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Abstract: -  The paper presents new mathematical principle, based on the Perfect Distribution 
Phenomenon, namely the concept of Perfect Ring “Vyazankas” (PRV)s, which can be  used  for finding 
of the optimal placement of structural elements in spatially or temporally distributed acoustic or 
underwater acoustic systems and generalization of these methods and results to the improvement and 
optimization of the systems, including positioning of elements in the system (e.g. an active sonar) with 
respect to resolving ability, and the other operating characteristics of the system, as well as high-
performance coding in acoustics and music. 
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1   Introduction 
Problem of structural optimization of an 
acoustic systems relates to finding the best 
placement structural elements in spatially or 
temporally distributed systems. The problem to 
be of great important for improving the quality 
indices of the system, including active sonar, 
and it is closely connected with application of 
fundamental research in combinatorial theory 
[1]. Research into underlying mathematical area 
involves investigation of novel techniques 
based on combinatorial mathematics [2] and the 
Perfect Distribution Phenomenon, namely the 
concept of the Perfect Numerical “Vyazankas” 
(PNV) [3], which can be used for finding 
optimal solutions for some problems in 
acoustics.  

 It is known, finite-field theory and 
appropriate technique, based on wide-range 
sonar interferometric synthesis using non-
redundant masks [4]. Some regular methods for 
constructing non-redundant two-dimensional n-
elements masks over  n × n grids, based on 
special combinatorial structures known as 
difference sets [1] are suggested in the 
publication [4]. Application of modern 
combinatorial analysis obtains a lot of problems 
of signal processing for radar, sonar and data 
communications  [2].  However,   the    classical  

 
 

theory of combinatorial configurations such as 
difference sets,  finite   projective    geometry   and  
general block design theory can hardly be expected 
effective for solving 3-D problem using methods, 
based on the theory. Hence, both an advanced 
theory and regular method for finding optimal 
solution the problem are needed.  

 
 

2  Problem Formulation 
Research into the underlying combinatorial 
principle relates to development both the advanced 
combinatorial 3-D theory and regular method for 
design of synthetic-aperture sonar with high-
resolution sounder, based on application of 
remarkable combinatorial properties of Perfect 
Numerical “Vyazankas”, and generalization of 
these methods and results to the improvement of 
quality indices of acoustic or sonar systems (e.g. 
active sonar) with respect to resolving ability and 
operating range. 
   1-D Perfect Numerical Vyazanka (1-D PNV) is 
an ordered numerical construction with n distinct 
integers, which form perfect partitions of finite 
interval [1,s] of integers. The sums of connected 
sub-sequences of 1-D PNV enumerate the set 
integers [1,s] exactly R-times.  
Example: The Golomb Ideal Ruler with marks       

0,1,4,6  containing three intersections    



{1,3,2}, where 1=1-0, 3=4-1, and 2=6-4, allows 
an enumeration of all numbers 1=1, 2=2, 3=3, 
4=1+3, 5=3+2, 6=1+3+2 exactly  once   (R=1).  
   Here is a non-redundant 1-D mask, based on 
the Golomb Ideal Ruler with marks 0,1,4,6: 
                 
Marks:     0     1      2      3      4      5      6 
 
 
Fig.1. A non-redundant 1-D mask, based on the  
Golomb Ideal Ruler with marks 0,1,4,6. 
 

We say the numerical chain sequence {1,3,2} is 
1-D PNV of chain-like topology.  

Unfortunately, there are not exist Golomb Ideal 
Rulers with more of three intersections. The 
problem, is known, to be of great important in 
development of regular method based on the idea 
of “perfect vyazanka” for finding optimal 
placement of structural elements in 3-D spatially 
distributed systems (e.g. an acoustic system or 
sonar) with respect to improving the resolving 
ability and tuning range. 

 
 

3   Problem Solution 
Let us consider the numerical n-stage chain 
sequence of distinct positive integers {k1, k2,…, 
kn}, where we require all terms in each sum to be 
consecutive elements of the sequence. We call 
this a chain numerical “vyazanka”. Easy to see 
the maximum number C of such sums  is equal to 
the sum k1 + k2 +…+ kn = C of all integers.  If we 
regard the chain sequence as being cyclic, so that 
kn is followed by k1, we configure a ring-like 
vyazanka. A sum of consecutive terms in the 
ring-like vyazanka can have any of the n terms as 
its starting point, and can be of any number of 
terms from 1 to n-1. In addition, there is the sum 
of all n terms, which is the same independent of 
the starting point. So, the maximum number of 
distinct sums S of consecutive terms of the ring-
like vyazanka is given by 

                           
S = n(n-1) + 1                    (1)  

 
                 Comparing the maximum number C= n(n+1)/2 

of distinct sums of the chain-like and ring-like 
numerical vyazanka, we can see that the number 
of sums S for consecutive terms in the ring 
topology is nearly double the number of sums C 
in the daisy-chain topology, for the same 
vyazanka of  n terms. Hence vyazanka  with the 
ring topology provides an ability to reproduce 

more of combinatorial varieties in the 
numerical constructions with a fixed number 
of elements and limited number of bonds.  

   An  n-stage sequence {k1, k2,..., kn} of 
natural numbers for which the set of all S 
circular sums consists of the numbers from 
1 to S = n(n-1)+1 (each number occurs 
exactly once) is called a simple (R=1) 
"Perfect Ring Vyazanka" (PRV).  

     Here is an example of a simple PRV with  n = 4  
and  S = 13, namely {1,4,6,2,}: 

 
               1   
 
   
   2                                                4 
   
        6 
 
     Fig.2. Simple “Perfect Ring   

Vyazanka”     {1,4,6,2} 
 
    To see this, we observe: 

   Table 1. 
Table of circular sums for PRV {1,4,6,2} 

  1 = 1 
 

 2 = 2   3 = 2+1 

  4 = 4  5 = 1+4   6 = 6 
 

  7 = 2+1+4  8 = 6+2   9 = 6+2+1 
 

10 = 4+6 11= 1+4+6 
 

12 = 4+6+2 

                                                         13=1+4+6+2 
 
     We see that Tabl.1 contains each value as a 
circular sum from 1 to 12 exactly once (R=1). 
Note that if we allow summing over more than one 
complete revolution around the ring, we can all 
positive integers as such sums.  
Thus: 
14 = 1 + 4 + 6+ 2 +1,  15 = 2 + 1 + 4 + 6 + 2,  etc. 
   Next, we consider a more general type of PRV, 
where the S ring-sums of consecutive terms give us 
each integer value from 1 to N, for some integer N, 
exactly R times, as well as the value N+1 (the sum 
of all n terms) exactly once. Here we see that: 

 
 N = n(n-1)/R                                  (2) 

     
 An example with  n = 4 and R = 2, so that  N = 6, 

is the ring sequence {1,1,2,3}, for which the sums 
of consecutive terms are as follows: 

 



                                                                           Table 2. 
Table of circular sums for PRV {1,1,2,3} 

 
1 = 1 
1 = 1 

2 = 2 
2 = 1 + 1 

3 = 3 
3 = 1 + 2 

4 = 3 + 1 
4 = 1 + 1 + 2 

5 = 2 + 3 
5 = 3 + 1 + 1 

6 = 1 + 2 + 3 
6 = 2 + 3 + 1 

                                                                   7 = 1+1 + 2 + 3 
 
   We see that each "circular sum" from 1 to 6 
occurs exactly twice  (R = 2).  We say  that this  
PRV has the parameters   n = 4, R = 2. 
    Here is an example of the simple two-
dimensional PRV {(1,1), (1,2), (1,4), (1,3)}. 
Using circular  two-dimensional  vector-sums,  
it is  easy  to calculate all  the  sums, taking  
modulus m1 = 4 for the first component of the 
vector-sums and modulus m2 = 5 for the second 
component of the vector-sums: 

 
Table 3. 

Table of circular vector- sums for 2-D PRV 
{(1,1), (1,2), (1,4), (1,3)} 

 (1,1)= 
(1,1)    

(2,1)= 
(1,2)+(1,4) 

(3,1)= 
(1,3)+(1,1)+(1,2) 

(1,2)= 
(1,2) 

(2,2)= 
(1,4)+(1,3) 

(3,2)= 
(1,1)+(1,2)+(1,4) 

(1,3)= 
(1,3) 

(2,3)= 
(1,1)+(1,2) 

(3,3)= 
(1,4)+(1,3)+(1,1) 

(1,4)= 
(1,4) 

(2,4)= 
(1,3)+(1,1) 

(3,4)= 
(1,2)+(1,4)+(1,3) 

 
   So long as the elements of the Perfect Ring 
Vyazanka themselves are circular vector-sums 
too, the result of the calculation forms 4 × 3 – 
matrix, which exhausts the circular 2-D vector-
sums and each of its meets exactly once (R=1).     
 

 Table 4. 
4 × 3 – matrix of circular vector- sums for 2-D 

PRV  {(1,1), (1,2), (1,4), (1,3)} 
(1,1) (2,1) (3,1) 
(1,2) (2,2) (3,2) 
(1,3) (2,3) (3,3) 
(1,4) (2,4) (3,4) 

 
 

Hence, the ring sequence of the vectors {(1,1), 
(1,2), (1,4), (1,3)} is 2-D PRV with n = 4, R = 
1, m1 = 4, m2 = 5.  
  
 
 
 

3.1   3-D Non-redundant Structures 
 

3-D (t=3) and multidimensional PRVs are ring-like 
sequences of t-stage (t-D) ordered sub-sequences 
(integer vectors), which form “perfect” t-D partitions 
of a finite t-D space interval  of the vectors from 
(0,…0) to (N1,…Nt)  exactly R-times. So, any n-
stage ring sequence {K1, K2,…Ki,…Kn} of terms Ki 
= {ki1,ki2,ki3}, for which set of all circular  3-D   
sums   of  the  consecutive  terms (sums is 
calculated, its own modulo mj, j=1,2,3)  enumerate a 
set of 3-stage terms, configure 3-D 
grid, each node of the grid meets exactly R-           
times.  
    Example: The ring-ordered sequence of 3-stage 
terms {(1,1,1), (1,1,2), (1,0,3), (0,2,2), (0,1,4), 
(0,2,4)} forms 2 × 3 × 5 – matrix, which exhausts 
the circular 3-D vector-sums, taking m1 = 2, m2 = 
3, m3 = 5,  and each of its meets exactly once 
(R=1): 
 
{0,0,0}= (1,1,2)+(1,0,3)+(0,2,2)+(0,1,4)+(0,2,4); 
{0,0,1}= (0,2,2)+(0,1,4); 
{0,0,2}= (1,1,2)+(1,0,3)+(0,2,2); 
{0,0,3}= (0,1,4)+(0,2,4); 
{0,0,4}= (1,0,3)+(0,2,2)+(0,1,4)+(0,2,4)+(1,1,1); 
{0,1,0}= (1,1,2)+(1,0,3); 
{0,1,1}= (1,1,2)+(1,0,3)+(0,2,2)+(0,1,4); 
{0,1,2}= (1,1,2); 
{0,1,3}= (0,2,2)+(0,1,4)+(0,2,4)+(1,1,1)+(1,1,2); 
{0,1,4}= (0,1,4); 
{0,2,0}= (0,2,2)+(0,1,4)+(0,2,4); 
{0,2,1}= (0,1,4)+(0,2,4)+(1,1,1)+(1,1,2); 
{0,2,2}= (0,2,2); 
{0,2,3}= (1,1,1)+(1,1,2); 
{0,2,4}= (0,2,4); 
{1,0,0}= (0,2,4)+(1,1,1); 
{1,0,1}= (0,2,2)+(0,1,4)+(0,2,4)+(1,1,1); 
{1,0,2}= (0,2,4)+(1,1,1)+(1,1,2)+(1,0,3)+(0,2,2); 
{1,0,3}= (1,0,3); 
{1,0,4}= (1,0,3)+(0,2,2)+(0,1,4); 
{1,1,0}= (0,2,4)+(1,1,1)+(1,1,2)+(1,0,3); 
{1,1,1}= (1,1,1); 
{1,1,2}= (1,1,2); 
{1,1,3}= (1,1,1)+(1,1,2)+(1,0,3)+(0,2,2); 
{1,1,4}= {1,1,4}; 
{1,2,0}= (1,0,3)+(0,2,2); 
{1,2,1}= (1,1,1)+(1,1,2)+(1,0,3); 
{1,2,2}= (1,1,1)+(1,1,2)+(1,0,3)+(0,2,2)+(0,1,4); 
{1,2,3}= (1,0,3)+(0,2,2)+(0,1,4)+(0,2,4); 
{1,2,4}= (0,1,4)+(0,2,4)+(1,1,1)+(1,1,2)+(1,0,3). 
 

                             Let the first of six (n = 6) mask elements 
is the (0,0,0)  cell of  2 × 3 × 5 – matrix 



cycling.   Now, we can obtain coordinates of 
the remaining five elements accordingly the 
underlying 3-D perfect distribution cycling, 
modulus m1 = 2, m2 = 3, m3=5: 

                (1,1,1), (0,2,3), (1,2,1), (1,1,3), (1,2,2).  
 
                                                                     
 
 
          0        1        2        3         4 
     
 1 
        
 0         
 
    0 
         1 
              2 
 
Fig.3. A non-redundant 2 × 3 × 5 – matrix 
cycling, based on the PRV {(1,1,1), (1,1,2), 
(1,0,3), (0,2,2), (0,1,4), (0,2,4)}. 
 
Now, to obtain configuration with smaller grids, 
we can exclude all right-hand columns (Fig.3), 
and one can  be  reconstructed  on  smaller matrix  
2 × 3 × 4.  
    It is exists an infinite set of the PRV and 
values of its parameters can be of any large 
number. Underlying technique can be used both 
for design acoustic or sonar systems with high 
quality indices due to all spacing vectors between 
their elements are different in order to avoid of 
interference of components of the same spatial 
frequency, and for development methods of non-
redundant 3-D mask construction. 
 
 
3.2   Perfect 3-D Monolithic Code 
Underlying combinatorial construction can be 
represented as mathematical model of optimum 
coding system, based on so-called "Monolithic 
Binary Code" (MBC). This code forms binary 
code combinations which all symbols "1" as well 
as symbols "0" are arranged together [5]. The 
PRVs provide an optimal model of the coding 
system.  
    Here is an example of Perfect 3-D  MBC 
coding system based on the table of circular sums 
to be of PRV {(1,1,1), (1,1,2), (1,0,3), (0,2,2), 
(0,1,4), (0,2,4)} on the 2 × 3 × 5 – matrix cycling. 

 
   

 

 
The ring-like 3-D MBC formed on the PRV  

{(1,1,1), (1,1,2), (1,0,3), (0,2,2), (0,1,4), (0,2,4)} is 
illustrated by the next table. 

     Table 5. 
3-D MBC coding system based on PRV  

{(1,1,1), (1,1,2), (1,0,3), (0,2,2), (0,1,4), (0,2,4)} 
(000)= 011111     (020)= 000111   (110)= 111001 
(001)= 000111 (021)= 110011  (111)= 100000 
(002)= 011100      (022)= 000100   (112)= 010000 
(003)= 000011      (023)= 110000 (113)= 111100 
(004)= 101111 (024)= 000001 (114)= 000010 
(010)= 011000 (100)= 100001 (120)= 001100 
(011)= 011110 (101)= 100111 (121)= 111000 
(012)= 010000 (102)= 111101 (122)= 111110 
(013)= 110111 (103)= 001000 (123)= 001111 
(014)= 000010 (104)= 001110 (124)= 111011 

 
Tabl.6 contains the set of binary code 

combinations  for coding of all 3-D vectors  on  the 
integer 2 × 3 × 4 - matrix from (0,0,0) = (code 
011111) to (1,2,4) = (code 111011), where each of 
them has been coded in circular 3-D MBC. The code 
allows coding of 3-D acoustic signals, using the 
smallest possible number of connected symbols “1” in 
binary combinations as well as development of the 
mathematical models in music, involving difference 
set theory [6].  The remarkable property of the 3-D 
MBC provides its some advantages over the rest 
codes. One of them is simplicity of error detecting and 
correcting [5].  

 

4   Conclusion 
The Perfect Numerical “Vyazankas” (PNV) provide, 
essentially, a new conceptual model of 3-D acoustic 
systems for its investigation and development, based 
on the Perfect Distribution Phenomenon and 
remarkable properties of multidimensional PNVs. The 
favorable qualities of the combinatorial structures 
make it possible to configure novel high-performance 
acoustic systems  using research into the underlying 
mathematical principles relating to the optimal 
placement of structural elements in spatially or 
temporally distributed systems.  
 
 
 
 
 
 

. 



 References: 

 
[1]  Hall, M.Jr., Combinatorial Theory, Waltham, Mass.: 

Blaisdel Publishing Company, 1967. 
[2] Golomb, S.W., Applications of Combinatorial  

Mathematics to Communication Signal Design, 
Proceedings of the IAM Conference on Applications 
of Combinatorial Mathematics, London, U.K., 1995. 

[3]  Riznyk, V.V., Multi-dimensional Systems Based on  
Perfect Combinatorial Models, IEE, Multidimensional 
Systems: Problems and Solutions, 1998, pp. 5/1-5/4.  

[4]  Kopilovich L.E., Construction of Nonredundant Masks 
over Square Grids Using Difference Sets, Optics 
Communications, Vol.68, No.1, 1988, pp.7-10.  

[5]   Golomb S.W., Osmera P., Riznyk V., Combinatorial 
Sequencing Theory for Optimization of Signal Data 
Vectors Converting and Signal Processing, 
Proceedings of Workshop on Design Methodologies 
for Signal Processing, Zakopane, Poland, 1996, 
pp.43-44. 

[6]  Rogers J., Mitchell B., A problem in mathematics and 
music, Amer.Math.Monthly, Vol.75, No.8, 1968, pp. 
871-873. 


