
Graph-based analysis of business process models 
 

PIET BOEKHOUDT, HENK JONKERS, MICHIEL ROUGOOR 
Telematica Instituut 

P.O. Box 589 
7500 AN Enschede 

The Netherlands 

 
 
 

Abstract: - It is widely accepted that using models is effective for the analysis of business processes. Analysis of 
business process models is useful for clarifying business process characteristics, for identifying bottlenecks, and 
for comparison of alternatives. Among the modelling languages, those who have a formal semantic basis are the 
most suitable for analysis. The AMBER modelling language, which is explained in this paper, has such a formal 
basis. By way of an example we show that the AMBER modelling language has sufficient expressive power for 
business process modelling. Furthermore, we show that a class of AMBER models can easily be transformed to a 
graph representation. This graph representation is a starting point for graph-based analysis, which is generic in 
the sense that it is independent of AMBER specific concepts and suitable for different types of analysis. In this 
paper we present a graph reduction algorithm which can be used for computing overall business process 
characteristics (such as the completion time distribution) and path characteristics (such as probabilities of all 
possible process instances). 
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1. Introduction 

External developments force companies to 
continuously improve their business processes. 
Change of running processes is hazardous and might 
even endanger the continuity of the company. 
Therefore, an offline approach to business process 
improvement is necessary to evaluate different 
process design alternatives. The use of models is a 
widely accepted way of doing offline (re)design and 
analysis of business processes. Models help to better 
understand and communicate process descriptions. 
Furthermore, analysis of models is possible, 
provided that the modelling language has a formal 
mathematical basis.  
In this paper we present research results from the 
Testbed project [1]. In the Testbed project a number 
of functional and quantitative model analysis 
methods for so-called AMBER models have been 
developed (cf. [2], [3], and [4]). Examples of these 
analysis methods are critical path analysis, 
completion time analysis,  and utilisation and 
queueing analysis. The AMBER modelling language 
and the analysis methods have been implemented in 
a professional business process engineering tool, 
which is used by the Testbed consortium partners. 
The model-based approach, as presented in this 
paper, has proved invaluable in many practical cases 
[1].  

In this paper we present a graph-based formalism 
which can be used for different types of business 
process analysis. We present a graph reduction 
algorithm which can be used for computing overall 
business process characteristics (such as the 
completion time distribution) and path 
characteristics (such as probabilities of all possible 
process instances). 
The organisation of this paper is as follows. In 
Section 2 the AMBER modelling language is 
explained. In Section 3 we describe how an AMBER 
model can be translated to a graph representation. In 
Section 4 we present a generic graph based 
algorithm for analysis. In Section 5 we present our 
conclusions and our future work. Throughout this 
paper a simple business process model will be used 
for illustration. 

2. The AMBER Modelling Language 

In the Testbed approach [1], we distinguish three 
modelling domains, corresponding to different 
aspects of business processes. The behaviour 
domain models the activities and their relationships, 
the entity domain (or: actor domain, as used in later 
publications) models the resources that carry out 
these activities, and the item domain models the data 
objects which are manipulated by the process. The 



latter two domains are not relevant for the types of 
analysis described in this paper, and will therefore 
not be considered. The modelling language in 
Testbed is based on an architectural design 
framework for distributed systems developed at the 
University of Twente [6] and is called AMBER 
(Architectural Modelling Box for Enterprise 
Redesign). In the remainder of this section, we will 
introduce the main concepts in the behaviour 
domain, and illustrate them on an example process. 

2.1 Actions and causality relations 

The basic behaviour element is an action, denoted by 
a (stretched) circle. Actions can be related in that 
certain restrictions can be imposed on the order in 
which they are performed. Fig. 1 shows the basic 
relations between actions that can be expressed in 
the language. 
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Fig. 1 Basic relations: causality, choice, parallelism. 

 
The simple causality relation indicates that action b 
can only occur after action a has completed. Choice 
is modelled by an or-split (open diamond): after 
action c has completed, either d or e can occur. A 
condition or probability can be associated with the 
branches. The or-join (open box) indicates that 
action f can start if either d or e has finished. 
Parallelism is modelled by an and-split (black 
diamond): after action g has completed, both h and i 
can start. The and-join (black box) indicates that j 
can start as soon as both h and i have finished. 
The splits and joins can be used in any combination: 
it is, e.g., not required that a section that starts with 
an and-split is followed by an and-join. However, 
the majority of models found in practice consist of a 
structured (possibly nested) use of matching splits 
and joins. We call these models basic series-parallel 
(SP) models, because they form an extension of the 
well known class of SP task graphs as described in, 
e.g. [7]. The analysis techniques described in this 
paper apply for basic SP models, as well as for 
models that can be transformed to these models 
(extended SP models, to be explained in section 3.2). 

2.2 Structured models and interactions 

In addition to the above-mentioned basic ingredients 
of a behaviour model, Testbed offers a number of 
concepts to build models in a more structured way. 

In particular, a model can be subdivided in a number 
of behaviour blocks, drawn as rounded rectangles. A 
behaviour block groups a number of actions, and can 
contain other (nested) blocks. Actions can be 
grouped in many ways, e.g., based on the different 
resources (actors) that are involved in the process. 
Interactions, represented by (stretched) semicircles, 
are actions that are performed by two (or more) co-
operating behaviour blocks. Corresponding 
interaction contributions are connected.  
Fig. 2 shows the behaviour model of an example that 
will be used throughout this paper. The numbers in 
this figure are probabilities. In this example the 
process of ordering and receiving office goods is 
modelled: 
 
The process starts with a need for goods of office 
employees, who send a request to the office secretary 
(request). The secretary sends an order to a supplier 
(send). The supplier ships the goods and delivers the 
goods to the goods department of the office where they 
are received (receive). At the goods department the goods 
are inspected for completeness and possible damage  
(inspect). If goods are OK, they are booked, forwarded 
and finally stored by the office employees (store). If 
however, after inspection, the goods turn out to be not OK 
a compensation order is made by the secretary (renew). 
The secretary gets completion details from office 
employees (detail).  The complete compensation order is 
send to the supplier (resend). Simultaneously, an 
investigation is made whether the goods can be reutilized 
(list). If goods can not be reutilized, they are returned to 
the supplier (return). If goods can be reutilized, they are 
booked and forwarded to the department where the 
employees store them (store). 

 
 

Office

renewrenew

storestore

detaildetail
inspectinspect

listlist

not complete

0.10

not OK

0.2

OK 0.8 to be
kept 0.5

complete

0.90

to be
returned

0.5

receivereceive resendresendsendsend returnreturn

Supplier

sendsend resendresendreceivereceive returnreturn

request

 
 

Fig. 2 Example: goods ordering process. 
 

This model shows a number of concepts that have 
not yet been explained:  



• A trigger starts a process,  in this example 
request (office employees having a need for 
certain goods). 

• Entries and exits, represented by small triangles, 
are used when an arrow crosses the boundaries of 
a behaviour block 

• Repetitive (inter)actions, i.e. (inter) actions that 
(potentially) occur more than once are drawn 
with a double edge. A double-pointed arrow 
indicates the start of a new loop. In the example 
the compensation order is defined in an iterative 
fashion: details are added until the compensation 
order is evaluated complete. 

The purpose of the subdivision of the model in 
behaviour blocks is to increase the readability of the 
model. It is irrelevant for the types of analysis 
described in this paper: interactions connected with 
an interaction relation can be considered as a single 
action, and an incoming and outgoing arrow of an 
entry or exit can be combined into a single arrow.  

2.3 Profiles 

The concepts as described above only describe the 
existence of actions and their causal relations. 
However, for the analyses we will consider next, we 
also need to know their properties, such as the 
duration of actions and branching probabilities for 
an or-split. In the AMBER language, properties 
specific for a certain type of analysis are attached to 
the concepts by so-called profiles. For completion 
time analysis, for example, we attach a “Completion 
Time”-profile to each (inter)action, consisting of a 
number of attributes, such as the mean duration and 
the probability distribution type. For causality 
arrows leaving an or-split we attach probabilities in 
a “Probability”-profile. 

3. Graph representation of models 

In this paper, we consider analysis methods that use 
the structure of a process model in terms of (nested) 
serial, parallel (“and”), choice (“or”) and loop 
(“repetition”) constructs. However, the models in the 
previous section do not directly show this structure. 
Therefore, we propose an intermediary 
representation of models as a directed, acyclic 
series-parallel (SP) graph, where the nodes 
represent the above-mentioned constructs and the 
leaves represent actions. Depending on the type of 
analysis, it might be needed to annotate a node with 
certain additional information, e.g. the duration of an 
action. For many analysis techniques the outgoing 
arcs of an or-node should be annotated with a 

probability. Note that models can only be 
represented in this way if it is possible to describe 
them as a (nested) combination of these constructs. 
Therefore, the analysis techniques that we will 
describe are only applicable to this class of models, 
which we will call SP models. 

3.1 Tree representation of basic SP models 

First, we will consider the class of models that we 
will call basic SP models, i.e., models for which the 
graph representation is a tree rather than a general 
directed acyclic graph. 
Fig. 3 shows the basic constructs and their 
equivalent in an SP tree.  
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Fig. 3 SP tree representations of basic constructs. 

 

3.2 Graph representation of extended and 
approximate SP models 

We can extend the class of SP models by 
considering models that can be replaced by an 
equivalent basic SP model by means of duplication 
of actions, i.e., an action can occur in more than one 
parallel or choice section. In the SP-graph, this 
means that a leaf or intermediary node can have 
more than one incoming arc, i.e., the graph is no 
longer a tree. Fig. 4 shows a typical example of such 
a model and its SP tree representation, as well as the 
equivalent basic SP model (where the double line 
indicates that the actions c are identical, i.e., they 
correspond to the same action in the original model).  

b

a

c
1−p

p
1−q

q

a

or

c

p 1−p

b

ser

or

ser

empty

q 1−q

 
Fig. 4 SP-graph representation of an 

extended SP-model 

Finally, we consider models that we will call 
approximate SP models. For these models, it is not 
possible to construct an equivalent basic SP model. 
However, by means of action duplication, we can 
construct a basic SP model that can be used to obtain 



exact or approximate results for some types of 
analysis (e.g., exact results for critical path analysis, 
and approximate results for stochastic completion 
time analysis). Fig. 5 shows a typical example of an 
approximate SP-model and its SP graph 
representation, as well as the basic SP model that 
approximates the original model. 
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Fig. 5 SP graph representation of an 
approximate SP model. 

3.3 Derivation of an SP graph 

In this subsection we illustrate how an SP graph is 
constructed, given an AMBER model of a process. 
We start with a “flat” model, i.e., a model in which 
the block structure has been removed and related 
interactions have been combined into single actions. 
Fig. 6 shows the flat version of our example model. 
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Fig. 6 Original model (“flat”). 

 
 
The general idea of the algorithm is to reduce the 
AMBER model, and at the same time building up the 
SP graph. In the original model, we identify 
sections, i.e., arrows between nodes (where nodes 
can be actions, splits or joins). With each section, we 
can associate an SP graph (which is a part of the SP 
graph of the whole model). In the initial model, 
these graphs are empty.  
The AMBER model is reduced by combining several 
sections into one new section, while storing the 
structural information in the SP graph associated 
with the new section. Four types of reduction are 
defined: serial, split (which can be refined into 
parallel and choice), repeat and duplication. Fig. 7 
shows an example of the result of a number of serial 
reductions. 
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Fig. 7 Partly reduced graph. 

Duplication occurs in extended SP models, e.g. for 
the action forward in Fig. 8. The result of 
duplication is that one SP graph is associated with 
more than one section (in our example this is the 
graph consisting of the single node forward). Fig. 8 
also shows examples of the result of a repeat 
reduction.  
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Fig. 8 Further reduced graph. 

The reduction continues until a single section 
remains. The SP graph associated with that section is 
the SP graph that represents the complete model. 
Sometimes it is not possible to reduce an AMBER 
model to a single section: this means that the model 
is not a (basic or extended) SP model and the 
analysis methods described in this paper cannot be 
applied to this model. Fig. 9 shows the final SP 
graph representation of our example model.  
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Fig. 9 SP graph representation of the 

example model. 



4. Graph based analysis 

In the previous section we transformed AMBER 
models to graphs. In this section we show how to 
perform different types of analysis on SP graphs. 
Basically, we traverse the tree and use a graph 
reduction algorithm. In the traversal step we 
navigate from the leaves to the root of the tree. In 
the reduction step we apply the analysis to 
elementary tree constructs. 

4.1 Reduction algorithm 

In this section we first consider the reduction of 
basic model constructs, like those in Fig. 3 The 
reduction amounts to substitution of the basic model 
construct by a single action and by computing the 
properties of this single action. An example should 
make things clear.  
 
Example 1 
Suppose we have the simple model as described in 
Fig. 10. The boxed numbers in this diagram are the 
processing times of the actions.  
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Fig. 10 Simple example and corresponding tree. 
 
Suppose we wish to know the mean completion time 
of the process. We start by looking at the parallel 
section with actions b and c. As action c takes longer 
to complete than action b the duration of this section 
is max(4,5) = 5, assuming deterministic processing 
times. The reduction step now is to replace the 
parallel section by an action s1 with processing time 
5, as shown in Fig. 11.  
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Fig. 11 First reduction step. 
 
The second reduction step concerns the or-section 
with actions s1 and d. Using the probabilities, we 
find for the mean completion time 0.8∗5 + 0.2∗6 = 
5.2.  The or-section is replaced by an action s2 with 

processing time 5.2, as shown in Fig. 12. 
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Fig. 12 Second reduction step. 
 
In the final reduction step, the serial section is 
replaced by an action s3. The processing time of s3 
equals the sum of the processing times of a and s3, 
i.e. 8.2. In this final reduction step we find that the 
mean completion time of the process equals 8.2. 

�  
As this example shows, in a reduction step a section 
is replaced by a single action and a certain 
calculation on the attribute values is performed. 
For certain types of analysis we also need to keep a 
record of the intermediate results. For example, if 
we wish to determine the critical path of the model 
in Fig. 10, we also need to exclude action b  (which 
has a shorter duration than action c) as a result of the 
reduction. The actions on the critical path cannot be 
determined before the complete model is reduced to 
a single action. Actions that are not excluded are 
candidates for the critical path. For other types of 
analysis, we also wish to determine all possible 
paths and, simultaneously, for each individual path 
certain properties (such as the probability that an 
instance of this path will occur and the duration of 
this path).  
It is for these reasons that we represent an action a 
(which might be a result of a reduction step) by the 
following quadruple: 

(a, n, Σa, Πa),  
where a is the name of the action, n  is the number of 
alternative paths in the sub-model that is represented 
by a, Σa is the intermediate result for a, and Πa is a 
symbolic representation of the alternative paths 
including the properties of these paths. This is 
written as 

Πa = <σ1, π1, … , σi, πi,…,σn, πn>, 
where σi is the property of the i-th path πi. The path 
of an elementary action a (i.e., an action which is not 
a result of an reduction step) is represented by a 
string  

a; 
where clearly, a is the name of the action and the 
semicolon is used as delimiter. The notation for the 
basic constructs is now given in Table 1. 
 



Serial <σ, {a; b;}> 
And <σ, [a; b;]> 
Or <σ1, a;, σ2, b;> 
Rep <σ1, a;, σ2, {a;*{b;a;}}> 

Table 1 Notation for basic constructs. 

If the probability of the occurrence of a path is the 
only property we are interested in, then in Table 1  

σ  = 1, σ1 = p, σ2 = 1− p. 
The * in the notation for the repetition is used to 
express that the part following the * is executed an 
unspecified number of times. 
We are now ready to give the description da of an 
elementary action a as 

da = (a, 1, Σa, <σ a, a;>). 
The reduction of the basic model constructs now 
amounts to an operation on the descriptions of the 
actions, i.e. the reduction of a serial of elementary 
actions a and b is symbolically denoted by 

ser_red(a,b) 
Let 

da = (a, 1, Σa, <σ a, a;>) 
db = (b, 1, Σb, <σ b, b;>). 

Create a new action s, with 
ds := (s, 1, Σs, Πs), 

and 
(Σs, Σa, Σb):= fserial(Σa, Σb), 
Πs := <gserial(σ a, σ b), {a;b;}>. 

fserial and gserial denote operations, specific for the 
reduction of the serial, and specific for the type of 
analysis to be performed. Note that the reduction 
step may also alter the attribute values of a and b 
(for example in the critical path analysis, where an 
action may be excluded). 
Clearly, the reduction of the basic constructs can 
symbolically be represented as in Table 2:  

ser_red(a,b) ds := (s, 1, Σs, Πs) 
(Σs, Σa, Σb):= fserial(Σa, Σb) 
Πs := <gserial(σ a, σ b), {a;b;}> 

and_red(a,b) ds := (s, 1, Σs, Πs) 
(Σs, Σa, Σb):= fand(Σa, Σb) 
Πs := <gand(σ a, σ b), [a;b;]> 

or_red(a,b,p) ds := (s, 2, Σs, Πs) 
(Σs, Σa, Σb):= for(Σa, Σb) 
Πs := <gor,1(σ a, σ b, p), a;,  

gor,2(σ a, σ b, 1-p), b;> 
rep_red(a,b,p) ds := (s, 2, Σs, Πs) 

(Σs, Σa, Σb):= frep(Σa, Σb) 
Πs := <grep,1(σ a, σ b, p), a;,  

     grep,2(σ a, σ b, 1-p), 
{a;*{b;a;}}> 

Table 2 Reduction of basic constructs. 

 
Example 1 (continued) 
Suppose we want to further analyse the simple 
model in Fig. 10, i.e. we want to determine the 
following: 

• the actions on the critical path, i.e. the 
sequence of actions that dominate the 
completion time; 

• the completion time of the critical path; 
• all possible paths and the completion time of 

these paths; 
• the probability of all possible paths. 

For the description of an action s we take  
ds = (s, n , Σs, <σ1, π1, … , σi, πi,…,σn, πn>). 

Σs has two components 
• the completion time of the sub-model 

corresponding to action s (which might be a 
result of a reduction step); 

• a Boolean variable which indicates whether 
s is to be excluded from the critical path. 

σi also has two components 
• the completion time of the ith path; 
• the probability of the occurrence of the ith 

path. 
For the description of an elementary action a we 
therefore take 

da = (a, 1, Σa, <σ a, a;>). 
where  

Σa = (ta, ba), σa = (da, pa). 
 
ta is the completion time of a, and ba is a Boolean 
variable which has value 0 if action a is excluded 
from the critical path. For an elementary action the 
completion time of the path (which is a single 
action) is da   = ta, and pa = 1 (by default). 
The first reduction step (cf. Fig. 13) deals with the 
elementary actions b and c, with descriptions 

db = (b, 1, (4, 1), <(4,1), b;>), 
dc = (c, 1, (5, 1), <(5,1), c;>). 

Action c has a larger completion time than action b, 
and therefore b is excluded. The result of the 
reduction is an action s1 (cf. Fig. 11) with following 
description: 

ds1 = (s1, 1, (5, 1), <(5, 1), [b; c;]>). 
Since action b is excluded, also its description is 
changed: 

db = (b, 1, (4, 0), <(4,1), b;>), 
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Fig. 13 First reduction step for critical path analysis. 
 

The result of the reduction step is shown in Fig. 11. 
The second reduction step yields an action s2 (cf. 
Fig. 12) representing two alternative paths: 
ds2 = (s2, 2, (5.2, 1), <(5, 0.8), [b; c;], (6, 0.2),d;>). 

Finally, the reduction of the serial in Fig. 12 yields 
an action s3 with description 

ds3  = (s3, 2, (8.2, 1), <(8, 0.8), {a;[b; c;]},  
(9, 0.2),{a;d;}>). 

From the description of s3 we conclude that the 
mean processing time of the critical path is 8.2. 
There are two alternative paths, the first path has 
probability 0.8 and completion time 8; the second 
path has probability 0.2 and completion time 9. The 
critical path is constructed in the opposite direction, 
i.e. by deselecting all actions that constituted a 
deselected (substitute) actions. For this particular 
example this was already done for action b, which is 
an elementary action. Hence, all elementary actions 
except action b lie on the critical path. 
If action b was not an elementary action, but for 
example a result of a reduction step for a parallel 
section with actions e and f, then these actions would 
be excluded as well. 

�  
The reduction algorithm consists of a generic part, 
which will be used for all types of analysis, and a 
specific part. The generic part deals with the 
construction of the path strings πi and the 
computation of the number of alternatives n. The 
specific part deals with the computation of the 
properties Σa and σa.  
The path strings are obtained by using the reduction 
rules from Table 2 and by using substitution. For 
example if  

πi ≅ {a; s;} and s  ≅ <b; c;> 
then 

πi ≅ {a; <b; c;>} = <{a; b;},{ a; c;}>, 
where the last (simplifying) equality may be checked 
by inspecting the tree (we slightly abused notation to 
avoid unnecessary notational complexity). Note that 
the simplification is necessary to obtain the 
alternative paths. The result of the substitution and 
simplification is shown in Fig. 14. 
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Fig. 14 Construction of alternative paths. 
 
Clearly the aim of this step is, to get a single or-node 
at the root of the tree (a so-called disjunctive normal 
form). A similar reasoning may be used for other 
substitutions.  
The number of alternative paths is computed as 
follows. Suppose we have two actions s1 and s2 
which are a result of reduction steps. Furthermore, 
suppose that s1 and s2 correspond to n1 and n2 
alternative paths, respectively. It is easily verified 
that the reduction step yields the number of 
alternatives as show in Table 3. 
 

 # alternatives 
ser_red(s1, s2) n1 + n2 
and_red(s1, s2) n1n2 
or_red(s1, s2, p) n1 + n2 
rep_red(s1, s2 , p) 2n1n2 

Table 3 Number of alternatives. 

The reduction algorithm is most easily implemented 
by using recursion, as described in [3]. 
 
Example 2 

Consider the example process in Fig. 1. 
Duplicating actions, as explained in section 3.2, 
and using the reduction algorithm, we find the 
following five path strings: 

 
1: {send;receive;inspect;[{renew;resend;},{list;store;}]} 
2: {send;receive;inspect; 

[{renew;*{detail;renew;}resend;},{list;store;}]} 
3: {send;receive;inspect; 

[{renew;resend;},{list;return;}]} 
4: {send;receive;inspect; 

[{renew;*{detail;renew;}resend;},{list;return;}]} 
5: {send;receive;inspect;store;} 

�  

4.2 Examples 

In this section we describe some typical examples of 
business process model analysis. In what follows we 
assume that actions s1 and s2 are obtained as a result 
of a reduction step. Let πi denote an arbitrary path in 
the description of s1 and πj an arbitrary path in the 
description of s2. Also, let σi and σj, respectively, 
denote the properties of these paths. 
In a simple analysis the probabilities of the 



alternatives are computed. 
 
“Probability of path”- analysis 
Let the probability of πi be given by pi and of πj by 
pj . In the reduction step πi and πj are combined to a 
new path with probability p. The result of this 
combination is shown in Table 4. 
 Probability p 
gserial(pi, p j) pi p j 
gand(pi, p j) pi p j 
(gor,1(pi, p j, p), gor,2(pi, p j, 1- p)) (p pi ,(1-p) pj) 
(grep,1(pi, pj, p), grep,2(pi, p j, 1- p)) (p pi ,(1-p) pi pj) 

Table 4 Probabilities of alternatives. 

�  
 

Example 2 (continued) 

Using the probabilities in Fig. 2 we find the 
following probabilities for the five alternatives: 
 

Path 1 2 3 4 5 
Probability 0.09 0.01 0.09 0.01 0.80 

 
The Testbed Studio tool, which supports the 
modelling and analysis of AMBER models, is able to 
show all paths. The path with the highest probability 
is shown in Fig. 15. 
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Fig. 15 Path with highest probability. 
 

�  
“Completion time of path”-analysis 
If we assume that every action in the process model 
has a known probability distribution of its 
processing time, we may compute the probability 
distribution of the entire process. This we will call 
the completion time distribution of the process. This 
is described in detail in [3]. We can also compute the 
probability distribution of the completion time of 
each alternative path. This is what we will 
investigate here. 

Suppose the paths πi and πi have probability density 
functions di and dj, and corresponding distribution 
functions Di and Dj respectively. 
In the reduction step πi and πj are combined to a new 
path with probability density function d and 
corresponding distribution function D. The result of 
this combination is shown in Table 5. 
 Probability function D 
gserial(Di, D j) Di ∗ D j 
gand(Di, D j) DiDj 
(gor,1(Di, Dj, p), 
  gor,2(Di, Dj, 1- p)) 

(DI ∗ D j , Di ∗ D j) 

(grep,1(Di, Dj, p),     
grep,2(Di, Dj, 1- p)) ))1(,( *

1
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j
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k
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i DDppD ∑

∞
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Table 5 Completion time distributions of 
alternatives. 

The ∗-symbol in the table denotes (discrete) 
convolution, i.e., for every discrete point in time 
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and D∗n denotes repeated self-convolution:  
D∗0 (t) = 1, D∗1 = D, D∗2 = D ∗ D, etc. 

�  

5. Conclusions and future work 

In this paper we presented the AMBER language for 
business process modelling. This graphical 
modelling language has a formal mathematical basis, 
which makes it suitable for analysis purposes. Non-
graphical information can be added to models by 
using profiles. For (basic and extended) SP models 
we showed that they have an equivalent graph 
representation. Analysis of these models is based on 
a tree reduction algorithm. Relaxing the SP 
constraint, also extended SP and approximate SP 
models can be analysed. The algorithm can easily be 
used for all kinds of business process analysis, such 
as (critical) path analysis and completion time 
analysis.  
The algorithm can easily be adapted to other types of 
analysis, e.g. cost analysis, risk analysis, and fuzzy 
completion time analysis (based on [5]) on which we 
are currently working.  
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