
A Novel Design of A Generational Garbage Collector

ADEEL ABBAS, AFFAN AHMED, WAHEED UZ ZAMAN BAJWA
Electrical Engineering Department,

College of Electrical and Mechanical Engineering,
National University of Sciences and Technology, Rawalpindi, Pakistan

Abstract: In this paper, we describe an efficient and flexible generation scavenging garbage collector toolkit.
Our methodology exceeds in systems where the cost associated with any single operation is bounded by small
time constant. The collector maintains several “generations” of objects. Newly created objects are all put in the
“youngest generation” and when the space allocated for that generation is full, the collector will use the root set
to reclaim dead objects from the youngest generation only, leaving the older generations untouched.

Objects that survive after several collections of the youngest generation are “promoted” to the older
generation. In this way the collector assures that recently created regions will contain high percentages of
garbage and will be garbage collected frequently. The framework has been implemented in a library and tested
against formidable real world applications. Hence the proposed system eliminates the possibility of storage-
management bugs and making the design of complex, object-oriented systems much easier. This can be
accomplished with almost no change to the language itself and only small changes to existing implementations,
while retaining compatibility with existing class libraries.

Key Words: Garbage collection, generation scavenging, heap management

1. Introduction
Dynamic memory management is often referred to as
making memory requests from the operating system
during different courses of program execution. All
dynamic memory requests are satisfied through an area
of memory called heap. In C++ this is done through the
new operator. The operator is implemented by a call to
malloc(), which grants a pointer to the object after
allocating its memory on the heap. However this
flexibility of acquiring memory dynamically comes at a
price: i.e. it becomes the responsibility of the
programmer to return dynamically allocated memory to
the free pool, by using the delete operator. The delete
operator in turn calls free(), which reclaims memory
allocated on the heap. When delete has been called, the
object is destroyed and its destructor has been called.
Further access to the pointer data can cause
unpredictable results.

The term "Garbage Collection" is an automated
process of finding previously allocated memory that is no
longer reachable by the program and then regaining that

memory for future use. The garbage collector does this
by several ways, one of which is traversing all pointers
on the heap and finding weak pointers (pointer that
allows the object memory to be recovered). In simple
terms, use of Garbage Collectors leverages the
programmer of worrying about calling delete every time
new is called. Automated Garbage Collectors can reduce
development cycles for large-scale software by
approximately 30% and additionally reduce the memory
leaks, resulting in a more stable system.

Some systems also use reference counting for
implementing garbage collection, however they have
unnerving disadvantages of their own:
1. The inability to reclaim circular structures i.e.

circular structures can have non-zero reference
counts, even when garbage.

2. Often results in memory fragmentation.
3. It’s expensive since every allocation / freeing

requires addition/subtraction.

Due to the above-mentioned problems, it is not a
viable option to use reference counting as a primary
answer to memory management problems especially
when program code begins to increase. Nevertheless,
there have been very few implementations of garbage
collectors available in the public domain. This paper
presents a unique methodology of heap allocation that is
based upon copying garbage collection. Our work differs
from previously reported work [1], [2] and [3] since it
addresses garbage collection targeted to C++ systems.

2. Garbage Collection Terms
Garbage collection algorithms have been the subject of
intense study, because they play such an important role
in the performance of certain systems. Following are
some of the terms that are often referred in elaborating
garbage collection algorithms:

2.1. Root Set
The data that is immediately available to the program,
without following any pointers. Typically this would
include local variables from the activation stack, values in
machine registers and global, static or module variables.

2.2. Reachable Data
Data that is accessible by following pointers (references)
from the root set. Reachability is a conservative
approximation of liveness and is used by most garbage
collectors.

2.3. Live Data
Data that is reachable and that the program will actually
make use of in the future. Garbage Collectors typically
cannot tell the difference between live and reachable
data, but compilers can.

2.4. Forwarding Pointer
In a collector that moves objects, a forwarding pointer is
a reference installed by garbage collector from an old
location to a new one.

2.5. Weak Reference/Pointer
A pointer to an object, which does not prevent an object
from being reclaimed. If the only pointers to an object
are from weak references, the object may disappear, in
which case the reference is replaced by some unique

value, typically by the language’s equivalent of a NULL
pointer.

3. The Garbage Collection Methodology
This section describes the algorithm of garbage
collection. Our heap is made up of several generations.
As objects survive repeated scavenges, they are
promoted to older generations. Higher generations are
scavenged more frequently.

Once memory allocation request is made, the
garbage collector returns a pointer to the object (created
in its own heap space). The collector also stores the
address of the pointer (created on the processor stack)
for future modifications. The addresses of all pointers,
which are created via our collector, are maintained in a
vector of void**. The size of the object is also recorded
and used during generational copying. Moreover the
memory for the recently created object is allotted from
the youngest generation.

Stack

GC

void**

Heap

S
iz

e
of

 O
bj

ec
ts

Generation
1

Generation
2

Object 1

Object 3

Object 2

Object 4

Object 5

Object 6

Pointer<T>

Pointer<T>

Pointer<T>

Pointer<T>

Figure 3.1: The Garbage Collector Design Approach

In order to trace the scope of the pointer, we wrap the
pointer returned by the collector in a templatized smart
pointer class, Pointer<Class T>. Once the smart pointer
runs out of scope, or a pointer assignment is made, the
garbage collection is run, to verify integrity of all
pointers. The garbage collection algorithm involves
following steps:
1. The GC iterates all the generations in the heap.
2. For each object in a generation, the collector

allocates space in the evacuation region and copies
the contents of the old object into the new space.

The collector copies the object in the newer space
only if it lies in the reachable data.

3. The collector then re-assigns all pointers on the stack
and heap and the processor registers, which contain
older address of the object evacuated recently.

4. If no object is evacuated in a generation, then it
implies that all the data in the generation is garbage
and its memory must be reclaimed.

5. Having a pointer to an object is an indication that the
pointer is needed by some other object. Therefore
the garbage collector is only allowed to recover an
object if no pointers exist to it.

4. C++ implementation
Some of the main classes that implement the collector
are:

4.1. GC
GC is the class for garbage collector. It has several
static methods that can be used to have direct control
over the whole process. The interface of the GC is
shown below:

4.2. Pointer<Class T>
In our system, all weak pointers must be objects of type
Pointer<T>. This class implements the functionality of
proxy pointers. It overloads several operators including
dereferencing operator, indirection operator, assignment
operator and automatic conversion operators. Garbage
collection process is invoked whenever a pointer
assignment is made. In case the pointer runs out of
scope, then collection is invoked and destructor on that
object is explicitly called.

4.3. Generation
The GC manages its generations on the heap by a class
Generation. Each generation has a table of contiguous
memory locations. Therefore by having newly created
objects close together, the program has fewer page
faults and the objects will also reside in the processor
cache. The generation with is the highest number
contains the objects most recently created. Each
generation has certain capacity and when the objects on
heap overrun that capacity, a new generation is
automatically created.

With the framework of generational agglomeration,
our system has several advantages, which are:
1. Advancement policy i.e. the collector knows when to

consider an object old.
2. Heap organization i.e. the collector can be

configured for the number and size of generations
the heap should be divided into.

3. Cross-Generational references.

class GC
{
private:
// Array of pointers to pointers (made on stack)
static std::vector< void** > _PointersOnStack;
// Holds the size of objects made on the stack
static std::vector< unsigned int > _SizeOfObjects;
// Holds all the generations
static std::vector< Generation* > _Generations;
// Holds total bytes allocated on the heap
static int BytesAllocated;

public:
// Invokes the GC for all generations
static void Collect();
// Invokes the GC up to the generation specified
static void Collect(int Generation);
// Allocates memory from the garbage collector
static void* operator new(size_t, void** pPtr);
// Gets maximum number of generations
static int GetMaxGeneration();
// Gets the total memory allocated on the heap
static int GetTotalBytesAllocated();
// Returns the total number of generations
static int GetGenerationCount();
// Sets the total bytes allocated by the GC
static void SetTotalBytesAllocated(int Value);
};

template <class T> class Pointer
{
// Invoked on assignment and destruction
void Destroy();
public:
T* p; // Wrapped pointer
Pointer(T* p_ = NULL); // Constructor
~Pointer();// Destructor
// Assignment operator 1
Pointer& operator = (Pointer<T> & p_);
// Assignment operator 2
Pointer& operator = (T* p_);
// Automatic type conversion to T*
operator T*() { return p; }
// Dereferencing operator
T& operator*() { return *p; }
// Pointer indirection operator
T* operator->() { return p; }
// For automatic type conversion during new call
operator void**();
};

5. Experiments And Results
Objects allocated with the built-in "operator new" are
uncollectable. Only objects allocated with overloaded
new operator that takes address of pointer as the second
argument are collectable.

The following code demonstrates differences in object
creation and usage by the above-mentioned collector:

The toolkit has been run on various platforms including
Unix/Solaris and WinNT/2000. It has been successfully
tested with several compilers (Microsoft Visual C++,
Borland C++ an GNU). Several algorithms, including
DSP algorithms (FIR, IIR Filter etc) and common data
structure (link lists, stacks, queues, trees etc) algorithms
have been developed using the garbage collector. Using
the proposed collector, the development time reduced

drastically. We also concluded that the cost of garbage
collection was 15-20% of the overall execution time. In
order to prove the quality of the collector, we also
overloaded global new and delete operators. Using a
simple count of a variable i.e. incrementing it in new and
decrementing it in delete , we were able to show that our
collector produced absolutely no memory leaks.
Following code demonstrates some of the code that we
wrote for testing our collector.

6. Conclusions And Future Work
We have introduced a garbage collector framework and
presented the interface for such a toolkit. The toolkit
approach is itself novel and includes a number of
additional innovations in flexibility, performance and
interaction between the compiler and the collector. Our
future endeavors would focus on testing it against further
real world applications. Additionally we would also work
on redesigning our collector, in order to make it work in
parallel with actual application execution.

class Generation
{
private:
// The generation number
int _GenerationNumber;
// Pointers to the objects in the generation
std::vector< void* > _Pointers;
// Points to the top of memory in the generation
void* _pTopOfMemory;
// Returns maximum size for the generation
static int MaxSize;
// Table of memory inside generation
BYTE MemoryTable[MAXSIZE];
public:
// Gets the remaining memory of the Generation
int GetRemainingMemory() const;
// Returns maximum memory for one generation
int GetTotalMemory() const;
// Grants memory for an object, returns its void*
void* Allocate(size_t Size);
// Gets the generation number
int GetGenerationNumber() const;
// delete operator
void operator delete(void* v);
}

void* operator new(const size_t sz, void** pVoid)
{
 return GC::operator new(sz , pVoid);
}

// Traditional approach - memory leaks
int* pInt = new int;

// Our approach - no memory leaks
Pointer<int> pInt = new(pInt) int;

#define TEST_COUNT 10000

for(int i = 0; i < TEST_COUNT; i++)
{
int* pInt = new int;
*pInt = 344;
} // memory leaks

for(int i = 0; i < TEST_COUNT; i++)
{
Pointer<int> pInt = new(pInt) int;
*pInt = 233;
} // Garbage collection is invoked

// Garbage Collection Test Functions

// The counter is incremented
void* operator new(unsigned int cb)
{
g_Count++;
return malloc(cb);
}

// The counter is decremented
void operator delete(void* v)
{
g_Count--;
free(v);
}

References:
[1] H. Lieberman and C. Hewitt, “A real-time garbage
collector based on the lifetime of objects,” in
Communications of the ACM 26, pp 419-429, June
1983
[2] P. Sobalvarro, “A lifetime based garbage collector
for LISP systems on general-purpose computers,” MIT,
Cambridge, 1988
[3] B. Zorn, “Comparing mark-and-sweep and stop-and-
copy garbage collection,” in Proceedings of the ACM
symposium on LISP and functional programming,
France, pp 87-98, October 1989.
[4] L. Deutsch and D. Bobrow, “An efficient,
incremental, automatic garbage collector,” in Proc.
Commun. ACM 19, pp 522-526, September 1976
[5] H. Gao and K. Nilsen, “Reliable General purpose
Dynamic Memory Management for Real Time
Systems,” in Proc. IEEE Real-Time Systems
Symposium.

