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Abstract: In this paper, we describe an efficient and flexible generation scavenging garbage collector toolkit. 
Our methodology exceeds in systems where the cost associated with any single operation is bounded by small 
time constant. The collector maintains several “generations” of objects. Newly created objects are all put in the 
“youngest generation” and when the space allocated for that generation is full, the collector will use the root set 
to reclaim dead objects from the youngest generation only, leaving the older generations untouched. 

Objects that survive after several collections of the youngest generation are “promoted” to the older 
generation. In this way the collector assures that recently created regions will contain high percentages of 
garbage and will be garbage collected frequently. The framework has been implemented in a library and tested 
against formidable real world applications. Hence the proposed system eliminates the possibility of storage-
management bugs and making the design of complex, object-oriented systems much easier. This can be 
accomplished with almost no change to the language itself and only small changes to existing implementations, 
while retaining compatibility with existing class libraries. 
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1. Introduction 
Dynamic memory management is often referred to as 
making memory requests from the operating system 
during different courses of program execution. All 
dynamic memory requests are satisfied through an area 
of memory called heap. In C++ this is done through the 
new operator. The operator is implemented by a call to 
malloc(), which grants a pointer to the object after 
allocating its memory on the heap. However this 
flexibility of acquiring memory dynamically comes at a 
price: i.e. it becomes the responsibility of the 
programmer to return dynamically allocated memory to 
the free pool, by using the delete  operator. The delete 
operator in turn calls free(), which reclaims memory 
allocated on the heap. When delete has been called, the 
object is destroyed and its destructor has been called. 
Further access to the pointer data can cause 
unpredictable results.  

The term "Garbage Collection" is an automated 
process of finding previously allocated memory that is no 
longer reachable by the program and then regaining that 

memory for future use. The garbage collector does this 
by several ways, one of which is traversing all pointers 
on the heap and finding weak pointers (pointer that 
allows the object memory to be recovered). In simple 
terms, use of Garbage Collectors leverages the 
programmer of worrying about calling delete every time 
new is called. Automated Garbage Collectors can reduce 
development cycles for large-scale software by 
approximately 30% and additionally reduce the memory 
leaks, resulting in a more stable system.  

Some systems also use reference counting for 
implementing garbage collection, however they have 
unnerving disadvantages of their own: 
1. The inability to reclaim circular structures i.e. 

circular structures can have non-zero reference 
counts, even when garbage.  

2. Often results in memory fragmentation.  
3. It’s expensive since every allocation / freeing 

requires addition/subtraction.  
 



Due to the above-mentioned problems, it is not a 
viable option to use reference counting as a primary 
answer to memory management problems especially 
when program code begins to increase. Nevertheless, 
there have been very few implementations of garbage 
collectors available in the public domain. This paper 
presents a unique methodology of heap allocation that is 
based upon copying garbage collection. Our work differs 
from previously reported work [1], [2] and [3] since it 
addresses garbage collection targeted to C++ systems. 
 
 

2. Garbage Collection Terms 
Garbage collection algorithms have been the subject of 
intense study, because they play such an important role 
in the performance of certain systems. Following are 
some of the terms that are often referred in elaborating 
garbage collection algorithms: 
 
2.1. Root Set 
The data that is immediately available to the program, 
without following any pointers. Typically this would 
include local variables from the activation stack, values in 
machine registers and global, static or module variables.  
 
2.2. Reachable Data 
Data that is accessible by following pointers (references) 
from the root set. Reachability is a conservative 
approximation of liveness and is used by most garbage 
collectors. 
 
2.3. Live Data 
Data that is reachable and that the program will actually 
make use of in the future. Garbage Collectors typically 
cannot tell the difference between live and reachable 
data, but compilers can. 
 
2.4. Forwarding Pointer 
In a collector that moves objects, a forwarding pointer is 
a reference installed by garbage collector from an old 
location to a new one. 
 
2.5. Weak Reference/Pointer  
A pointer to an object, which does not prevent an object 
from being reclaimed. If the only pointers to an object 
are from weak references, the object may disappear, in 
which case the reference is replaced by some unique 

value, typically by the language’s equivalent of a NULL 
pointer. 
 
 

3. The Garbage Collection Methodology 
This section describes the algorithm of garbage 
collection. Our heap is made up of several generations. 
As objects survive repeated scavenges, they are 
promoted to older generations. Higher generations are 
scavenged more frequently.  

Once memory allocation request is made, the 
garbage collector returns a pointer to the object (created 
in its own heap space). The collector also stores the 
address of the pointer (created on the processor stack) 
for future modifications. The addresses of all pointers, 
which are created via our collector, are maintained in a 
vector of void**. The size of the object is also recorded 
and used during generational copying. Moreover the 
memory for the recently created object is allotted from 
the youngest generation. 
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Figure 3.1: The Garbage Collector Design Approach 

 
In order to trace the scope of the pointer, we wrap the 
pointer returned by the collector in a templatized smart 
pointer class, Pointer<Class T>. Once the smart pointer 
runs out of scope, or a pointer assignment is made, the 
garbage collection is run, to verify integrity of all 
pointers. The garbage collection algorithm involves 
following steps:  
1. The GC iterates all the generations in the heap. 
2. For each object in a generation, the collector 

allocates space in the evacuation region and copies 
the contents of the old object into the new space. 



The collector copies the object in the newer space 
only if it lies in the reachable data. 

3. The collector then re-assigns all pointers on the stack 
and heap and the processor registers, which contain 
older address of the object evacuated recently. 

4. If no object is evacuated in a generation, then it 
implies that all the data in the generation is garbage 
and its memory must be reclaimed. 

5. Having a pointer to an object is an indication that the 
pointer is needed by some other object. Therefore 
the garbage collector is only allowed to recover an 
object if no pointers exist to it. 

 

4. C++ implementation 
Some of the main classes that implement the collector 
are: 
 
4.1. GC 
GC is the class for garbage collector. It has several 
static methods that can be used to have direct control 
over the whole process. The interface of the GC is 
shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2. Pointer<Class T> 
In our system, all weak pointers must be objects of type 
Pointer<T>. This class implements the functionality of 
proxy pointers. It overloads several operators including 
dereferencing operator, indirection operator, assignment 
operator and automatic conversion operators. Garbage 
collection process is invoked whenever a pointer 
assignment is made. In case the pointer runs out of 
scope, then collection is invoked and destructor on that 
object is explicitly called. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3. Generation 
The GC manages its generations on the heap by a class 
Generation. Each generation has a table of contiguous 
memory locations. Therefore by having newly created 
objects close together, the program has fewer page 
faults and the objects will also reside in the processor 
cache. The generation with is the highest number 
contains the objects most recently created. Each 
generation has certain capacity and when the objects on 
heap overrun that capacity, a new generation is 
automatically created.  

With the framework of generational agglomeration, 
our system has several advantages, which are: 
1. Advancement policy i.e. the collector knows when to 

consider an object old. 
2. Heap organization i.e. the collector can be 

configured for the number and size of generations 
the heap should be divided into. 

3. Cross-Generational references.  

class GC 
{ 
private: 
// Array of pointers to pointers (made on stack) 
static std::vector< void** > _PointersOnStack; 
// Holds the size of objects made on the stack 
static std::vector< unsigned int > _SizeOfObjects; 
// Holds all the generations  
static std::vector< Generation* > _Generations; 
// Holds total bytes allocated on the heap 
static int BytesAllocated;   
 
public: 
// Invokes the GC for all generations 
static void Collect(); 
// Invokes the GC up to the generation specified 
static void Collect( int Generation ); 
// Allocates memory from the garbage collector 
static void* operator new( size_t, void** pPtr ); 
// Gets maximum number of generations 
static int GetMaxGeneration(); 
// Gets the total memory allocated on the heap 
static int GetTotalBytesAllocated(); 
// Returns the total number of generations  
static int GetGenerationCount();  
// Sets the total bytes allocated by the GC 
static void SetTotalBytesAllocated( int Value ); 
}; 
 

template <class T> class Pointer  
{ 
// Invoked on assignment and destruction 
void Destroy(); 
public: 
T* p; // Wrapped pointer 
Pointer( T* p_ = NULL ); // Constructor 
~Pointer();// Destructor 
// Assignment operator 1 
Pointer& operator = (Pointer<T> & p_); 
// Assignment operator 2 
Pointer& operator = (T* p_); 
// Automatic type conversion to T* 
operator T*() { return p; } 
// Dereferencing operator 
T& operator*() { return *p; } 
// Pointer indirection operator     
T* operator->() { return p; }     
// For automatic type conversion during new call 
operator void**(); 
}; 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Experiments And Results 
Objects allocated with the built-in "operator new" are 
uncollectable. Only objects allocated with overloaded 
new operator that takes address of pointer as the second 
argument are collectable. 
 
 
 
 
 
 
The following code demonstrates differences in object 
creation and usage by the above-mentioned collector:  
 
 
 
 
 
 
 
The toolkit has been run on various platforms including 
Unix/Solaris and WinNT/2000. It has been successfully 
tested with several compilers (Microsoft Visual C++, 
Borland C++ an GNU). Several algorithms, including 
DSP algorithms (FIR, IIR Filter etc) and common data 
structure (link lists, stacks, queues, trees etc) algorithms 
have been developed using the garbage collector. Using 
the proposed collector, the development time reduced 

drastically. We also concluded that the cost of garbage 
collection was 15-20% of the overall execution time. In 
order to prove the quality of the collector, we also 
overloaded global new and delete  operators. Using a 
simple count of a variable i.e. incrementing it in new and 
decrementing it in delete , we were able to show that our 
collector produced absolutely no memory leaks. 
Following code demonstrates some of the code that we 
wrote for testing our collector. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Conclusions And Future Work 
We have introduced a garbage collector framework and 
presented the interface for such a toolkit. The toolkit 
approach is itself novel and includes a number of 
additional innovations in flexibility, performance and 
interaction between the compiler and the collector. Our 
future endeavors would focus on testing it against further 
real world applications. Additionally we would also work 
on redesigning our collector, in order to make it work in 
parallel with actual application execution. 
 
 
 
 

class Generation   
{ 
private: 
// The generation number 
int _GenerationNumber; 
// Pointers to the objects in the generation 
std::vector< void* > _Pointers; 
// Points to the top of memory in the generation 
void* _pTopOfMemory; 
// Returns maximum size for the generation 
static int MaxSize; 
// Table of memory inside generation 
BYTE MemoryTable[MAXSIZE]; 
public: 
// Gets the remaining memory of the Generation 
int GetRemainingMemory() const; 
// Returns maximum memory for one generation 
int GetTotalMemory() const;  
// Grants memory for an object, returns its void* 
void* Allocate( size_t Size ); 
// Gets the generation number 
int GetGenerationNumber() const; 
// delete operator  
void operator delete( void* v ); 
} 

void* operator new(const size_t sz, void** pVoid ) 
{ 
 return GC::operator new( sz , pVoid ); 
} 
 

// Traditional approach - memory leaks 
int* pInt = new int;  
 
// Our approach - no memory leaks 
Pointer<int> pInt = new(pInt) int;  
 

#define TEST_COUNT 10000 
 
for( int i = 0; i < TEST_COUNT; i++ )  
{ 
int* pInt = new int; 
*pInt = 344;  
} // memory leaks 
   
for( int i = 0; i < TEST_COUNT; i++ )  
{ 
Pointer<int> pInt = new(pInt) int; 
*pInt = 233;  
} // Garbage collection is invoked 
 
// Garbage Collection Test Functions 
 
// The counter is incremented 
void* operator new( unsigned int cb )  
{ 
g_Count++; 
return malloc( cb ); 
} 
 
// The counter is decremented 
void operator delete( void* v )  
{ 
g_Count--; 
free( v ); 
} 
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