
Incorporating Pattern Prediction Technique for Energy Efficient
Filter Cache Design

KUGAN VIVEKANANDARAJAH, THAMBIPILLAI SRIKANTHAN,
SAURAV BHATTACHARYA, PRASANNA VENKATESH KANNAN*

Centre for High Performance Embedded Systems *University of California,
Nanyang Technological University Santa Barbara

SINGAPORE. USA.

URL: http://www.chipes.ntu.edu.sg

Abstract: - A filter cache is proposed at a higher level than the L1 (main) cache in the memory hierarchy and is
much smaller. The typical size of filter cache is of the order of 512 Bytes. Prediction algorithms popularly based
upon the Next Fetch Prediction Table (NFPT) helps making the choice between the filter cache and the main
cache. In this paper we introduce a new prediction mechanism for predicting filter cache access, which relies on
the hit or miss pattern of the instruction access stream over the past filter cache lines accesses. Unlike NFPT,
which makes predominantly incorrect miss-predictions, the proposed Pattern Table based approach reduces this
miss prediction. Predominantly correct prediction achieves efficient cache access and eliminates cache-miss
penalties. Our extensive simulations across a wide range of benchmark applications illustrates that the new
prediction scheme is efficient as it results in improved prediction up to 99.99%. Moreover, it reduces energy
consumption of the filter cache by as much as 25% compared to NFPT based approaches. Moreover, the
technique implemented is elegant in the form of hardware implementation as it consists only of a shift register
and a Look up Table (LUT) and is hence area and energy efficient in contrast to the published prediction
techniques.

Key-Words: - Cache, Filter-Cache, Energy Efficient Cache, Pattern Prediction, NFPT, Hit-Miss Pattern

1. INTRODUCTION
With high clock speed and smaller feature size based
CMOS design, the power consumed in the embedded
microprocessor has been increasing with every
generation of microprocessors (Figure 1). Due to
this, architecture level low-power techniques have
been active areas for research in recent times.

Instruction caches often account for more than
50% of die area and more than 40% power
consumption in high-end embedded processors [1].
Though future process techniques can be expected to
facilitate bigger instruction caches to be fabricated on
chip, power and access time will continue to remain
limiting factors. This highlights the need for a
memory hierarchy design that maximizes the
instruction-hit rate, while reducing access time and
energy. Filter cache [1] had been proposed, to
achieve 58% power saving at the cost of 21%
performance loss. Subsequently Next Fetch
Prediction Table (NFPT) [2] based prediction was
introduced for predictive access of the filter cache,
rather than a direct hierarchical access, thereby

limiting performance degradation to 1.3%, at the cost
of reduced energy savings of 31.5% for the
instruction cache.

Figure 1. Extracted from Ref [13]

2. REQUIREMENTS OF
PREDICTION TECHNIQUES FOR

FILTER CACHE
The filter cache, a small auxiliary cache structure
between the instruction cache and the execution core
reduces power by trading performance. This cache
hierarchy is well known as a method for reduction of
instruction cache power. However, the performance
degradation can be limited to acceptable levels by
having a predictor, which predicts whether the next
instruction to be fetched would be found (hit) in filter
cache or not (miss).

Incorporation of the predictor leads to three major
operating scenarios:

a. If the hit or miss prediction is correct then
performance is maintained and power
consumption is possible.

b. In the case of an incorrect hit-prediction,
performance is sacrificed as the data is now
fetched from L1 cache or a cache memory
further away in the hierarchy.

c. In the case of an incorrect miss-prediction,
where the data is actually in the filter cache
but is predicted not to be, possible savings in
power and, increased performance is
sacrificed.

Thus it is important to have an accurate predictor,
which is not pessimistic but realistic in its
predictions. Furthermore, the power saving also
depends upon the accuracy of the predictor and the
assumptions made in the prediction algorithms.

A filter cache stores multiple instruction lines
and it utilizes spatial and temporal locality. However,
since it occupies the top-most level in the cache
hierarchy, it is first accessed for every instruction
fetch. Consequently, the small size of the filter cache
results in higher miss rate, and thus performance is
degraded.

3. NFPT VS. (PROPOSED)
PATTERN BASED PREDICTION

In this section we briefly elaborate the popularly used
NFPT predictor and the proposed Pattern Based
prediction scheme.

3.1 NFPT Based Predictor
NFPT based prediction, proposed by Weiyu Tang et
al, has been shown to achieve high prediction

accuracy, thereby improving the performance with
respect to hierarchical cache memory organization.
However, the NFPT based predictor works on the
assumption that the filter cache being small would be
able to contain only small loops. Not surprisingly the
NFPT based predictor is only able to capture
temporal locality within small loops to predict
whether the next instruction is expected to be in the
filter cache. To predict, it also utilizes the fact that the
same control path might be taken repeatedly.

In the event of a cache line change, if the tag of
the current fetch address is equal to the tag of the
predicted next fetch address based on the previous
control path, as tabulated in the NFPT, then a hit in
the filter cache is predicted. Otherwise the main
cache is accessed. The assumption here is that, if the
control path is in a small loop, the tags of the current
fetch address and the predicted next fetch would be
equal, and only if it is part of a small loop would it
remain in the cache until the next iteration.
Otherwise, it would be flushed out. Though this
assumption holds true for small cache sizes, where
only single small loops can be stored, it fails to work
when the cache size increases, when it could hold
more than one small or large loop. In such a case, the
mechanism tends to wrongly predict a miss in the
filter cache more often, thus accessing the main
cache and eventually losing the advantage of the
filter cache.

3.2 Pattern Based Predictor
 Motivation for using pattern based predictor comes
from the fact that though NFPT based predictor gives
high prediction accuracy, its frequent inaccurate miss
predictions result in expensive main cache access,
though the instruction could've been located in the
filter cache. This increases the instruction access
power, and more importantly reduces performance in
terms of average memory access cycle time.

Two level adaptive branch predictors have been
researched quite extensively, and various kinds of
two level pattern based predictors are being proposed
[9] [10] [11]. Numerous studies have shown which
predictors and configurations best predict the
branches, in a given set of benchmarks. Some studies
have also investigated effects, such as pattern history
table interference, that can be detrimental to the
performance of these predictors.

Since in our setup, we are only interested in
predicting whether the next fetch source is the filter
cache or not, we only require the pattern of the

history of cache lines being present or otherwise in
the filter cache. Hence, even a small shift register and
pattern history table should be sufficient to reduce
the interference.

Figure 2 shows the working of pattern-based
predictor. It is based on the global two level adaptive
branch predictor known as Gag [10]. Drawing from
the insight provided by branch prediction researches,
here we assume that next instruction fetch address
will be current fetch address plus “4”. We access the
predictor only when cache line changes are
encountered. This is because we assume that most
branches are not taken. Hence, we predict a hit in the
filter cache if the cache line being accessed is
unchanged. In the event of a change, we access the
pattern history table corresponding to the shift
register value, and the prediction of a hit or a miss in
the filter cache is made depending on whether the
pattern history table value reads above the pre-set
threshold or below. For a two-bit saturating counter
pattern history table, a threshold value of 2 is used.
When the outcome of the prediction is known, the
shift register and pattern history table values are
accordingly updated, as in the normal branch
predictor scheme.

Based on the above analysis the proposed Pattern
based predictor is preferred over NFPT as an efficient
alternative as it addresses the performance concern at
the same time reducing the power losses. It is
basically an alternative prediction scheme based on
two-level adaptive correlated branch predictor, which
we call as Pattern Based Predictor. This scheme
relies on the reoccurrence of same patterns in the
sequence of hits and misses in the program flow or
instruction stream over the past n-cycles. The
working of Pattern Based Predictor is explained in
the next section. Following which it is shown that the
Pattern Based predictor produces the best
performance with respect to power and performance
compared to the existing prediction techniques for
most cases.

4. EXPERIMENTS
Simple Scalar [6] tool set with ARM ISA was used
for these experiments. NFPT and pattern based
predictors are implemented with the simple scalar
tool set. To measure the relative access time and per
access energy CACTI version 3.0 [12] was used with
0.18um technology. We simulated NFTP with full
next fetch address for performance studies and 4-bit
next fetch address as specified in the literature [2]

As shown in the published results the prediction
accuracy will be of around 97% [2] of the figures

given in this paper for NFPT implemented with 4-bit
tags as all these results are with full next fetch
address. This was done to compare the Pattern based
predictor with best NFPT based configuration.

Figure 2. Pattern Prediction Algorithm

Figure 3. Working of two-level adaptive predictor

These experiments were based on 5-bit shift register
and 32-entry (25) pattern history LUT with pattern
based predictor as it more than sufficient to contain
all the patterns required to predict the hit/miss
pattern.

Mediabench [7] and Mibench [8] benchmark
programs were selected as they characterize
embedded applications working sets for high
performance embedded processors. All the
applications are compiled with gcc 2.93 with -03
optimization level and were run to completion.

Performance was measured as the prediction
accuracy, i.e. the percentage of predictions that
resulted in correct predictions. The other important

comparison metric was the percentage cache access
energy reduction, i.e. the percentage cache energy
reduction on cache hierarchy for executing the
particular program compared to the NFPT based
approach. For all the experiments an 8KByte L1
cache with 32Byte line size and 32 way associativity
was used.

4.1 Results
In this section we compare the prediction accuracy
and percentage energy reduction achieved due to
pattern-based predictor compared to the NFPT based
predictor for 256, 512, 1024 Byte filter cache sizes.

Tables 1, 2, 3, and 4 shows the prediction accuracy
and relative access energy of filter cache sizes of 256
Bytes, and 512 Bytes.

With 256 Bytes filter cache (FC) for the entire
benchmarks pattern based predictor’s prediction
accuracy is better than NFPT based prediction
accuracy and Pattern based predictor achieves better
access energy saving except for Patricia and Susan
bench marks with full next fetch address bits as
described in the previous section. Average energy
reduction achieved with pattern based predictor for
the entire benchmark is 8.90 % with 256 Byte filter
cache.

For 512 Byte filter cache, pattern predictor
achieves better prediction accuracy except for
Dijkstra, Ispell Patricia, and Susan. Pattern based
predictor achieves better access energy saving except
for Patricia, Dijkstra and Susan bench marks for
these two filter cache sizes. The average energy
savings due to pattern predictor for this benchmark is
4.8 %.

Benchmark NFPT Pattern
based

ADPCM Encoder 98.01 99.97
ADPCM Decoder 97.51 99.98

Dijkstra 90.40 92.67
Ispell 92.17 92.55

jpeg decoder 95.49 97.76
Jpeg encoder 92.55 95.89
Patricia 91.65 91.98
Qsort 88.36 91.27
Susan 99.24 99.27

Table 1: Prediction accuracy (%) for 256 B FC

Benchmark % Energy Savings due
to pattern predictor

ADPCM Encoder 21.62
ADPCM Decoder 25.82

Dijkstra 0.43
Ispell 0.42

jpeg decoder 7.67
Jpeg encoder 14.85
Patricia -0.86
Qsort 10.24
Susan -0.13

Table 2. Instruction access energy % change for
pattern based predictor for 256 B FC

Benchmark NFPT Pattern
based

ADPCM Encoder 98.0251 99.99
ADPCM Decoder 99.9752 99.98

Dijkstra 97.0689 95.13
Ispell 93.164 92.71

jpeg decoder 96.0977 97.53
Jpeg encoder 95.349 98.05
Patricia 92.0956 91.94
Qsort 90.9285 94.04
Susan 99.3276 99.26

Table 3. Prediction accuracy (512 B FC)

Benchmark NFPT
ADPCM Encoder 20.33
ADPCM Decoder 0.01

Dijkstra -12.81
Ispell -1.07

jpeg decoder 7.86
Jpeg encoder 18.12
Patricia -0.59
Qsort 11.56
Susan -0.25

Table 4. Instruction access energy % change for
pattern based predictor for 512 B FC

Percentage
power reduction
Due to pattern

predictor

256
Filter
cache

512
Filter
cache

1024
Filter
cache

Maximum 25.82 20.33 13.31
Average 8.90 4.8 3.9
Minimum -0.86 -12.81 -1.11

Table 5. Max/Min/Avg Power Savings over diff.
Benchmarks for various Filter cache sizes

From tables 1-5 it is quite clear that the average
energy savings reduces as the filter cache size is
increased.

It is also evident that the NFPT based predictor
requires significantly more area to implement the
prediction algorithm and this will also increase with
increase in filter cache size where as with pattern
based predictor it is constant for particular shift
register size and pattern history table.

5. CONCLUSIONS
In this paper we propose a prediction algorithm,
which notably improves energy efficiency as
compared to NFPT based approach, to predict
whether the next fetch will be hit or miss in filter
cache. The scheme provides up to 25.82% energy
efficiency as compared to the NPFT based scheme.
The mechanism also achieves better prediction
accuracy with respect to NFPT for most benchmarks
over different filter cache sizes. It is also easily
appreciated that the pattern based prediction can be
easily implemented in hardware unlike NFPT based
prediction as it only requires a shift register and a
LUT. Finally, our investigation firmly concludes
that the benefit of the filter cache is at its best when
the size of the same is minimal (Table 5).

References:
 [1] Kin, J.; Munish Gupta; Mangione-Smith, W.H.
“The Filter Cache: An Energy Efficient Memory
Structure“ Microarchitecture, 1997. Proceedings.
Thirtieth Annual IEEE/ACM International
Symposium on , 1997

[2] Weiyu Tang; Gupta, R.; Nicolau, A. “Design of a
predictive filter cache for energy savings in high
performance processor architectures” Computer
Design, 2001. ICCD 2001. Proceedings. 2001
International Conference on, 2001

[3] Anderson, T.; Agarwala, S. “Effective hardware-
based two-way loop cache for high performance low
power processors” Computer Design, 2000.
Proceedings. 2000 International Conference on, 2000

[4] Bellas, N.; Hajj, I.; Polychronopoulos, C.;
Stamoulis, G. “Energy and performance
improvements in microprocessor design using a loop
cache” Computer Design, 1999. (ICCD '99)
International Conference on, 1999

[5] Lea Hwang Lee; Moyer, B.; Arends, J.
“Instruction fetch energy reduction using loop caches
for embedded applications with small tight loops”
Low Power Electronics and Design, 1999.
Proceedings. 1999 International Symposium on,
1999

[6] www.simplescalar.com

[7] Chunho Lee, Miodrag Potkonjak and William H.
Mangione-Smith; “MediaBench: A Tool for
Evaluating and Synthesizing Multimedia and

Communications Systems” in Proceedings of the 30th
Annual International Symposium on
Microarchitecture, pp. 330-335, Dec. 1997.

[8] D. Ernst, T. M. Austin, T. Mudge and R. B. Brown
“MiBench: A free, commercially representative
embedded benchmark suite,” In proeedings of the 4th
annual IEEE International Workshop on Workload
Characterization, pp. 3-14, Dec. 2001.

[9] J.E. Smith, ”A study of branch prediction
strategies” Proc 8th Ann. Int’l Symp. Computer
Architecture (ISCA 81), IEEE CS Press, Los
Alamitos, calif., 1981 pp.135-148

[10] T.Y.Yeh and Y.N.Patt, “Alternative
Implementation of Two-Level Adaptive Branch
Prediction” 19th Ann. Int’l Symp. Compute
Architecture. (ISCA 92), IEEE CS Press, Los
Alamitos, calif., 1992 pp.124-124

[11] S.T.Pan, K. So, and J.T.Rehman, “Improving the
Accuracy of dynamic branch Prediction Using
Branch Correlation” Proc. 5th Int’l Conf.
Architecture Support for Programming Languages
and Operating Systems (ASPLOS-V), IEEE CS
Press, Los Alamitos, calif., 1992, pp. 76-84.

[12] P Shivakumar and N Jouppi “An Integrated
Cache Timing, Power and Area Model”, Tech. Report
, Compaq Western Research Lab, Palo Alto, Calif.,
2001/2

[13] Fred Pollack “New Micro architecture
Challenges in the Coming Generations of CMOS
Process Technologies” Micro32 Conference, Haifa
Israel. Nov'99

	INTRODUCTION
	REQUIREMENTS OF PREDICTION TECHNIQUES FOR FILTER CACHE
	NFPT VS. (PROPOSED) PATTERN BASED PREDICTION
	NFPT Based Predictor
	Pattern Based Predictor

	EXPERIMENTS
	
	
	Benchmark

	Benchmark
	Benchmark
	Benchmark
	CONCLUSIONS

