution over
all possible states. So, a POMDP includes a finite set
of observations O and observation probabilities p(o|s)
for all s∈S  and o∈O (the probability of doing an
observation o when the system is in state s). The
Markov models assume that the transition and
observation probabilities are determined only by the
current state of the system (this is the “Markov
assumption”).

To maintain a belief of the current state of the system
in form of a belief distribution Bel(S) over the set of
states, the distribution must be updated whenever a
new action or perception is carried out [6],[7].

When an action a is executed, the new probabilities
become:
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where K is a normalization factor to ensure that the
probabilities all sum one.

When a sensor report o is received, the probabilities
become:
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In the context of robot navigation, the states of the
Markov model are the locations (or nodes) of a
topological representation of the environment.
Actions are the behaviors that the robot can execute
to move from one state to another, and observations
are all kind of environment information the robot can
extract from its sensors. In this case, the Markov
model is partially observable because the robot may
never know exactly which state it is in. On the other
hand, this approach of localization and navigation
using probabilistic and topological representations is
attractive because it does not depend on geometric
accuracy and is reactive to sensed features of the
environment.

3 Markov Model Construction
In the following sections we describe the Markov
model used for corridor navigation in indoor
environments, and how it can be improved using a
camera as additional sensor.

3.1 The states
States of the Markov model are directly related to the
environment representation used. Taking into account

that the final objective of the navigation system will
be to direct the robot from one room to another, we
use coarse-grained “regions” of variable size in
accordance with the topology of the environment.
These regions are small enough to permit the
planning task, but not as small as to increase the
number of states without adding functionality to the
system.

As it can be seen in figure 1, only one state is
assigned to each room, while the corridor is
discretized into thinner regions. The limits of these
regions correspond to any change in lateral features
of the corridor (such as a new door, opening or piece
of wall). For each one of these regions there are four
states, one for each of the four orientations the robot
can adopt.

3.2 The actions
The actions selected to produce transitions from one
state to another correspond to local navigation
behaviors of the robot. We assume imperfect actions,
so the effect of an action can be different of the
expected one (this is modeled by the transition model
T).

The selected actions are:
• “Go out room”.  This action is defined only in
room states. The robot uses the camera to localize the
door. Then it gets towards the door and traverses it
using vision and sonar information. The robot must
get the corridor perpendicularly to the door.
• “Enter room”. This action is defined only in
corridor states oriented to a door. As in the previous
case, vision and sonar are used to perform this task.
• “Turn right”. The robot turns 90 degrees to the
right using odometry sensors to detect the end of the
action.
• “Turn left”. The robot turns 90 degrees to the left.
• “Follow corridor”. The robot continues through
the corridor to the next state.

The last action (“Follow Corridor”) is the more
complex one. To ensure that the robot only adopts the
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Fig. 1. Example of Markov states for a corridor environment.



four allowed directions without large errors, it’s very
important that, during the execution of this action, the
robot becomes aligned with the corridor longitudinal
axis. This is made using sonar buffers to detect the
walls and constructing a local model of the corridor.
Besides, an individual “Follow Corridor” action
terminates when the robot reaches a new state of the
corridor. Detecting these transitions only with sonar
readings is very difficult when doors are closed.
Although the transition model can contemplate this as
an imperfect action, the system becomes much more
robust if we add visual information to detect state
transitions.

3.2.1 Visual landmarks to improve state
transition detection

During corridor following, the robot must detect state
transitions (end condition of a “Follow Corridor”
action) to update the belief distribution after them.
When doors are opened these can be easily detected
using side sonar readings, but this sensor can’t detect
transitions to states with closed doors.

To solve this problem, we add visual information
from a camera to detect door frames as natural
landmarks of state transitions (using color
segmentation and some geometrical restrictions). The
advantage of this method is that the image processing
step is fast and easy, being only necessary to process
two lateral windows of the image as it’s shown in
figure 2. Whenever a vertical transition from wall to
door color (or vice versa) is detected in a lateral
window, the distance to travel as far as that new state
is obtained from the following formula (see figure 3):
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where l is the distance of the robot to the wall in the
same side as the detected door frame (obtained from

sonar reading) and α is the visual angle of the door
frame. As the detected frame is always in the edge of
the image, the angle α only depends on the zoom of
the camera, that is constant. After covering distance d
(measured with relative odometry readings), the robot
reaches the new state. This transition can be
confirmed with sonar if the door is opened.

Another advantage of this transition detection
approach is that no assumptions are made about doors
or corridor widths. The only initial knowledge needed
by the system is wall and door colors, that can be
easily trained. Besides, we only use doors as
landmarks, that always are present in indoor
environments, so the robot can easily be installed in a
new building or house.

3.3 The observations
At each state, the robot can get some observations of
the environment using sensor information, and use
them to update the belief using observation
probabilities p(o|s). Besides sonar observations, we
also introduce visual observations to increase the
robustness of the system.

3.3.1. Abstract Sonar Observations
In each state, the robot is able to make an “abstract
sonar observation”. It can perceive, in each of three
nominal directions (left, front and right), whether it’s
“free” or “occupied”. An abstract sonar observation is
the combination of the percepts in each direction.
Thus, there are 8 possible abstract sonar observations,
as it’s shown in figure 4.
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Fig.3 Estimation of next state distance from visual and sonar
information.

Fig. 2. Lateral windows to extract door frames and predict
inmediate state transitions with “Follow Corridor” action.
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Fig. 4.  Abstract Sonar Observations (A.S.O)



3.3.2. Landmark Visual Observations
Abstract sonar observations don’t distinguish walls
from closed doors, neither openings from opened
doors. So, a lot of states in a corridor can produce the
same abstract sonar observation.

Again, we introduce visual information to solve this
problem and add more informative observations to
the system. For this task, we use again doors as
landmarks, being the number of doors in the image
the “landmark visual observation”. This observation
is easily obtained with a color segmentation of the
image, using the same trained color that in door
frame transition detection.

The final probability p(o|s) is obtained from the
combination of abstract sonar observations and
landmark visual observations. The last ones increase
the state recognizability, making possible to
distinguish states at the beginning of the corridor
from states at the end of the same.

4 POMDP Estimation for Robot
Localization

The problem of acting in a partially observable
environment can be decomposed into two
components [8]: a state estimator, which takes as
input the last belief state, the most recent action and
the most recent observation, and returns an updated
belief state using equations (1) and (2), and a policy,
which maps belief states into actions. In robotics
context, the first component is robot localization and
the last one is task planning. In this paper we only
deal with the robot localization problem, but
currently we are already working in planning.

Next, we resume the steps needed to have the robot
localization module working in a new indoor
environment:

1. To learn door and wall colors using a training
setup. The user must click on these objects in
several captured images and colors and tolerances
are extracted.

2. To build, manually, a topological model of the
environment, with nodes corresponding to
regions defined in section 3.1. As an example,
figure 5 shows the topological model
corresponding to the environment shown in
figure 2. This step will be eliminated when we
develop the automatic environment learning
module.

3. To compute the Markov model using the last
graph and the following steps: (a) Assignment of

states to the nodes (1 state for room nodes and 4
for corridor nodes); (b) Assignment of possible
actions to states; (c) Transition model calculation
from the connectivity of the map and an action-
error model obtained through informal
experimentation; (d) Observation model
calculation using a perception-error model also
obtained through experimentation.

4. To initialize the belief distribution in one of the
two following ways: (a) If initial state of the
robot is known, that state is assigned probability
1.0 and the rest 0.0. (b) If initial state is unknown,
a uniform distribution is calculated over all states.

5. The movement of the robot is always executed as
a sequence of individual actions. Whenever an
action is terminated (end of action condition
detected), the robot obtains the new observations,
and the belief distribution is updated using
equations (1) and (2).

5 Experimental Results
In order to verify the behavior of the probabilistic
localization module, several experiments have been
performed using the commercial robot PeopleBot
(ActivMedia Robotics) shown in figure 6.
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Fig. 5. Topological model of figure 2 environment.

Fig. 6. The robot used in our experiments.



This robot is built on an Pioneer base and includes
bump sensors, encoders, two sonar rings and a color
camera on a pan-tilt head. Control, perception and
localization are all carried out on an on-board PC.

All the experiments were carried out in a corridor of
the Electronics Department which topological map
has 71 states, being 11 of them room states. First we
made several experiments using only sonar sensor for
transition detection and observations. Due to the  high
symmetry of the environment, the robot took about
20 actions (depending on the actual initial state) to
global localize itself when the initial belief was
uniform. Adding visual information the number of
steps to global localize the robot is reduced to 5. So,
visual information eliminates observation symmetry,
improving state recognizability.

6   Conclusions and Future Work
We have described the integration of visual
information to a probabilistic localization module
based on a Partially Observable Markov Decision
Process (POMDP). This new sensor provides better
information to state transition and observation
models, making possible a faster global localization
when the initial position of the robot is unknown.

We are extending this work in several directions. We
intend to pursue planning an action selection
algorithms to efficiently direct robot movements
towards a target state (generally a room). Another
line of future work is to learn the world model
(topology and probabilities) from experience using
techniques adapted from hidden Markov models.
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