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Abstract: - Facing the development of microarray technology, clustering is currently a leading technique to 
gene expression data analysis. In this paper, we propose a novel algorithm called repulsive clustering, which is 
developed for the use of gene expression data analysis. One common goal to achieve on developing gene 
expression data clustering algorithms is to acquire a higher quality output. Our performance demonstration on 
several synthetic and real gene expression data sets show that the repulsive clustering algorithm, compared 
with some other well-known clustering algorithms, is capable of not only producing even higher quality output, 
but also easier to implement for immediate use on various situations. 
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1  Introduction 
Microarray technology is a rapid method of 
sequencing and analyzing genes [1]. It is believed 
that this new technology holds the promise to have 
significant impact on the diagnosis, treatment, and 
prevention of disease [2].  

Several algorithmic techniques were previously 
used in clustering gene expression data. Hierarchical 
clustering [3][4] is widely used because the tree 
structure is good for visual inspection. Some other 
algorithms such as k-means [5], self-organizing 
maps [6], CAST [7] and support vector machines 
[8], are successfully tested in many applications. 
Despite for unique features to some application 
environments such as hierarchical clustering for 
dendrogram, to gain a better cluster quality for a 
more sophisticated analysis is a common demand 
for an appropriate algorithm. 

In this paper, we propose a novel algorithm called 
repulsive clustering for gene expression data 
analysis. Clusters are automatically formed in a way 
like magnets repel each other. Namely, repulsive 
clustering does not require initial specified numbers, 
or centroids, of clusters. Those will, on the contrary, 
be determined naturally from the intrinsic nature of 
data. The simulation result in this paper shows that 
repulsive clustering can perform dramatic quality 
boost over compared algorithms on analyzing 
different gene expression patterns.  

The paper is organized as follows: In section 2 we 
describe the approach of the algorithm. Section 3 
specifies the performance simulation environment in 
this paper. Section 4 contains the simulation results. 
Finally, section 5 is conclusions.  

2  The repulsive clustering approach 
 

2.1  The Idea of Repulsion and Attraction 
The essence of repulsive clustering is to have data 
points repulse each other to different clusters if they 
can’t “see” each other. Fig.1 shows the idea about 
repulsing. In Fig.1, there are 12 data points marked 
as G1 to G12 in a two-dimensional space. In order 
to cluster these data points, we define a regulable 
range to separate points and to discover groups. In 
Fig.1 for example, G1 is circled by a closed 
boundary and the radius of the circle is w. Assume 
the gray area outside this circle is the region that 
point G1 cannot distinguish from, thus we define 
that points outside this circle should be pushed into 
a cluster differs from G1’s. This process is therefore 
called repulsion in the algorithm. Moreover, we 
define that points inside this circle (white area) are 
don’t-cares to G1. Don’t-care means that it is 
neither repulsed nor affiliated to G1 anyway.  

After G1 finished pushing points outside, we 
switch the circle to another point in data set, such as 
G2, to engage another repulsion. Two simple rules 
for repulsion are that, only one point can do the 
repulsion at a time and each point should only do it 
once. The whole repulsion stage stops when all data 
points have had their own repulsion. Notice that 
there is no specified order on data points to follow 
in the repulsion stage. Therefore you can do random, 
or simply use the original top-down order from the 
data matrix as the order of repulsion for data points. 
The rest of the paper uses the latter way.  

Different circle sizes produce different repulsion 
outcomes. A larger circle covers more not-so-similar 



nodes and results in loose output (low in-group 
average similarity), while smaller one produces 
compact result (high in-group average similarity). 
For this reason, we define radius w to be a similarity 
threshold for repulsion.  

 
Fig.1: How G1 repulses unfamiliar points. 

 
A visual example of a series of repulsion is 

demonstrated in Fig.2. We draw four circles from 
four steps S1 to S4 simultaneously in Fig.2, but only 
one circle is functioning at a time. The arrows 
indicate the switch from circles. Table 1 contains 5 
steps of move. Column S0 shows that all points 
were initially assigned no cluster (zero), afterward 
repulsion stage began. S1 represents repulsion of G1 
that pushed all points beside don’t-cares, i.e., G5, 
G6, G8 and G1 itself, into cluster No.1. After the 
repulsion of G1 was complete, G2 had the circle in 
S2 and pushed G1, G4, G5, G6, G8, G10, G11 and 
G12 away into cluster No.2 including points with no 
cluster. S3 indicates no change in cluster number 
because no point outside G3’s circle had the same 
cluster number to G3. G4 in S4 finally pushed G1, 
G5, G6 and G8 away into cluster No.3. We can see 
that 3 groups in S4 as we can visually tell are 
formed correctly. The repulsion stage will continue 
until G12 finished its repulsion. 

Fig.2: A series of rep
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formed the repulsive clustering algorithm.  
 

2.2  The Algorithm 
To ease the further explanations of the algorithm, 
we give 2 definitions for repulsive clustering.  
■A leading entity is the point which is currently 

having the control to repulse its neighbors. There 
can be only one leading entity at a time. 
■When a similarity measure in interval [p, q], 

where p and q are the lower and upper limit of the 
interval, is applied to a data set. We say that a 
point j is a repulsive neighbor to a leading entity i 
if S(i, j)＜w, where S(i, j)∈ [p, q] is an i-to-j 
similarity, and w is the similarity threshold,  
w∈[p, q]. 
The algorithm takes a pair of input 〈 . S is an 

n-by-n similarity matrix, and w is the adjustable 
similarity threshold. A latest cluster designation 
number is denoted by m, which is initially assigned 
No.1. C

〉wS ,

i is the cluster number of point i. All points 
are initially set to no cluster in the first place, i.e., 
Ci=0. When repulsion stage begins, each point is 
in-turn being a leading entity to push its repulsive 
neighbors away by assigning Crepulsive_neighbors=m 
when Crepulsive_neighbors= C leading_entity. In the other hand, 
some will be ignored if Crepulsive_ neighbors≠C leading_entity. 
Variable m should be increased by 1 between every 
switch of leading entities when repulsion occurred.  

With clusters generated in the first stage, most 
points have reached their place. To further enhance 
the accuracy, every point in attraction stage can 
calculate average similarities to all existing clusters 
and rejoins itself into cluster that has MaxSim 
(maximum similarity) if MaxSim w. Otherwise it 
will be swept away into a new cluster. A leading 
entity will remain where it is if MaxSim falls into its 
place. Like the previous stage, attraction stops when 

≥

Table 1: Repulsion steps
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 cluster with maximum 

 attraction stage together 

all points have ran through it once.  
Be aware that when a similarity measure S is used 

and a Sij representing similarity from point i to point 
j is generated, the inequality Sij<w in the algorithm 
means that point i and j have an below-threshold 
similarity that point j will be repulsed by point i. If a 
dissimilarity or distance measureδ is used instead 
and aδij is generated as dissimilarity from point i to 
point j, the inequality in the algorithm should, of 
course, be adjusted toδij >w. Otherwise you should 
convert the dissimilarityδij into similarity Sij by 
taking, for example,δij =1- Sij , in the first place. 
The rest of the paper uses similarity for 
representation. The time complexity of the 
algorithm is O(N2), and a pseudo-code of the 
algorithm is given in Fig.3.  



Repulsive Clustering Algorithm 
Input: , S is an n×n similarity matrix, w is a similarity 
threshold. 

〉〈 wS,

Initialization: 
m←1  //Initialize current cluster designation  
C(．)←0// all elements have no cluster in the first place 
E←{1,…,n} //a set of all elements 
Begin: 
Repulse: 
for each (e∈E) do   
  for each (k∈E , k≠ e) do //check all elements 
    if (S(e, k)＜w) then //repulsive neighbors to e 
      Push C(k)=C(e) or C(k)=0 into cluster m  

//push to new cluster 
  increase m      //get new cluster designation        
Attract:  
for each (e∈E) do    
  pick an EC (existing cluster) with MaxSim (maximum   

average similarity) to e 
  if (MaxSim w) then ≥

//found a cluster that e should belong to 
    C(e)=EC   //let e break away and rejoin EC  
  else 
    C(e)=m    //let e break away into new cluster 

increase m 
return C 
Operation complete. 

Fig.3: The repulsive clustering algorithm. 
 
 

3 Performance Simulation 
 

3.1  Data Sets  
 
3.1.1  Synthetic random data set 
The synthetic random data set in our simulation 
provides randomly generated classes in a two- 
dimensional Euclidean space. This data set is used 
to evaluate the basic predictive power of algorithms. 
It is supposed to provide data with low noise and 
highly clarified classes. We generate a synthetic 
random data set with 5 classes, 1184 genes, which 
yields a 1184×1184 similarity matrix with average 
similarity of 0.638 using correlation coefficient in 
interval [0, 1]. 
 
3.1.2  The yeast cell cycle data set 
We next evaluate the performance of algorithms by 
analyzing a time course data that has temporal gene 
expression patterns. We select a yeast microarray 
data from LBNL [9], retrieving a subset of 101 cell 
cycle regulated genes in 5-phase criterion: G1, S, 
S/G2, G2/M and M/G1, and this yields a 101×101 
similarity matrix with average similarity of 0.806. 
We expect clustering results to approximate these 
five-phase criteria.  
 

3.1.3  The human cancer cells line data sets  
We next analyze the data studied by Scherf et al. [10] 
for 60 human cancer cell lines (NCI60) on 
gene-drug relationships by integrating large 
databases on gene expression and molecular 
pharmacology. Two data sets are selected in this 
paper for our performance simulation. 
 
3.1.3.1  Cell-cell correlations on the basis of 
gene expression profiles 
In the cell-cell correlations on the basis of gene 
expression profiles, there is a 1376×60 data matrix 
with 9 cancer classes in 60 samples. A 60×60 
similarity matrix with average similarity of 0.815 is 
generated. We would like to see if algorithms could 
tell 9 cancer classes that showed similar patterns.  
 
3.1.3.2  Cell-cell correlations on the basis of 
drug activity profiles  
In the cell-cell correlations on the basis of drug 
activity profiles, the data formed a 1400×60 matrix 
with the same 9 classes. A 60×60 similarity matrix 
with average similarity of 0.891 is also generated in 
our simulation. 
 
3.2  Evaluation of Cluster Quality 
We apply both external and internal assessment   
of validity [11] to algorithms on all simulated data.  

One external measure is entropy [12], which 
evaluates the accordance of a cluster set with known 
classes. Here we briefly describe it below. For each 
cluster Cj, we shall compute the data that it contains 
for each different class i so that pij is equal to the 
probability a randomly drawn data from cluster Cj to 
be of class i. The entropy Hj of each cluster Cj is 
calculated as: 

∑−=
i

ijijj ppH )(log2   (1) 

For gene expression data analysis, we introduce a 
modified entropy Mj for external gene data 
assessment by adding a variable p(not i)j equals to the 
probability a randomly drown data from cluster Cj 
to not be of class i, and a pi(not j) equals to the 
probability a randomly drown data from clusters 
other than Cj to be of class i.The former variable 
detects if multiple classes exist in single cluster, and 
the latter one ensures that class i does not spread 
across multiple clusters, thus Mj will be: 

 ∑ −−−=
i

jnotijinotijijj ppppM ))(log( )()(2   (2) 

Modified entropy is 0 only when data points are 
exactly separated as their class. Finally, we weigh 
the modified entropy by the size of each cluster. The 
weighted modified entropy Mw is: 
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Where nj is the size of cluster j, and n is the total 
number of data in that data set. Mw is used for 
external assessment in this paper. 

One internal measure is Adjusted Figure Of Merit  
(Adjusted FOM) [13]. Adjusted FOM is calculated 
as follows. A typical gene expression data set 
contains measurements of expression levels of n 
genes measured under m experimental conditions. 
Suppose there are k clusters, C1, C2,…,Ck. Let R(g, e) 
be the expression level of gene g under condition e 
in the row data matrix. Let μCi(e) be the average 
expression level in condition e of genes in cluster Ci. 
The 2-norm figure of merit, Adjusted FOM(k) for k 
clusters under condition e is 
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4  Simulation results 
In this section, we demonstrate how repulsive 
clustering performed under both internal and 
external assessments on synthetic and real gene 
expression data. The w for repulsive clustering (RC) 
in the simulation runs from 0 to 1 (step 0.001) to 
produce different number of clusters. Hierarchical 
clustering approaches like single-link (SL), 
complete-link (CL) and average- link (AL), and 
heuristic-based clustering approach like CAST, are 
selected for co-evaluation in our simulation.  
 
4.1  The synthetic random data set 
Fig.5 shows the adjusted FOM of the synthetic 
random data set with 5 classes over a range of 
different number of clusters. The lower the curve, 
the better the internal quality for specified data. 
From the output of respective algorithms, we 
compare the difference in internal quality at output 
that is equal to known classes. In this synthetic data 
set, RC (square) and CAST (line) both perform 
almost the same internal quality at 5 clusters output 
while AL (diamond), SL (circle) and CL (down 
triangle) fall behind. 

Fig.6 shows modified entropy for the synthetic 
random data set with 5 classes over a range of 
different number of clusters. This graph shows if 
each class is gathered respectively (lower curve), 
scattered (higher curve), or mixed (higher curve) in 
different cluster outputs. The lower the curve, the 
better the external quality. The lowest point of the 

curve represents the best cluster output an algorithm 
can make. RC and CAST in Fig.6 both produce 
lowest point at 5 clusters output that matches 5 
classes’ criteria.  

 
Fig.5: Adjusted FOM for the synthetic data. 

 

 
Fig.6: Modified entropy for the synthetic data. 

 
4.2 The yeast cell cycle data 
Fig.7 shows the adjusted FOM for the yeast cell 
cycle data with 5 classes over a range of different 
number of clusters. RC here achieves highest 
internal quality at 5 clusters output. It also shows 
comparable overall internal quality against other 
algorithms. CAST has lower overall internal quality 
in compared to RC, but is still out performance over 
hierarchical clustering family quite a range. 
 

 
Fig.7: Adjusted FOM for the yeast cell cycle data 



Fig.8 shows modified entropy for the yeast cell 
cycle data with 5 classes over a range of different 
number of clusters. The yeast cell cycle data here is 
quite noisy except the S-phase. RC has best external 
quality at 12 clusters output, which is closest to 5 
classes, while CL is at 16, AL at 23, CAST at 28 and 
SL at 41. 

 
Fig.8: Modified entropy for the yeast cell cycle data 

 
4.3 The human cancer cells line data sets 
 
4.3.1  Cell-cell correlations on the basis of gene 
expression profiles (human cancer data (1)) 
Fig.9 shows the adjusted FOM for the cell-cell 
human cancer correlations on the basis of gene 
expression profiles with 9 classes over a range of 
different number of clusters. RC again, achieves 
best internal cluster quality at 9 clusters output in 
compared with other algorithms. 

 
Fig.9: Adjusted FOM for human cancer data (1) 

 
Fig.10 shows modified entropy for the cell-cell 

human cancer correlations on the basis of gene 
expression profiles with 9 classes over a range of 
different number of clusters. CL has its lowest point 
at 7 clusters output, which is closer to 9 classes, is 
closer than RC (lowest at 12) by 1, but the actual 
quality values at either 7 or 12 outputs are far 
behind RC. RC in Fig.10 can maintain lowest 
overall modified entropy because it is able to handle 
outliers carefully without interfering main classes. 

 
Fig.10: Modified entropy for human cancer data (1) 
 
4.3.2  Cell-cell correlations on the basis of drug 
activity profiles (human cancer data (2)) 
Fig.11 shows adjusted FOM for the cell-cell human 
cancer correlations data on the basis of drug activity 
profiles with 9 classes over a range of different 
number of clusters. In this high average similarity 
data set, RC takes the lead in overall internal quality 
and has the highest quality at 9 clusters output. SL 
this time tends to perform better then it was and its 
internal quality at all range of outputs is similar to 
CAST. 

  
Fig.11: Adjusted FOM for human cancer data (2)  

 

 
Fig.12: Modified entropy for human cancer data (2) 

 
Fig.12 shows Modified entropy for the cell-cell 



human cancer correlations data on the basis of drug 
activity profiles with 9 classes over a range of 
different number of clusters. RC produces highest 
quality at exact 9 clusters output that matches 
known classes.  
 
4.4 A Performance Summary 
Table 2 shows the internal quality ranking on 
simulated data sets at known classes. We can see 
that the performance of repulsive clustering (RC) is 
very comparable under internal quality review.  
 

Table 2: Summary of internal quality 
data set # of  

classes
Adjusted FOM at 
 # of classes 

synthetic random data 5 RC=CAST=SL>CL>AL 
cell cycle data 5 RC>CAST>CL>SL>AL 
human cancer data(1) 9 RC>CAST>CL>SL>AL 
human cancer data(2) 9 RC>CAST>SL>CL>AL 

 
Table 3 shows the ranking of accuracy between 

the highest external quality output and real classes. 
Though CL looks closer to real classes in the 3rd 
data set, its external quality at 7 is far worse than 
RC (see fig.10). The external quality of AL at 9 in 
the 4th data set is also worse than RC at 9 (see 
Fig.12). We can conclude from simulation results 
that RC has the best overall performance to 
distinguish real classes from different data sets. 

 
Table 3: Summary of external quality 

data set # of  
classes 

accuracy of the Modified Entropy to # 
of classes 

synthetic 
random data 5 RC(5)=CAST(5)>CL(4) =AL(6)=SL(4) 

cell cycle data 5 RC(12)>CL(16)>AL(23)>CAST(28)>SL(41)

human cancer 
data(1) 9 CL(7)>RC(12)=CAST(12)>AL(17)>SL(30)

human cancer 
data(2) 9 RC(9)=AL(9)>SL(11)>CAST(15)>CL(19) 

 
 

5 Conclusions 
In this paper, we propose a repulsive clustering 
algorithm for gene expression data analysis. 
Repulsive clustering automatically decides the 
number of clusters according to the nature of data. 
The boundaries of clusters are automatically 
spanned as well. These features are important to 
avoid initially improper assumptions. The algorithm 
has been implemented and tested on synthetic and 
real biological data sets in our simulation program. 
The result demonstrates good performance in all 
runs. Another to note in simulation is that repulsive 
clustering has impressive power on distinguishing 
outliers. Outliers are not specially marked, but are 
separated in independent clusters respectively. 

 Finally, since repulsive clustering can deal with 
any n-by-n similarity matrix generated from 
different data sets, it could be used in clustering 
applications from different fields. 
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