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Abstract: - The use of MP3 as a compression codec for Internet Telephony has become feasible in view of the latest 
developments in PC hardware and broadband Internet capacity. In this context, this paper examines the implementation 
details behind such an Internet telephone, measuring delay in the end hosts. A new approach to detecting and correcting 
audio skew is proposed and implemented, focusing on the accuracy of measurements and on the algorithm’s effect on the 
audio experience of the listener. The algorithms presented are shown to successfully remove audio skew, thus reducing 
delay and loss and hence improving audio quality. The feasibility of MP3 as a codec for Internet telephony is shown to 
be feasible and to work well within the required delay bounds. 
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1 Introduction 
Internet Telephony (or Voice over Internet Protocol – 

VoIP) is gradually gaining acceptance, especially with the 
business community. Based on an In-Stat/MDR survey of 
its Technology Adoption panel, by the end of 2002 
roughly 2% of US firms were using some form of IP 
Telephony. The same research group forecasts growth to 
19% of US firms by 2007 [12]. 

This adoption is often based on integration between 
tradition telephone networks and IP networks through 
gateways, enabling users to make calls from or to a 
regular telephone, rather than a PC. Since these 
traditional telephone networks use “toll-quality” 64kbps 
connections, there seems no need to use higher quality 
audio quality over the Internet segment of a call 
connection. Indeed, when VoIP was introduced most 
users had very limited Internet bandwidth and very high 
compression audio codecs were developed to enable such 
users to make Internet telephone calls. 

Even today when broadband connections are more 
common, and if both sender and receiver in a telephone 
call have a 512kbps broadband connection, the software 
available still attempts to compress the audio data as 

much as possible, providing a low quality service to the 
user. 

Telephone quality audio is sampled at 8000 
samples/second capturing a frequency range of 4kHz. The 
precision of each sample is 8 bit. With these sampling 
parameters, any compression codec is limited to these 
frequency and noise bounds. 

PCs have been capable of CD quality audio capture 
for a long time now. This provides 44100 samples/second 
at 16-bit precision, and is typically used to record music. 
The compression format MP3 (MPEG-1 Audio Layer 3)  
[1] is the most common compression format for these 
recording parameters, but usually produces an output 
bandwidth in the region 128kbps. Recently, PCs have 
reached a speed where they can encode MP3 audio in 
real-time, and (more importantly for VoIP) can encode 
and decode two streams simultaneously in real-time. 

Even though 128kbps is a high bandwidth (in 
telephony terms), it is feasible to carry a full-duplex voice 
conversation compressed with MP3 over a broadband 
connection, and still have capacity to spare. The result is 
rich sound, capturing a wide frequency range at high 
precision. 



The problem with MP3 VoIP is the same as with 
standard VoIP services. The Internet is a best-effort 
network that does not guarantee delay, jitter (delay 
variation between packets) or reliability. VoIP has limits 
on the amount of delay and loss it can tolerate for an 
interactive telephone call. 

Packet loss can reduce audio reception quality, but 
repair techniques can compensate. With 20ms of speech 
samples per frame, waveform substitution can help to 
make speech intelligible even with loss rates up to 20% 
[3]. 

For real-time audio applications to maintain 
interactivity, the round trip delay should not exceed 
400ms [2]. Adaptive audio applications compensate for 
network jitter (delay variance) by buffering, the size of 
the buffer depending on the current level of jitter. For 
interactivity the size of the buffer may be limited. If the 
worst-case jitter is greater than the maximum size of the 
buffer some breaks in the media stream will be expected. 
Combining the average delay and delay variance, and 
comparing this with the interactivity bound can gain an 
indication as to whether the network performance will be 
suitable for realtime traffic and an adaptive application. 

With this delay bound in mind, it is important to 
assess the MP3 codec delay to determine the feasibility of 
using this codec for telephony. The MP3 packetization 
delay for 1152 samples (a standard MP3 audio frame) at 
44100 samples/second is 26.122ms. Therefore, the 
encoding delay must be less than 26ms in order to be 
realtime (the LAME [9] encoder used can achieve this on 
a PII 266MHz at highest quality encoding). For decoding, 
the MPG123 [10] decoder is used. Decoding is easier 
than encoding, and therefore faster. Furthermore the 
decoded data can be played immediately. Therefore, there 
is no reason why the choice of MP3 as the codec should 
prevent the telephony interactive delay bounds to be 
exceeded. 

Another lesser-known but potentially more severe 
cause of delay in Internet Telephony is from the end-hosts 
in the form of audio clock skew [4,5]. Audio skew is an 
effect caused by lack of synchronization between the 
sender and receiver audio clocks. It is common for clocks 
to have a discrepancy of a few percent (equivalent to a 
variation of approximately one second every minute).  

This is different from system clock skew [6,7] since 
the ultimate timing source and destination is the audio 
producer at the sender and the audio consumer at the 

receiver.  For example, if, under ideal conditions, the 
sender is sending packets with 1152 samples of data per 
packet, then 1152 samples on the local audio clock (not 
the system clock) should elapse between packet arrival 
times. 

Even a small clock discrepancy will, over time, result 
in under-run or over-run of a receiver’s buffers, resulting 
in either the erosion of the initial buffer followed by 
audible discontinuities caused by network jitter, or a 
gradual increase in the receiver’s delay until a buffer limit 
is reached at which point data is periodically discarded. 

To detect audio skew, the receiver has to measure the 
mean packet arrival time, according to its own audio 
clock. To correct audio skew, the receiver must adjust its 
audio clock to match the estimate of the sender’s clock. 

Previous work in the field [8] has concluded that it is 
not possible to use MP3 as a codec for VoIP due to high 
delay. However, it is likely that these delays are due to a 
large audio output buffer (a consequence of audio skew) 
and are not due to using the MP3 codec. 

Hence, overcoming audio skew is key to enabling 
MP3 as a telephony codec. The remainder of this paper 
examines how audio clock skew can be measured and 
corrected, and presents the results and conclusions of 
experiments to measure the delay during an MP3 
telephony session. 

 

 

2 Audio Skew Detection and Correction 
 

2.1 Audio Clock Accuracy 

Reading the current audio clock value from the hardware 
is not trivial. Although the internal clock is usually rated 
in MHz the best granularity that is available is to the 
nearest sample. As will be seen below, even this accuracy 
is usually not available even with the latest hardware. 

Communication between the audio card and the main 
processor is achieved by using an interrupt. The audio 
card sends interrupts to the processor periodically 
whenever a certain number of samples have been 
processed. The number of samples is again specified in 
advance. 

It is possible to use the interrupts to measure the 
audio clock, but the granularity is limited to the maximum 



frequency that interrupts can be handled by the system. 
The maximum recommended interrupt rate is every 1ms. 
At this rate the pressure of servicing interrupts starts to 
cause a noticeable system load. At a clock rate of 48kHz, 
1ms represents 48 clock ticks. Measuring to the nearest 
millisecond is not very accurate, given that granularity 48 
times better can potentially be achieved. It is also 
inadvisable to cause so much system load from the 
interrupts. 

A better method of discovering the current audio 
clock value would be to query the card when a value is 
required. This would not be so frequent (once per packet 
arrival) and would give more accurate information 
(potentially a clock value to the nearest sample). 

A way to query the audio card for the current clock 
values is by using either DMA (Direct Memory Access) 
for ISA (Industry Standard Architecture) or “Bus 
Mastering” for PCI (Peripheral Component Interconnect) 
architectures. DMA is general hardware (not on the audio 
card) that controls transfers from main system memory to 
the audio card without the main processor’s intervention. 
The DMA can be stopped, the current buffer position 
obtained, and then restarted again. The price to be paid is 
that the DMA has to be stopped before the value can be 
read. However, most audio cards cache a few samples and 
can tolerate a small interruption with no discontinuity in 
the output. It is possible that too many queries to the 
DMA would cause a noticeable effect as the audio card is 
starved of access to the main memory. 

A better solution arises from newer PCI cards, which 
use a technique called “Bus Mastering” to access main 
memory. In effect, the DMA hardware is built into the 
audio card itself, with the advantage that the Bus Master 
position can be obtained from PCI query functions 
without stopping memory transfers. Thus, there is no 
danger of too many requests causing audio interruptions. 

The accuracy of the buffer position obtained from a 
PCI audio card is often only to the current block of 
samples. A typical example is a 128 sample block size, 
which (at a 48kHz sample rate) gives a 2.7ms clock 
granularity. Deriving the current sample position from the 
current block position must be done with care to 
minimize error. 

 

 

 

 

 

 

 

 

Figure 1: deviation between block and sample position 

 

Figure 1 shows that a better estimate of the current 
sample position can be obtained by adding 64 (in this 
case) onto the current block position. This halves the 
error and hence doubles the accuracy. 

 
2.2 Measuring The Average Packet Arrival Rate 
Each time a packet arrives the receiver can check the 
current local audio clock, and can compare the current 
clock value with the previous clock value to obtain the 
amount of time that has elapsed between packet arrivals. 

This value is not very reliable, however, since it is 
affected by network jitter. To remove the effects of jitter, 
the average of many inter-arrival times must be 
calculated. 

A simple approach of keeping a record of the sum 
and the number of items and calculating the mean average 
does not scale since the sum quickly becomes big causing 
storage overflow and calculation problems. To avoid this 
a running average can be kept. 

Eg. If an is inter-arrival time n, and the average of the 
first two inter-arrival times, av2 = (a1 + a2) / 2 

Then the average of three inter-arrival times, av3 

= (a1 + a2 + a3) / 3 

= (av2 * 2 + a3) / 3  

= 2/3 * av2 + 1/3 * a3 

Generalizing for n values, avn = (n-1)/n * avn-1 + 1/n * an 

This can be re-written as: avn = avn-1 + (an – avn-1) / n 

This calculation does not require the sum to be kept, 
and scales until the number of inter-arrival times, n, 
becomes too large to store. At this point, the average 
changes so little that new values have virtually no impact 
on the average, so when the number of inter-arrival times 
becomes sufficiently large, it is safe to assume that the 
average has stabilized. 

128 samples 

Current block 
position 

Current sample 
position 



High jitter slows the convergence to the average 
value, so an initial buffer is necessary to absorb any 
underflows during the “training” period (until the average 
stabilizes). 

 
2.3 Correcting the Audio Skew 

To correct the audio skew, it is necessary to change 
the rate of audio consumption to match the rate at which 
packets are arriving. This involves dynamically adapting 
the audio sample rate. 

It is not generally possible to change the clock rate on 
the fly while it is running, since the audio hardware 
requires recalibration. 

It is possible, however, to use software to convert 
data from one sample-rate to another. Such software uses 
interpolation (preferably of order at least quadratic) to 
convert from one sample base to another. A sample-rate 
converter does not require both the input sample rate and 
the output sample rate. Rather, the ratio of the two is 
enough for the algorithm to perform the conversion. This 
ratio (between the input and output rates) is valuable 
because it is the same as the ratio between the sender 
clock and the receiver clock and additionally it is 
independent of unit.  

It is important to calculate the output from the sample 
rate converter carefully. For example, when converting 
from 44.1kHz to 48kHz and feeding 1152 samples into 
the converter an output of 1253 (1152 x 48 / 44.1) is not 
acceptable. The result would be a steadily decreasing 
queue length. The converter must keep state and output 
either 1253 or 1254 samples in order to maintain 48000 
samples per second output. 

The sender clock is contained in the Realtime 
Transport Protocol (RTP) [11] “timestamp” field. When 
the RTP payload type is “MPEG Audio”, the timestamp 
in an RTP packet gives the current sender clock time 
(with a 90kHz accuracy). The difference between these 
timestamps gives the inter-departure time of the packets, 
according to the sender clock. 

The ratio of the inter-arrival time and the average 
inter-departure time can now be fed to the sample rate 
converter, and the resulting output can be sent to the 
audio device. 

To test the algorithm, an experiment is created over a 
part of the Internet (within a national network) from an 
academic network onto a commercial network, with a 

broadband connection at 512kbps downlink and 256kbps 
uplink speed and an 802.11g 54Mbps wireless LAN as 
the last hop. An MP3 transmitter sent voice packets for 3 
minutes, and a receiver played the packets while 
displaying buffer length statistics. The link is full duplex, 
with a sender and receiver at both ends. The receiver at 
one end showed overflow, while the receiver at the other 
end showed underflow. This is to be expected, since one 
audio clock will be slower than the other. The 
overflowing receiver is used to collect statistics, as 
displayed in figure 2. 

The top line in the figure shows the default case (no 
attempt by the application to control skew). The buffer 
length increases linearly for about 2 minutes before 
overflowing (with a delay of 2/3sec), at which point data 
is lost periodically. The bottom line shows the result of 
trying to match the input and output speeds. There is an 
initial increase in the buffer length while the algorithm 
adapts to the input rate, after which the delay remains 
constant at about 100ms. 

Figure 2: Effect of skew removal on buffer 
length
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2.4 Converging the Buffer Length to the Worst-
Case Jitter 
 
Figure 2 demonstrates that the skew correction is able to 
match the incoming packet rate but the buffer length 
becomes unnecessarily high (many times higher than the 
worst-case jitter) as the sample-rate stabilizes. For 
telephony where delay is limited, this is a problem. The 
buffer could be corrected by throwing away packets, but 
this will reduce quality substantially. A better way is to 
over-correct the sample-rate to converge the buffer length 
onto the maximum jitter value (making sure that the 
sample rate is adjusted slowly enough to make the change 
inaudible).  

The difference between the current buffer length and 
the required buffer length (“max_jitter”) is an important 
quantity when correcting the buffer length. The amount of 
history used when finding the max_jitter has to be chosen 
so that old jitter events are not “forgotten”. A value of 20 
seconds is chosen in these experiments. The amount of 
correction is thus: 

correction = buffer_length – max_jitter; 
 

This correction value can be positive (the buffer is 
too long) or negative (the buffer is too short), and can 
potentially be of large magnitude (+ or – the maximum 
buffer size). 

In fact, the “current buffer length” is not easy to 
obtain when network jitter is causing the buffer length to 
oscillate. Since a variation of max_jitter would occur in 
the future it is prudent to keep track of the minimum 
buffer length (over recent history) and to try to bring this 
in line with the current max_jitter. The amount of history 
used in these experiments is chosen to be 2 seconds 
worth. This value is chosen as, in this case, it is 
preferable to “forget” quite quickly about old values. 

Having obtained a measure of how much correction is 
required, a method is needed to translate this into a small 
correction to the current sample-rate converter that will 
not be audible. 

By experimentation it is found that only variations of 
1 sample unit are possible without being audible. 
Corrections are thus calculated as follows: 

If(min_buffer_length > max_jitter) 
correction = +1; else correction = -1; 

 

If the number of samples to be consumed is 
“num_samples” then the buffer length can be corrected 
by feeding num_samples into a sample rate converter and 
requesting (num_samples – correction) samples to be 
returned. 

Figure 3 shows the effect of the buffer correction 
algorithm using the same experimental setup as used 
before. The top line is the result of the detection 
algorithm, as shown in figure 2. The bottom line shows 
the effect as the correction algorithm attempts to adjust 
the buffer length to the current max_jitter level. The 
buffer length initially rises as before but starts to reverse 
and tends towards a much lower delay level (~10ms) in 
line with the current max_jitter. As max_jitter varies, so 
the buffer length converges onto it, from ~10ms 
max_jitter drops to ~3ms, and then rises to ~8ms.  

Figure 3: Effect of skew correction on buffer 
length
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3. Conclusions 
The results show that the proposed detection and 
correction algorithms are having the desired effect, 
improving the quality (reducing delay) of streamed MP3 
audio. 

The implementation of the MP3 Internet telephone 
was actually used to conduct telephone conversations and 



the subjective impression of the service was that it was 
very usable, delay being hardly noticeable. This was an 
important achievement, given that earlier work had stated 
that it was not feasible to use MP3 for Internet telephony. 

When the Internet was congested (less than 128kbps 
was available), the receiver initially had a buffer 
underrun, but quickly reduced the sample-rate resulting in 
slightly lower pitch audio but without discontinuities. The 
bottleneck router in the Internet became a point of delay, 
however, and as the router buffers overflowed, a source 
of periodic loss. The service was still usable, but it would 
have been preferable for the sender to compress MP3 
with a lower bandwidth in these conditions. 

Future work involves testing the implementation over 
more diverse Internet connections and reviewing the 
parameters used in the program. Specifically the amount 
of history to take into account when calculating the 
max_jitter and min_buffer_lengths. Are the current 
values optimal under all conditions? In addition, the 
addition or subtraction of 1 to the 
local_audio_clock_delta to adapt the buffer level to the 
current max_jitter may not be universally applicable. A 
fraction of min_buffer_length – max_jitter may produce 
better results. 
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