
Making Interactive Electroacoustic Music with Computer through the Use of
RTMix -- a Real-Time Interactive Electroacoustic Music Performance,

Composition, and Coaching Interface

IVICA ICO BUKVIC
Department of Theory, Composition, and Musicology

College Conservatory of Music, University of Cincinnati
3346 Sherlock Ave. #21
Cincinnati, OH 45220

U.S.A.
http://meowing.ccm.uc.edu/~ico/

Abstract: - With the technological advancements in computer technology, the making of the real-time computer-aided
interactive music has become a reality. However, due to lack of comprehensive software, such form of artistic
expression still proves to be a daunting task. RTMix is an open-source software application that has been designed for
the highly stable and scalable Linux platform and whose function is to provide a transparent real-time and user-
friendly performance interface, as well as the universally portable and easily editable/reproducible “scorefile” format
for the live and interactive multimedia works. RTMix’s implementation addresses the problem of lack of
comprehensive and accurate interactive electroacoustic music computer interface by providing an all-in-one solution:
it can be used for composition, coaching, and most importantly performance of complex interactive works that would
otherwise be very hard to execute with currently available software tools. Its abstractness and extreme flexibility
enables user to simultaneously control a variety of independent applications, such as RTCmix, Csound, aplay, sox,
mpg123, as well as any other process that can be triggered via UNIX shell.

Key-Words: - Computer, Music, Interactive, RTMix, Linux, Electroacoustic, Open-source, Art, Computer-aided.

1 Introduction

Although the interactive electroacoustic medium has
been in existence for some time, the lack of affordable
computing power has made many composers shy away
from this type of artistic expression. Throughout the past
decade things have rapidly changed with the advances in
technology that provided us with microcomputers of
unprecedented computing power, ultimately making this
exciting medium more accessible than ever before. Yet,
to this day the interactive electroacoustic music has been
hindered by the serious limitations of the available
software performance interfaces, forcing many
composers and performers who have expressed interest
in this medium, to resort to a simple stopwatch in order
to synchronize the “live” (i.e. performer) and
recorded/computer-generated counterparts.
Subsequently, through the utilization of such
rudimentary equipment for coordination of the
performance, most pieces had to be simplified in order to
ensure adequately accurate interaction and execution,
thus ultimately further limiting composer’s expression.
Such state of flux has resulted in a recursive problem
where composers and performers alike are simply
discouraged by the current dichotomy between the

exponentially growing computational power and the
stagnating lack of development of user-friendly
interface(s). RTMix is an application that has been
initially designed in order to address this issue and has
since grown to provide an extended array of features,
making it an “all-in-one” solution.

2 Historical Background
Although we can track the interactive electroacoustic

music endeavours well into the late 19th century with the
instruments like Singing Arc and Musical Telegraph [1]
and early 20th century with the use of Theremin [2], the
real revolution in interactive electroacoustic music came
during the early 80’s with the advent of MIDI standard,
when the idea of interactive music had finally become a
viable option, rather than a daring stunt. Many
interactive interfaces nowadays utilize MIDI protocol to
trigger a variety of both musical (i.e. triggering
synthesizers and samplers) and non-musical events (i.e.
stage lighting). More importantly, MIDI is nowadays
being used in very popular object-oriented visual
programming environments whose primary focus is on
multimedia, such as Pure-Data [3], Max [4], jMax [5],

and EyesWeb [6]. Despite the popularity of MIDI
standard, the real-time DSP software and hardware did
not materialize until the early 90’s simply due to lack of
affordable computing power. Since, a large variety of
both software and hardware solutions have been readily
available, such as MSP (extended objects for the Max
software), RTCmix [7], Csound (real-time aspect) [8],
Kyma-Capybara software/hardware combination [9],
various proprietary hardware modules, DJ equipment,
and many more. With such offering, two inherently
different solutions have emerged, both of which are
currently able to furnish composer with the tools
required to make and, more importantly, perform
interactive electroacoustic music. One of them is
hardware, and the other is software. Furthermore,
software can be subdivided into proprietary (i.e.
commercial) and the open-source, a distinction whose
importance will be addressed shortly.

3 Selecting the Best Approach
What is inherently different between the hardware

and software solutions is obviously the price which
proportionally corresponds to their accessibility. More
importantly, most of the hardware solutions have a
rather limited scope of effectiveness, usually being
designed for a particular setting and/or software, lacking
modifiability and expandability (although arguably the
same can be said for a portable notebook, and certainly
there are exceptions to this rule, i.e. Kyma-Capybara).
While such an approach is certainly a valid one,
especially in situations where the hardware offers all-
encompassing and relatively flexible environment, such
as Kyma-Capybara, the problem with it is that such
environment usually does not utilize computer as the
central processing unit, nor offers user the flexibility to
simultaneously employ different tools and applications.
Also, such hardware is simply out of reach for many
individuals due to costs involved.

Commercial (a.k.a. proprietary) software is usually a
more affordable solution that utilizes now vastly more
powerful computers, making it certainly a feasible
alternative to the aforementioned option. Yet, I find this
solution somewhat limiting due to its closed-source
nature which for many composers (including myself)
means that their freedom of expression will be limited
by the software’s design. More importantly, most of the
proprietary software currently available focuses on the
lucrative aspect of the market that consists of
sequencers, sound editors, and post-production tools.
Thus, they do not provide performance-oriented
interactive interface since that is simply not their
intention. As an exception, there is Max/MSP and other
similar applications which offer a variety of interactive

tools. But, in terms of their abstractness, it is often a
time-consuming process to come up with a user-friendly
performance-oriented front-end that is typically work-
specific, and usually requires a performer who is
knowledgeable with the application’s environment and
feels comfortable using it. In addition, the composer’s
presence is typically needed in order to ensure the proper
execution of the work.

The open-source software has several strong points
when compared with the above-stated solutions. One of
them is certainly affordability, while other is availability
of the source code. This means that when an application
has been provided to the community, the code can be
easily modified and tailored to individual needs, as well
as potentially more easily transferred to another
platform. This model has attracted a lot of developers to
contribute to the open-source community, and as such,
there are numerous software applications whose focus is
on interactive music. Some of the examples include PD,
jMax, RTCmix, and others. The limitations of the open-
source approach are that among the numerous software
packages, there are only few fully functional
applications that often lack documentation, and most
importantly, most of them have little or no ability to
interact with each other. Simply, none of them offer a
unified transparent performance interface that is capable
of triggering different types of events and applications,
while at the same time relaying all the pertinent
information to the performer in a visually appealing and
concise manner.

After considering all of the above-mentioned options,
as well as facing the typical limitations of the available
interactive electroacoustic music software, I came to the
conclusion that not only is there a need for a unified
interface that would drive interactive work’s
compositional process and performance regardless of the
types and combinations of the utilized software, but also
that the best setting for the RTMix application would be
an open-source approach using the open-source
operating system – Linux. The open-source environment
is not only the most affordable solution, but more
importantly, most of the Linux OS open-source
applications have one crucial thing in common, one
thread that could be used as a building block for a
unified interface – they all can be triggered via UNIX
shell system calls.

Fig.1 RTMix with “play” and “edit” tabs open.

4 RTMix Interface
RTMix (titled after the RTCmix real-time audio

manipulating and synthesis scripting language that was
used for my Slipstreamscapes III: The Sea and
Slipstreamscapes V: Lullaby interactive electroacoustic
works) was initially created as a simple C program due
to fact that my work required a coordinating and event-
triggering interface. I’ve initially designed this tool in
order to ensure an accurate execution of complex
interactive patterns shared between the guitarist and the
computer. Since, the application has been ported
utilizing Qt toolkit and C++ language, and currently
offers a user-friendly GUI interface that is populated
with visual stimuli used to grab the performer’s attention
as needed, while keeping distraction to a minimum. The
performance event-list is now abstracted into a scripting
language that is compiled prior to playback and has
elaborate error-checking routines. The interface also has
advanced timing features, such as a warning countdown
counter, as well as “timer bookmarks” (a kind of a fast
forward and rewind functionality), most of which will be
discussed shortly. Furthermore, the application’s
functionality has been vastly expanded, and it can now
be used not only for performance purposes, but also for
composition, as well as coaching and rehearsals.

RTMix interface (see figure 1 for the interface’s
screenshots) currently consists of one window and two
tabs. The main window can be split-up vertically into the
top half with the “transport” and timer widget and the
bottom half that consists of series of tabs. Currently, the
application utilizes two tabs: the “play” tab, and the
“edit” tab.

The “transport” widget is populated by basic
transport buttons (i.e. play, stop, pause, etc.) and
additional not-so-obvious, yet powerful features, such as
the “panic button,” whose function is to cease all active
events and stop the performance in the case of an audio
feedback or another similar critical problem, and a
“toggle size” (a.k.a. “modes”) button that toggles
between the timer-only and the full window views. This
feature is especially useful in cases where performance
asks for an interface with minimal distractions (see
Figure 2). A relatively big timer is located below the

transport controls whose main purpose is to provide
legibility in performance settings. The timer can be
vertically divided into the “main” timer and a countdown
(a.k.a. “warning”) timer. The main timer’s function is to
simply linearly count time from the beginning to the end
of a work, while the warning timer can be enabled at any
moment by utilizing the scripting language for the
purpose of warning performer of incoming important
“checkpoint” in the piece. Such a feature ensures
accurate and timely execution of an event. Both timers
have their respective visual stimuli that correspond to
their events. For instance, the red “play” indicator comes
on when the performance has been started, or blinks
when the performance is paused. The yellow “warning”
indicator comes on when the warning counter begins
counting, and blinks when timer is about to run out.
When the warning timer reaches zero the red “execute”
indicator lights up in order to visually reinforce new
event’s temporal downbeat (if such event is required).
The visual appearance of these visualizations as well as
their behaviour is fully customizable, and one can easily
use just about any combination of images to portray their
activity by simply placing new images with particular
names in the specified location on the hard drive.

The “play” tab consists of just one window that
displays all of the coaching and performance text
messages, while on the “edit” tab, there is a textual script
editor and an error log window where syntax errors and
other warnings are displayed during the compiling of the
script. Below the editor and error log windows are the
file I/O [input/output] controls for storage and retrieval
of the script files, “purge error log” button for clearing
the error log window, as well as the “compile” button
that parses the event “scorefile” and stores the parsed
information in computer’s RAM in a form of a “cue
list.”

4.1 RTMix Scripting Language
The scripting language provided in RTMix is rather

powerful due to its inherent flexibility. It has been built
in Qt/C++ and utilizes complex string operations in
order to provide parsing and error-checking routines.
The language relies upon the system calls in order to
invoke various events and since most of the Linux
applications (including ones that bear no relation to
audio) are executable from the shell, one could easily
coordinate a whole array of actions via this simple
interface, such as PD, jMax, Csound, RTCmix, mpg123,
aplay, ecasound etc., as well as non-audio events, for
instance opening images in an internet browser or
starting an OpenGL animation in order to accompany the
piece with visual stimuli. The scripting language
currently comprehends only a half-dozen commands

(event, warning, text, checkpoint, pause, stop, clear) and
in its syntax strongly resembles Paul Lansky’s RT script.
Each command serves a particular, and in most cases a
self-explanatory function: an “event” call is used for
triggering an event at a given time, while providing an
optional textual comment to accompany it; a “warning”
is similar to an event, except that it also utilizes a
warning timer for the purposes of anticipation of the
actual event’s temporal downbeat; a “text” is simply a
textual event that is to be displayed on the notification
interface; a “checkpoint” is used to annotate sections of
the piece, so that both in rehearsal and performance
settings, the user can easily fast-forward, rewind, or
simply jump to a particular spot in the piece; the “pause”
and the “stop” objects are self-explanatory, while the
“clear” option purges the notification window, rendering
it clear. As an example, an “event” (i.e. playing a sound)
5.32 seconds into the piece with a textual notification,
would have the following syntax:

event([at] = {“5.32”} [do] = {“cmixplay sound.wav”} [say]
= {“Playing sound.wav”} [kill] = {“cmixplay”});;

In addition, these scripts can be saved, edited, and,
since they utilize a simple text-file format, they are
extremely portable. With such flexibility, one could
easily create a whole collage of events of tremendous
complexity. As such, the scripting language does not
only serve as a performance tool, but also poses as a
rather formidable compositional environment, as well as
a virtual coach. The potential of its coaching abilities is
immeasurable because many interactive works currently
require elaborate setups and commonly the presence of
the composer, causing significant technical obstacles for
performance. With RTMix, it is now possible to
conveniently e-mail annotated “scorefiles” to the
performer(s) [and any other involved personnel], who
would after uploading the newly acquired script,
rehearse the work while being tutored and warned
through the application of possible pitfalls, difficult
sections in the piece, as well as anticipate important
downbeats. RTMix can be utilized in any performance
setting that requires great amounts of coordination
between different parts regardless of the composition’s
medium.

Fig.2 Switching between “performance” and “practice”
modes.

5 Becoming an All-in-one Solution
RTMix in its current state is extremely stable and

provides all of the above-mentioned features. What is
also very important is that RTMix has a very small
computer resource utilization footprint, meaning that in
its peaks utilizes less than 3% of the total CPU’s power
[info gathered using “kpm” tool running Mandrake 8.1
Linux OS on the Pentium III 500Mhz machine]. Such
design makes it relatively transparent to the system,
leaving the vast majority of the computing power for the
audio processes. RTMix is also very accurate, being able
to trigger events with a .01 second precision. Its features
make it a multi-purpose tool: it poses as a sophisticated
timer and event triggering mechanism useful for the
interactive and multimedia performances, it is a flexible
compositional environment, a virtual coaching tool,
provides a convenient way of storing composition and
performance information in a concise, portable, and
reproducible fashion, and can be used in non-electronic
environments, such as extremely complex acoustic
works that require strict timing.

RTMix has so far been utilized in my Thesis work
Slipstreamscapes III: The Sea that was performed as a
part of my Masters Thesis recital, as well as on the
Music01 summer music festival. Its latest version (0.16)
was also used for the Slipstreamscapes V: Lullaby
premiere at the Music02 festival that took place in June
2002. Computers utilized were custom-built desktop
Pentium-III 500Mhz computer and a 1GHz Pentium-III
Dell Inspiron 8000 notebook. Both performances were
favorably received. RTMix has been developed in close
collaboration with several performers whose thoughts
and comments were taken into account while designing
the interface. Feedback provided from several
performers revealed strong interest in usage of this
application as well as performance of the interactive
music employing it.

5.1 Future Developments
While RTMix is already rather flexible and

functional software, future versions will provide features
that will make it stand out as a unique application that
encompasses a full range of both the compositional and
performance tools for the interactive electroacoustic
medium. Most of these features will be implemented by
the end of the summer 2002. They include
networkability of multiple RTMix instances running
simultaneously on multiple computers making it easy to
utilize it as a synchronization tool in the chamber, or

even orchestral settings. The scripting language will be
vastly expanded enabling user to trigger more interface-
oriented events. There will be an ability to filter text
events by assigning them different levels of importance
(i.e. performer’s vs. mixing technician’s text) providing
performers and other performance participants with an
option to filter only messages pertaining to them, as well
as an ability to disable potentially distracting
visualizations. In addition, script will have a random
number generating object that will enable utilization of
RTMix in musical settings that rely on aleatory and
indeterminacy. Furthermore, RTMix will have a MIDI
interface so that the performer(s) will have a direct
control over the performance interface through use of
external foot-pedals and similar MIDI equipment.
RTMix will also have a convenient metronome feature
as well as a track window that will pose as an alternative
to the text-based scripting, offering a more user-friendly
approach to composing/editing music.

6 Acknowledgments
First off, I would like to thank my wife Anamaria for

her kind, loving support and understanding, as well as
my parents who have through their hard work and
sacrifice provided me with the opportunity to obtain a
high-quality education. I would also like to thank my
mentor Mara Helmuth for her ongoing support and
insightful guidance.

References:
[1] Chadabe, J. “Electric Sound.” New Jersey: Prentice

Hall, inc. 1997, pp.3.
[2] Chadabe, J. “Electric Sound.” New Jersey: Prentice

Hall, inc. 1997, pp.8.
[3] Puckette, M. 2002. “Pure Data Page.” http://www-

crca.ucsd.edu/~msp/software.html.
[4] Cycling ’74. 2002. “Max/MSP Page.”

http://www.cycling74.com/products/maxmsp.html.
[5] Ircam. 2002. “jMax Page.”

http://www.ircam.fr/jmax/.
[6] InfoMus. 2002. “EyesWeb Page.”

http://www.infomus.dist.unige.it/.
[7] Garton, B., and D. Topper. 1997. “RTcmix – Using

CMIX in Real-Time.” Proceedingsof the
International Computer Music Confernce.
International Computer Music Association.

[7] Topper, D. 2000. “(RT)cmix for Linux.”
http://www.people.virginia.edu/~djt7p/Cmix/Cmix.h
tml.

[8] Thompson, R. S. “The Csound Book: Perspectives in
Software Synthesis, Sound Design, Signal
Processing, and Programming.” Massachusetts: The
MIT Press, 2000.

[9] Chadabe, J. “Electric Sound.” New Jersey: Prentice
Hall, inc. 1997, pp.265.

