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Abstract:- This paper presents the theory and simulation results of a GPS-based Azimuth/Gradient determination 
instrument for a land vehicle, using two GPS receivers to realize interferometry. Our purpose is to design a system, 
which is both robust and accurate. A simulation system is designed and developed to simulate the  GPS 
constellation, the required carrier phase observation and ephemeris, the dynamics of the land vehicle and the signal 
processing for Azimuth/ Gradient determination. This system uses the interferometric processing of the GPS L1 
signals to determine the Azimuth/ Gradient using Euler angle rotations. On the basis of the carrier phase 
observation model, the non-linear equation is  solved iteratively. After coordinate system transformation, the 
Azimuth/ Gradient are computed  in body frame. Utilizing the proper maneuver of the vehicle, the integer 
ambiguity is resolved by an instantaneous method, i.e. solution for the GPS integrated carrier Doppler wavelength 
ambiguities (integer ambiguity) doesn’t depend on the observations over a long time. In this way, further 
improvement in  the robustness of the  realization is achieved because the system could be quickly reset and 
initialized at any time. This instantaneous property, together with the cycle slip detection routine, renders the 
system resistant to cycle slip. Results are presented using simulated GPS L1 signal with the effects of multi-path, 
ionosphere, troposphere and receiver electronic noise, proving its accuracy and stability. 
 
 
1. Introduction 
Azimuth determination is a problem, which is key to 
the control system of a land vehicle. Conventionally, 
the azimuth information is achieved using magnetic 
components in land vehicle. In this paper, a 
procedure for Azimuth/ Gradient determination using 
Global Positioning System (GPS) interferometry is 
presented. The use of phase difference measurements 
of GPS signal provides a novel approach for the 
Azimuth/Gradient determination [1,2,3]. This 
approach has been successfully applied to land, air, 
sea, and space based vehicle. The procedure of 
attitude determination generally involves a two-step 
process. First, in the double differenced phase 
observation interferometry process, the unknown 
number of integer wavelengths between a given pair 
of antennas must be found before the calculation of 
Azimuth/Gradient. Second, the resolution of vehicle 
Azimuth/Gradient is achieved using carrier phase 
interferometry information and the estimated integer 
ambiguity in the system model.  
 

The solutions of this unknown integer ambiguity are 
generally available in two categories, “instantaneous” 
(motionless) or “dynamic” (motion-based). 
Instantaneous methods rely on the fact that the 
integer ambiguities are not completely arbitrary 
numbers and are constrained to be integers within a 
known range defined by the baseline length and GPS 
signal wavelength. Using an exhaustive search over 
all the possible ambiguity combinations, the 
instantaneous ambiguity resolution is achieved [4]. 
 
Dynamic techniques for resolving integer ambiguity 
require phase observation data collection for a certain 
period, which normally ranges from 10 minutes to 
few hours [5]. A batch solution is then carried out to 
get the ambiguity resolved. The duration of 
observations must ensure that certain amount of 
motion of the line of sight from the GPS receiver to 
the GPS satellite occurs during the observation 
period. This is a well-developed method, but the  
main disadvantage, compared to the instantaneous 
method is the requirement of observation for a long 
time. The other disadvantage is that the baseline 



 

 
 
 

needs to remain stationary during the observation 
period. 
 
Motion-based techniques of integer ambiguity 
resolution rely on the fact that either the motion of 
GPS line of sight or the vehicle motion is significant 
enough. If we can utilize the proper maneuver of land 
vehicle, it is easy to achieve the significant motion of 
GPS line of sight. 
 
2. Interferometry Process 
Carrier phase observation is the only applicable 
observation for the purpose of Azimuth/Gradient 
determination using GPS [6]. Two antennas forming 
a baseline provide the GPS phase observations to 
determine the Azimuth/Gradient. The configuration 
of single baseline is shown in Fig.1. 

 

 
Fig 1. Single Differenced Model using GPS Carrier Phase 
Observation 
 
Let R1 and R2 denote the two GPS antennas 
mounted at the  ends of the baseline. The line of sight 
vector with respect to the ith GPS satellite is denoted 
as iG . The line of sight vectors of the two antennas 
are same because the two antennas are near enough 
[7]. From the two receivers, we get two carrier phase 
observations. 
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The superscript i means this observation is from the 
ith GPS satellite. The subscript 1 or 2 means that the 

observations are from the GPS receivers 1 or 2. The 
following notations are adopted in the paper. 
λ:  Wavelength of L1 carrier phase  
              (19.03 cm). 
φ:  carrier phase observation in units 
              of carrier cycles 
ρ: geometric range between the GPS 
              satellite and the GPS receiver 
c:  speed of light 
∆t: the satellite clock error with respect to 
              GPS time, including S/A effects 
∆T: the receiver clock error with respect  
              to GPS time 
N: Integer Ambiguity of the carrier phase  

measurement from  the GPS receiver   
d ion: the ionospheric delay error on the  
             carrier phase measurement 
d 

drop: the tropospheric delay error on the 
              carrier phase measurement 
d 

mp: the multipath effect on the carrier  
              phase measurement 
ε: other carrier phase measurement error 
Subtract Eq.(2) from Eq.(1) to eliminate 
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i , d, d∆t and define the following.  
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i 21 φφφ −≡∆  is the difference between the phase 
observations of the receivers located at the ends of 
the baseline. ii

i 21 ρρρ −≡∆  is the difference 
between the ranges from satellite to the receivers. 

21 TTT ∆−∆≡∆  is the differenced clock bias 
between two receivers. ii

i NNN 21 −≡∆  is the single 
differenced ambiguity between receiver 1 and 2 with 
respect to the same ith satellite and 

ii
i 21 εεε ∆−∆≡∆  represents the remained error 

between receiver 1 and 2. From (1) and (2) we 
obtain, 

iiii NTC ελφλρ ∆−∆⋅−∆⋅+∆⋅=∆            (3)  
Due to the short  spacing between the antennas in the 
attitude determination system, the orbital, 
tropospheric and ionospheric errors cancel out. 
From the geometry shown in the Fig.1, we get,  

ii
T GB ρ∆=⋅     (4) 

where B is the baseline vector and Gi is the line of 
sight vector as is shown in Fig.1. We now obtain the  
second difference of the observations from different 
satellites because there is still one major error, 



 

 
 
 

receiver clock error existing in the single differenced 
phase observation.  Thus we get, 

( ) ijijijij N ελφρ ∆∇+⋅∆∇−∆∇=∆∇           (5) 
where ji

ij ρρρ ∆−∆≡∆∇  is the difference 
between two single differenced ranges,  

jiij φφφ ∆−∆≡∆∇  is the difference between two 
single differenced phase observation and 

ji
ij NNN ∆−∆≡∆∇ is the double differenced 

integer ambiguity between receiver 1 and 2 with 
respect to two GPS satellite i and j. We will use the 
motion-based technique to resolve this unknown 
integer ambiguity value. ji

ij εεε ∆−∆≡∆∇  is the 
remaining error after double differenced process. 
Receiver clock bias between receiver 1 and 2 is 
cancelled out by doing double difference process. 
From Eq.(4) and Eq.(5), double differenced phase 
observation is written as follows: 

( ) ij
ji

T GGB ρ∆∇=−    (6) 

Let zGBT =⋅                                                (7) 
where ji GGG −= , ijz ρ∆∇= . 
The complete direction cosine matrix A for the 
overall rotation is the matrix product of the three 
matrices for the individual rotations, 

[ ]Tzyx δθδθδθδθ = . A is the attitude matrix, 

an orthogonal matrix (i.e. 33x
T IAA =⋅ ) representing 

the transformation between the body and reference 
frames [1]. The transformation matrix could be 
reduced into a simpler expression when the three 
Euler angles are small perturbations. 
 

[ ] 00 )( AIAAA X ⋅+≈⋅= δθδ                 (8.a) 

In the present work the attitude states are only the 

azimuth ( zδθ ) and the gradient ( yδθ ) angles of the 

vehicle and hence xδθ  = 0. This leads to, 
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where the A0 is the attitude matrix before Euler 
perturbation. The baseline vector B in Eq.(7),  is in 
the body frame. Since the line of sight vector G is 

known in the reference frame, it should be rotated 
into body frame using the attitude matrix A. Hence 
by replacing the line of sight vector G in Eq. (7) by 

GA ⋅ , we deduce the attitude determination model,  
GABz T

s ⋅⋅=      (9) 
With Euler perturbation δθ , this attitude 
determination model is expressed as: 

[ ]( ) GAIBz XT
s ⋅⋅δθ+⋅= 0                 (10) 

Differentiating the equations (9) and (10) [2, 5, 10], 
we get the linearized  model for small perturbation: 

[ ] GABz XT
s ⋅⋅δθ⋅=δ 0                (11) 

Eq.(11) can be further written as: 
'δθδ ⋅= Ez                            (12) 
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[ ]T

zy δθδθδθ =' .                                   (13) 
 
Equation  (12) is written as: 

( ) [ ] '0 δθ⋅⋅⋅=δ X
s

T BGAz               (14) 
The process of attitude determination consists of 
converting these double differenced carrier phase 
measurements into attitude solution. Assume that we 
have m baselines and n double differenced phase 
observations, an optimal attitude solution [8] for a 
given set of phase measurements is given by a 
function of desired attitude Euler angle as follow: 
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Because only two GPS receivers are used here and 
they form a single baseline, m=1. Equation (15) is 
then  reduced to: 
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Normally, the available number of double 
differenced carrier phase measurements is greater 
than the number of unknown Euler angle parameters 
namely 2. In order to solve this minimization 
problem, we  use Least Square method to estimate 

'δθ . 
 
We first rewrite Eq.(14) as: 

'δθδ ⋅= Ez      (17) 



 

 
 
 

Where 
[ ]Tnzzzz δδδδ L21=

[ ] [ ] 
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Because there is only one baseline available, i=1. 
A short form of Eq.(12) is  as: 

'δθδ ⋅= Ez              (18.a) 
( ) [ ]X

s
T BGAE ⋅⋅= 0            (18.b) 

The Least Square Estimation is given as: 
( ) zEEE TT δδθ ⋅⋅⋅=

−1
'               (19) 

Minimizing Eq.(16) means finding the attitude matrix 
A corresponding to the Azimuth/Gradient 
information. 
 
3. Integer Ambiguity Resolution 
Recall that in the Double Differenced Phase 
Observation model in Eq. (7), the integer ambiguity 
is still unknown. In this paper, the ambiguity is 
solved instantaneously by utilizing the proper 
maneuver of the vehicle, known as the ‘swap’ 
method [7], i.e. the solution doesn’t depend on the 
observation over a long time.  The antenna swap 
method is described in Fig.2. 
 

 
Fig. 2 Antenna swap method 

 
On the structure of the vehicle, find 2 points forming 
one baseline B. Mount two GPS antennas at the ends 
of the baseline B, forming the baseline vector B1. 
The vector in the reversed direction after the 180 
degree rotation of the satellite is the baseline vector 
B2.  Now,    12 BB −=     (20) 
From Double Differenced Phase Observation model, 
Vector B1 can be expressed as: 
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Vector B2 is then expressed as: 
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Eq.(20) could be explicitly written as: 
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Substitute Eq.(21) and Eq.(22) into Eq.(23), we get: 
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Treating the carrier phase measurement error as a 
negligible value, by taking the difference between 
left side and right side of Eq.(24), the ambiguities is 
eliminated at all. Divide it by 2, we get: 
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Omit the superscript ij for simplicity reason, Eq.(5) 
could be rearranged as:  
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The integer ambiguity hidden in the carrier phase 
observation is found now, after the antenna swap 
initialization procedure. 

2
'φφ ∆∇+∆∇=∆∇ N    (27) 

Once the integer ambiguity is resolved, provided the 
GPS receiver successfully keeps tracking the GPS 
signal, the integer ambiguity won’t change 
subsequently. In all the future measurement, the only 



 

 
 
 

unknown is ijρ∆∇  in Eq.(5), and it could be 
computed directly. 
 
Three considerations about integer ambiguity 
resolution appear here. One is the realization of the 
swap procedure. If the baseline is fixed to the vehicle, 
a proper maneuver is required for the Motion-based 
integer ambiguity resolution. Suppose that the head 
of the vehicle is pointing to the west when stationary, 
and after the initialization period, a 180-degree turn, 
the head of the vehicle turns to be pointing to the east. 
Then whole integer ambiguity resolution is 
completed. From that epoch onwards, if only the 
cycle slip doesn’t happen, the azimuth/gradient 
information could be achieved with every epoch’s 
phase observation. 
 
Another consideration is about the robust property. 
The system could get more than 1 resolved integer 
ambiguity set if a rotation greater than 180-degree is 
performed. Theoretically, all the resolved integer 
ambiguity sets should have same value. With this 
hypothesis, more available sets of data provide the 
redundancy. 
 
The last consideration is that the GPS carrier phase 
observation is discrete in time, and the sampling time 
normally won’t match the exact time point that the 
baseline rotates half cycle. When the dynamic of the 
vehicle is very high, the error of mismatch can cause 
wrong integer ambiguity resolution. New method to 
achieve accurate 180 degree turn must be found. 
 Assume that the rotation angular velocity of the 
vehicle is ω, and the carrier phase sampling interval 
is T. In an arbitrary time epoch, the phase 
information in the initial direction is recorded. After 
n samples, we achieve the phase information in the 
reversed direction. n is given by this equation:  

ωπ*2*)5.0(* += kTn , k=1,2,3… 
There is still remained error of angular rotation. But 
what we use here is only the integer part of the 
processed output. After the integer ambiguity 
resolution, it remains constant.  The fractional part of 
double differenced phase observation, which is 
crucial to the accuracy, is obtained from the phase 
observation directly and is not related to the integer 
ambiguity resolution step. 
 

4. Experiment Results 
Currently, in order to test the workability of this 
algorithm, a computer simulation for 
azimuth/gradient determination has been carried out 
successfully. Based on the successful computer 
simulation a prototype hardware setup is being 
planned. This simulation uses single frequency GPS 
L1 signal.  The accuracy is generally proportional to 
the length of the baseline; the longer the baseline, the 
better will be the accuracy we could achieve. In this 
experiment, we choose  baseline length is assumed to 
be 1m. 
Suppose the vehicle is running on a flat ground, the 
gradient is always zero, so the gradient angle is set to 
be zero in this simulation. Arbitrarily set the azimuth 
to be in a sinusoidal waveform. Use the attitude 
information and assumed velocity, the position is 
deduced iteratively, see Fig 3. 

 
                           Fig.3 Simulated Driving Path 
  
At each time epoch, the GPS satellite in view is 
simulated together with their carrier phase 
observation from the two GPS receivers. In order to 
test the algorithm for its convergence, the simulations 
were first carried out with noise free measurements. 
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          Fig.4 Gradient Determination Result (noise free) 
 



 

 
 
 

In Fig.4, the preset true value of gradient, zero is 
compared with the gradient determination result; the 
error is in the level of 10-4 rad. In Fig.5, the azimuth 
determination result matches the preset sinusoidal 
waveform.  The error between the determination 
result and preset value is shown in Fig.6. 
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         Fig.5 Azimuth Determination Result (noise free) 
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          Fig.6 Azimuth Determination Error (noise free) 
 
In the subsequent simulations, the noise of carrier 
phase observation is included besides the errors due 
to, the multipath, troposphere and ionosphere effect, 
receiver noise, etc. It proves the robustness of this 
approach in the presence of noise. The determined 
result still tracks the preset value, but the 
determination error residue is larger than the result 
using noise free phase observation. 
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Fig.7 Gradient Determination Result (with noise) 
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Fig.8 Azimuth Determination Result (with noise) 
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Fig.9 Azimuth Determination Error (with free) 
 
5. Conclusion  
In this paper, a comprehensive introduction and 
simulation about azimuth/gradient determination 
using GPS phase observation are presented. It utilizes 
proper maneuver of the land vehicle and solves the 
integer ambiguity quickly and accurately. This 
simulation uses the GPS L1 phase observation and 
shows the good performance of this algorithm in land 
vehicle application. A prototype road experiment is 
under development. 
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