
Low delay MP3 Internet Telephony

RICHARD AKESTER
Department of Computer Science

University College London
Gower Street, London, WC1E 6BT.

United Kingdom

Abstract: - The use of MP3 as a compression codec for Internet Telephony has become feasible in view of the latest
developments in PC hardware and broadband Internet capacity. In this context, this paper examines the implementation
details behind such an Internet telephone, measuring delay in the end hosts. A new approach to detecting and correcting
audio skew is proposed and implemented, focusing on the accuracy of measurements and on the algorithm’s effect on the
audio experience of the listener. The algorithms presented are shown to successfully remove audio skew, thus reducing
delay and loss and hence improving audio quality. The feasibility of MP3 as a codec for Internet telephony is shown to
be feasible and to work well within the required delay bounds.

Key-words: - MP3, Internet Telephony, VoIP, Audio Skew, Delay.

1 Introduction
Internet Telephony (or Voice over Internet Protocol –

VoIP) is gradually gaining acceptance, especially with the
business community. Based on an In-Stat/MDR survey of
its Technology Adoption panel, by the end of 2002
roughly 2% of US firms were using some form of IP
Telephony. The same research group forecasts growth to
19% of US firms by 2007 [12].

This adoption is often based on integration between
tradition telephone networks and IP networks through
gateways, enabling users to make calls from or to a
regular telephone, rather than a PC. Since these
traditional telephone networks use “toll-quality” 64kbps
connections, there seems no need to use higher quality
audio quality over the Internet segment of a call
connection. Indeed, when VoIP was introduced most
users had very limited Internet bandwidth and very high
compression audio codecs were developed to enable such
users to make Internet telephone calls.

Even today when broadband connections are more
common, and if both sender and receiver in a telephone
call have a 512kbps broadband connection, the software
available still attempts to compress the audio data as

much as possible, providing a low quality service to the
user.

Telephone quality audio is sampled at 8000
samples/second capturing a frequency range of 4kHz. The
precision of each sample is 8 bit. With these sampling
parameters, any compression codec is limited to these
frequency and noise bounds.

PCs have been capable of CD quality audio capture
for a long time now. This provides 44100 samples/second
at 16-bit precision, and is typically used to record music.
The compression format MP3 (MPEG-1 Audio Layer 3)
[1] is the most common compression format for these
recording parameters, but usually produces an output
bandwidth in the region 128kbps. Recently, PCs have
reached a speed where they can encode MP3 audio in
real-time, and (more importantly for VoIP) can encode
and decode two streams simultaneously in real-time.

Even though 128kbps is a high bandwidth (in
telephony terms), it is feasible to carry a full-duplex voice
conversation compressed with MP3 over a broadband
connection, and still have capacity to spare. The result is
rich sound, capturing a wide frequency range at high
precision.

The problem with MP3 VoIP is the same as with
standard VoIP services. The Internet is a best-effort
network that does not guarantee delay, jitter (delay
variation between packets) or reliability. VoIP has limits
on the amount of delay and loss it can tolerate for an
interactive telephone call.

Packet loss can reduce audio reception quality, but
repair techniques can compensate. With 20ms of speech
samples per frame, waveform substitution can help to
make speech intelligible even with loss rates up to 20%
[3].

For real-time audio applications to maintain
interactivity, the round trip delay should not exceed
400ms [2]. Adaptive audio applications compensate for
network jitter (delay variance) by buffering, the size of
the buffer depending on the current level of jitter. For
interactivity the size of the buffer may be limited. If the
worst-case jitter is greater than the maximum size of the
buffer some breaks in the media stream will be expected.
Combining the average delay and delay variance, and
comparing this with the interactivity bound can gain an
indication as to whether the network performance will be
suitable for realtime traffic and an adaptive application.

With this delay bound in mind, it is important to
assess the MP3 codec delay to determine the feasibility of
using this codec for telephony. The MP3 packetization
delay for 1152 samples (a standard MP3 audio frame) at
44100 samples/second is 26.122ms. Therefore, the
encoding delay must be less than 26ms in order to be
realtime (the LAME [9] encoder used can achieve this on
a PII 266MHz at highest quality encoding). For decoding,
the MPG123 [10] decoder is used. Decoding is easier
than encoding, and therefore faster. Furthermore the
decoded data can be played immediately. Therefore, there
is no reason why the choice of MP3 as the codec should
prevent the telephony interactive delay bounds to be
exceeded.

Another lesser-known but potentially more severe
cause of delay in Internet Telephony is from the end-hosts
in the form of audio clock skew [4,5]. Audio skew is an
effect caused by lack of synchronization between the
sender and receiver audio clocks. It is common for clocks
to have a discrepancy of a few percent (equivalent to a
variation of approximately one second every minute).

This is different from system clock skew [6,7] since
the ultimate timing source and destination is the audio
producer at the sender and the audio consumer at the

receiver. For example, if, under ideal conditions, the
sender is sending packets with 1152 samples of data per
packet, then 1152 samples on the local audio clock (not
the system clock) should elapse between packet arrival
times.

Even a small clock discrepancy will, over time, result
in under-run or over-run of a receiver’s buffers, resulting
in either the erosion of the initial buffer followed by
audible discontinuities caused by network jitter, or a
gradual increase in the receiver’s delay until a buffer limit
is reached at which point data is periodically discarded.

To detect audio skew, the receiver has to measure the
mean packet arrival time, according to its own audio
clock. To correct audio skew, the receiver must adjust its
audio clock to match the estimate of the sender’s clock.

Previous work in the field [8] has concluded that it is
not possible to use MP3 as a codec for VoIP due to high
delay. However, it is likely that these delays are due to a
large audio output buffer (a consequence of audio skew)
and are not due to using the MP3 codec.

Hence, overcoming audio skew is key to enabling
MP3 as a telephony codec. The remainder of this paper
examines how audio clock skew can be measured and
corrected, and presents the results and conclusions of
experiments to measure the delay during an MP3
telephony session.

2 Audio Skew Detection and Correction

2.1 Audio Clock Accuracy

Reading the current audio clock value from the hardware
is not trivial. Although the internal clock is usually rated
in MHz the best granularity that is available is to the
nearest sample. As will be seen below, even this accuracy
is usually not available even with the latest hardware.

Communication between the audio card and the main
processor is achieved by using an interrupt. The audio
card sends interrupts to the processor periodically
whenever a certain number of samples have been
processed. The number of samples is again specified in
advance.

It is possible to use the interrupts to measure the
audio clock, but the granularity is limited to the maximum

frequency that interrupts can be handled by the system.
The maximum recommended interrupt rate is every 1ms.
At this rate the pressure of servicing interrupts starts to
cause a noticeable system load. At a clock rate of 48kHz,
1ms represents 48 clock ticks. Measuring to the nearest
millisecond is not very accurate, given that granularity 48
times better can potentially be achieved. It is also
inadvisable to cause so much system load from the
interrupts.

A better method of discovering the current audio
clock value would be to query the card when a value is
required. This would not be so frequent (once per packet
arrival) and would give more accurate information
(potentially a clock value to the nearest sample).

A way to query the audio card for the current clock
values is by using either DMA (Direct Memory Access)
for ISA (Industry Standard Architecture) or “Bus
Mastering” for PCI (Peripheral Component Interconnect)
architectures. DMA is general hardware (not on the audio
card) that controls transfers from main system memory to
the audio card without the main processor’s intervention.
The DMA can be stopped, the current buffer position
obtained, and then restarted again. The price to be paid is
that the DMA has to be stopped before the value can be
read. However, most audio cards cache a few samples and
can tolerate a small interruption with no discontinuity in
the output. It is possible that too many queries to the
DMA would cause a noticeable effect as the audio card is
starved of access to the main memory.

A better solution arises from newer PCI cards, which
use a technique called “Bus Mastering” to access main
memory. In effect, the DMA hardware is built into the
audio card itself, with the advantage that the Bus Master
position can be obtained from PCI query functions
without stopping memory transfers. Thus, there is no
danger of too many requests causing audio interruptions.

The accuracy of the buffer position obtained from a
PCI audio card is often only to the current block of
samples. A typical example is a 128 sample block size,
which (at a 48kHz sample rate) gives a 2.7ms clock
granularity. Deriving the current sample position from the
current block position must be done with care to
minimize error.

Figure 1: deviation between block and sample position

Figure 1 shows that a better estimate of the current
sample position can be obtained by adding 64 (in this
case) onto the current block position. This halves the
error and hence doubles the accuracy.

2.2 Measuring The Average Packet Arrival Rate
Each time a packet arrives the receiver can check the
current local audio clock, and can compare the current
clock value with the previous clock value to obtain the
amount of time that has elapsed between packet arrivals.

This value is not very reliable, however, since it is
affected by network jitter. To remove the effects of jitter,
the average of many inter-arrival times must be
calculated.

A simple approach of keeping a record of the sum
and the number of items and calculating the mean average
does not scale since the sum quickly becomes big causing
storage overflow and calculation problems. To avoid this
a running average can be kept.

Eg. If an is inter-arrival time n, and the average of the
first two inter-arrival times, av2 = (a1 + a2) / 2

Then the average of three inter-arrival times, av3

= (a1 + a2 + a3) / 3

= (av2 * 2 + a3) / 3

= 2/3 * av2 + 1/3 * a3

Generalizing for n values, avn = (n-1)/n * avn-1 + 1/n * an

This can be re-written as: avn = avn-1 + (an – avn-1) / n

This calculation does not require the sum to be kept,
and scales until the number of inter-arrival times, n,
becomes too large to store. At this point, the average
changes so little that new values have virtually no impact
on the average, so when the number of inter-arrival times
becomes sufficiently large, it is safe to assume that the
average has stabilized.

128 samples

Current block
position

Current sample
position

High jitter slows the convergence to the average
value, so an initial buffer is necessary to absorb any
underflows during the “training” period (until the average
stabilizes).

2.3 Correcting the Audio Skew

To correct the audio skew, it is necessary to change
the rate of audio consumption to match the rate at which
packets are arriving. This involves dynamically adapting
the audio sample rate.

It is not generally possible to change the clock rate on
the fly while it is running, since the audio hardware
requires recalibration.

It is possible, however, to use software to convert
data from one sample-rate to another. Such software uses
interpolation (preferably of order at least quadratic) to
convert from one sample base to another. A sample-rate
converter does not require both the input sample rate and
the output sample rate. Rather, the ratio of the two is
enough for the algorithm to perform the conversion. This
ratio (between the input and output rates) is valuable
because it is the same as the ratio between the sender
clock and the receiver clock and additionally it is
independent of unit.

It is important to calculate the output from the sample
rate converter carefully. For example, when converting
from 44.1kHz to 48kHz and feeding 1152 samples into
the converter an output of 1253 (1152 x 48 / 44.1) is not
acceptable. The result would be a steadily decreasing
queue length. The converter must keep state and output
either 1253 or 1254 samples in order to maintain 48000
samples per second output.

The sender clock is contained in the Realtime
Transport Protocol (RTP) [11] “timestamp” field. When
the RTP payload type is “MPEG Audio”, the timestamp
in an RTP packet gives the current sender clock time
(with a 90kHz accuracy). The difference between these
timestamps gives the inter-departure time of the packets,
according to the sender clock.

The ratio of the inter-arrival time and the average
inter-departure time can now be fed to the sample rate
converter, and the resulting output can be sent to the
audio device.

To test the algorithm, an experiment is created over a
part of the Internet (within a national network) from an
academic network onto a commercial network, with a

broadband connection at 512kbps downlink and 256kbps
uplink speed and an 802.11g 54Mbps wireless LAN as
the last hop. An MP3 transmitter sent voice packets for 3
minutes, and a receiver played the packets while
displaying buffer length statistics. The link is full duplex,
with a sender and receiver at both ends. The receiver at
one end showed overflow, while the receiver at the other
end showed underflow. This is to be expected, since one
audio clock will be slower than the other. The
overflowing receiver is used to collect statistics, as
displayed in figure 2.

The top line in the figure shows the default case (no
attempt by the application to control skew). The buffer
length increases linearly for about 2 minutes before
overflowing (with a delay of 2/3sec), at which point data
is lost periodically. The bottom line shows the result of
trying to match the input and output speeds. There is an
initial increase in the buffer length while the algorithm
adapts to the input rate, after which the delay remains
constant at about 100ms.

Figure 2: Effect of skew removal on buffer
length

0

100

200

300

400

500

600

700

0 15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

Time (secs)

b
u

ff
er

 le
n

g
th

 (
m

se
c)

No correction Skew removal

2.4 Converging the Buffer Length to the Worst-
Case Jitter

Figure 2 demonstrates that the skew correction is able to
match the incoming packet rate but the buffer length
becomes unnecessarily high (many times higher than the
worst-case jitter) as the sample-rate stabilizes. For
telephony where delay is limited, this is a problem. The
buffer could be corrected by throwing away packets, but
this will reduce quality substantially. A better way is to
over-correct the sample-rate to converge the buffer length
onto the maximum jitter value (making sure that the
sample rate is adjusted slowly enough to make the change
inaudible).

The difference between the current buffer length and
the required buffer length (“max_jitter”) is an important
quantity when correcting the buffer length. The amount of
history used when finding the max_jitter has to be chosen
so that old jitter events are not “forgotten”. A value of 20
seconds is chosen in these experiments. The amount of
correction is thus:

correction = buffer_length – max_jitter;

This correction value can be positive (the buffer is
too long) or negative (the buffer is too short), and can
potentially be of large magnitude (+ or – the maximum
buffer size).

In fact, the “current buffer length” is not easy to
obtain when network jitter is causing the buffer length to
oscillate. Since a variation of max_jitter would occur in
the future it is prudent to keep track of the minimum
buffer length (over recent history) and to try to bring this
in line with the current max_jitter. The amount of history
used in these experiments is chosen to be 2 seconds
worth. This value is chosen as, in this case, it is
preferable to “forget” quite quickly about old values.

Having obtained a measure of how much correction is
required, a method is needed to translate this into a small
correction to the current sample-rate converter that will
not be audible.

By experimentation it is found that only variations of
1 sample unit are possible without being audible.
Corrections are thus calculated as follows:

If(min_buffer_length > max_jitter)
correction = +1; else correction = -1;

If the number of samples to be consumed is
“num_samples” then the buffer length can be corrected
by feeding num_samples into a sample rate converter and
requesting (num_samples – correction) samples to be
returned.

Figure 3 shows the effect of the buffer correction
algorithm using the same experimental setup as used
before. The top line is the result of the detection
algorithm, as shown in figure 2. The bottom line shows
the effect as the correction algorithm attempts to adjust
the buffer length to the current max_jitter level. The
buffer length initially rises as before but starts to reverse
and tends towards a much lower delay level (~10ms) in
line with the current max_jitter. As max_jitter varies, so
the buffer length converges onto it, from ~10ms
max_jitter drops to ~3ms, and then rises to ~8ms.

Figure 3: Effect of skew correction on buffer
length

0

10

20

30

40

50

60

70

80

90

100

0 15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

Time (secs)

b
u

ff
er

 le
n

g
th

 (
m

se
c)

Skew removal Skew removal + Correction

3. Conclusions
The results show that the proposed detection and
correction algorithms are having the desired effect,
improving the quality (reducing delay) of streamed MP3
audio.

The implementation of the MP3 Internet telephone
was actually used to conduct telephone conversations and

the subjective impression of the service was that it was
very usable, delay being hardly noticeable. This was an
important achievement, given that earlier work had stated
that it was not feasible to use MP3 for Internet telephony.

When the Internet was congested (less than 128kbps
was available), the receiver initially had a buffer
underrun, but quickly reduced the sample-rate resulting in
slightly lower pitch audio but without discontinuities. The
bottleneck router in the Internet became a point of delay,
however, and as the router buffers overflowed, a source
of periodic loss. The service was still usable, but it would
have been preferable for the sender to compress MP3
with a lower bandwidth in these conditions.

Future work involves testing the implementation over
more diverse Internet connections and reviewing the
parameters used in the program. Specifically the amount
of history to take into account when calculating the
max_jitter and min_buffer_lengths. Are the current
values optimal under all conditions? In addition, the
addition or subtraction of 1 to the
local_audio_clock_delta to adapt the buffer level to the
current max_jitter may not be universally applicable. A
fraction of min_buffer_length – max_jitter may produce
better results.

References:

 [1] ISO/IEC, JTC1/SC29/WG11 MPEG, “Information
Technology — Coding of Moving Pictures and
Associated Audio for Digital Storage Media at up about
1.5 Mbit/s — Part 3: Audio”, IS11172-3, 1992 (“MPEG-
1”).
[2] Brady, P. T. “Effects of Tranmission Delay on
Conversational Behaviour on Echo-Free Telephone
Circuits.” Bell System Technical Journal, pp115-134,
January 1971
[3] Hardman, V., Sasse, M.A., Handley, M., Watson, A.,
“Reliable Audio for Use over the Internet”, Proc.
INET’95.
[4] Orion Hodson, Colin Perkins, and Vicky Hardman,
“Skew Detection and Compensation for Internet Audio
Applications.” Proceedings of the IEEE International
Conference on Multimedia and Expo, New York, July
2000.
[5] Richard Akester, and Stephen Hailes “A New Audio
Skew Detection and Correction Algorithm.” Proceedings
of the IEEE International Conference on Multimedia and
Expo, Lausanne, September 2002.

[6] Sue Moon, Paul Skelly, and Don Towsley,
“Estimation and removal of clock skew from network
delay measurements.” Proceedings of the Conference on
Computer Communica-tions (IEEE INFOCOM), New
York, March 1999.
[7] Vern Paxson, “On calibrating measurements of packet
transit times.” Proceedings of the ACM Sigmetrics
Conference on Measurement and Modeling of Computer
Systems, pages 11–21, Madison, Wisconsin, June 1998.
[8] Sooyeon Kim, JeongKeun Lee, Tae Wan You,
Kyoungae Kim, and Yanghee Choi, "Hat: A High-quality
Audio Conferencing Tool using mp3 Codec," INET 2002,
Washington, DC, USA, June 2002
[9] The LAME project: http://www.mp3dev.org/mp3
[10] Mpg123 homepage: http://www.mpg123.org
[11] RTP: A transport protocol for real-time applications.
RFC 1889.
[12]http://www.instat.com/infoalert.asp?Volname=Volu
me%20%23%2025

