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Abstract— Cluster-based Web server systems have become a
major means to hosting e-commerce sites. In this paper, we
link the issue of resource partitioning scheme with the pricing
strategy in a Service-Level-Agreement (SLA) and analyze the
problem of maximizing the revenues attained in the hosting of a e-
commerce site with a SLA contract by optimally partitioning the
server resources among all supported service classes. The optimal
resource partitioning scheme is derived under the linear pricing
strategy by the Lagrangian optimization approach, which has
the closed-form solution. The simulation results demonstrate the
ability of revenue maximization of the derived optimal resource
partitioning scheme in cluster-based Web server systems.
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I. I NTRODUCTION

The Web is changing from a sole communication and
browsing infrastructure to an important medium for conducting
personal business and e-commerce, which makes the Quality
of Service (QoS) an increasingly critical issue. A fundamental
characteristic of e-commerce environments is the diverse set
of services provided to support the requirements of various
businesses and customers, which result in the definition of
different service classes. In a typical e-commerce environment,
an e-business operator contracts with a Web service provider
to provide applications and services to its business customers,
which can be consumers (B2C) or other businesses (B2B); in
other words, a Web service provider hosts an e-commerce Web
site via a contract with the e-commerce operator. In many e-
commerce contracts, the Web service provider agrees to offer
a certain level of QoS to each class of service in hosting the e-
commerce site, and in return the e-business operator agreesto
pay the service provider based on the QoS levels received by
its customers. These contracts are based on a Service-Level-
Agreement (SLA) between the e-business operator and the
Web service provider that defines the QoS parameters for each
class of service, the anticipated workload intensity of per-class
requests from the customers of the e-business and the pricing
strategy by which the SLA payment will be determined.

The exponential growth in Internet usage, much of which
is fueled by the growth and requirements of various aspects
of e-commerce, has created the demand for more and faster
Web servers capable of serving over 100 million Internet
users. During recent years, server clustering has emerged as a
promising technique to build faster, scalable and cost-effective

Web servers [9], which makes cluster-based Web server sys-
tems become a major means to hosting e-commerce sites. A
state-of-the-art cluster-based Web server system consistof a
number of back-end server nodes and a specialized front-end
node, which acts as the single input point of customer requests
and is responsible for distributing the inbound requests among
the back-end nodes. The customer requests of an e-business
from different service classes share the server resources of a
cluster-based Web server system which hosts the e-commerce
Web site. In this paper, we analyze the problem of maximizing
the revenues attained in the hosting of an e-commerce site
with a SLA contract by optimally partitioning the server
resources among all supported service classes in the SLA.
A number of papers [6], [3], [12], [10], [11] have focused
on enabling differentiated services in such cluster-basedWeb
server systems, but none of them addressed the topic of
maximizing SLA revenues. The issue of maximizing SLA
revenues in the cluster platform of Web server farms was
recently studied by Liuet al in [7]. A Web server farm is
typically deployed to host several Web sites simultaneously on
the same platform. Moreover, they assumed that each back-end
server node in a Web server farm can serve multiple service
classes; then they tried to optimally allocate the resource(e.g.,
processing capacity) of each server node among its supported
service classes to maximize the resulted SLA revenues and
the closed-form solution to the optimal resource allocation
scheme (i.e., the optimal weights) in each back-end node was
not derived in [7]. Whereas, in this paper, we focus on the
cluster platform which hosts a single e-commerce site in a
cluster-based Web server system. The problem of maximizing
SLA revenues in such a Web cluster system is solved by
optimally partitioning all the back-end server resources among
the supported service classes and the closed-form solution
to the optimal resource partitioning scheme for maximizing
SLA revenues is derived from the revenue target function by
Lagrangian optimization approach.

The rest of the paper is organized as follows. Section 2 first
presents our target Web cluster architecture and its queueing
model. Then the linear pricing strategy used in this paper is
also generally defined there. The closed-form solution to the
optimal resource partitioning scheme is derived in Section3,
which can achieve the maximization of SLA revenues in a
cluster-based Web server system built upon the target cluster
architecture. Section 4 contains simulation part demonstrating
the revenue-maximizing ability of the derived optimal resource
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Fig. 1. Queuing model of the target Web cluster architecture.

partitioning scheme. Finally, we present concluding remarks
in Session 5.

II. TARGET WEB CLUSTER ARCHITECTURE ANDL INEAR

PRICING STRATEGY

A. Target Web cluster architecture

Our target Web cluster architecture consists of a front-end
component called Web switch and a number of homogeneous
back-end server nodes connected by a high-speed LAN. The
Web switch acts as the network representative for an e-
commerce Web site built upon the target cluster architecture,
making the distributed nature of the site architecture com-
pletely transparent to the users. In such a way, the authoritative
DNS server for the e-commerce site translates the site name
into the IP address of its Web switch, which receives all
inbound requests destined for the site and then distribute them
across the back-end nodes. Moreover, to enable QoS support in
the e-commerce site, the Web switch must be able to examine
the content of a HTTP request and identify its requested
service class, i.e., it is the so-called layer-7 Web switch [9].
The above Web cluster architecture can be further classified
on the basis of whether the data from the back-end server
nodes to clients (outgoing data) go through the Web switch.
In our target cluster architecture, the TCP handoff mechanism
[8] is deployed to enable the back-end nodes respond to the
clients directly without passing through the front-end nodes
as an intermediary. Thus our target cluster architecture can be
abstracted as a queuing system shown in Fig. 1.

Several mechanisms [6], [3], [12], [10], [11] have been
proposed to enable differentiated services in such a Web
cluster system, most of which dynamically partition the server
resources among the supported service classes to implement
the differentiated QoS levels. In this paper, we link the issue of
partitioning server resources among the supported classeswith
the pricing strategy in a SLA to derive the optimal resource
partitioning scheme for maximizing the SLA revenues in
hosting an e-commerce site.

Suppose that an e-commerce Web site built upon our target
cluster architecture consists of a layer-7 Web switch andN
homogeneous back-end server nodes, each of which has the
processing capacityC bits/s; there are totallym service classes
supported in the site. Then the idea of partitioning server
resources among the supported service classes is to partition
the N back-end server nodes intom disjoint server subsets

so that each class of requests will be served only by its own
assigned server subset. Specifically, the server subset assigned
to classi is denoted bySi and the number of server nodes inSi

is denoted byni, thenSi∩Sj = �, for i 6= j andi, j ∈ [1,m],
and

∑m

i=1 ni = N . Thus, the problem of deriving the optimal
resource partitioning scheme is actually to find the optimal
value of ni, i ∈ [1,m]. Note thatni does not have to be an
integer, which means that a back-end server node may actually
be assigned to multiple service classes with each class taking
a portion of it. In this case, we have that back-end node serve
those service classes by WFQ algorithm and the WFQ weights
equal their shares of that node, respectively.

Based on the analysis in [11], the service time of a class
i request at a back-end node is proportional to the size of its
requested Web object, i.e.,Xi = Li/C, whereLi denotes the
size (Bytes) of the Web object requested by classi customers
and C (Bytes/s) is the processing capacity of the back-end
node. Thus,L̄i = E[Li], L̄i

2 = E[Li
2] and X̄i = E[Xi] =

L̄i/C, X̄i
2 = E[Xi

2] = L̄i
2/C2. In our scheme, the layer-

7 Web switch distributes the inbound requests from classi
uniformly among the back-end server nodes in server subset
Si to make the server loads balanced. That is to say that, if
the overall arrival rate of classi requests to the e-commerce
site is λi requests/s and a back-end server node inSi is
used exclusively by classi requests, the mean arrival rate
of class i requests to that back-end node can be estimated
as lambdai/ni. Furthermore, in this paper, the processing
delay at the layer-7 switch is neglected due to the fact that in
a Web environment the client-to-server packets are typically
much less than the server-to-client packets and the chosen
QoS metric in the SLA is themean request delayin the e-
commerce Web site. Hence, according to the queuing theory
of M/G/1, the analytic mean delay of classi requestŝ̄di in the
e-commerce site can be denoted as follows.

ˆ̄di = X̄i +
λi

ni
X̄i

2

2(1 − λi

ni
X̄i)

=
L̄i

C
+

λiL̄i
2

2C(niC − λi)L̄i

(1)

The natural constraint of Eq. (1) isniC > λiL̄i due to the
fact that delay can not be negative.

B. Linear Pricing Strategy

As we know, linear and flat linear strategies are among the
most used and practical one in real situation. In this paper,
our study concentrates on maximizing SLA revenues in the
above e-commerce site under the linear pricing strategy and
the analysis under the flat pricing strategy is postponed to its
sequel. Asmean request delayis chosen as the QoS metric in
the SLA, the linear pricing strategy for classi is characterized
by the following definition of the linear pricing functionri(d̄i).
Definition 1: The function

ri(d̄i) = bi − kid̄i, i = 1, 2, ...,m, bi > 0, ki > 0 (2)

is called thelinear pricing functionof classi, wherebi andki

are positive constants andbi ≥ bj andki ≥ kj hold to ensure



differentiated pricing if classi has a higher priority than class
j (in this paper, we assume that class 1 is the highest priority
and classm is the lowest one).

From Eq. (2), it is observed that for any service class, the
received SLA revenue by a service provider will decrease
linearly along with the increase of offered mean request delay
and if the offered mean request delay exceeds the minimum
delay requirement of that class, the service provider will
obtain a negative revenue, i.e., the service provider will pay
the penalties to the e-business operator for failing to meet
that minimum requirement. Furthermore, the constant shiftbi

determines the maximum price paid for the QoS level received
by classi requests and the growing rate of penalty depends
on the slopeki.

III. O PTIMAL RESOURCEPARTITIONING SCHEME

Consider an e-commerce Web site built upon the target
cluster architecture withN back-end server nodes andm
service classes supported. The processing capacity of each
back-end node isC bytes/s. The arrival rate of classi requests
is denoted byλi requests/s,i ∈ [1,m]. As the QoS metric
considered in the SLA is themean request delay, the mean
delay of classi requestsd̄i in the e-commerce site will be
measured periodically and the SLA revenue due to serving
class i requests can be determined also periodically based
on classi pricing function and the above QoS measurement.
Specifically, we use Eq. (1) to estimate the real mean delay
of class i packet d̄i during one measurement period. Thus,
based on the linear pricing function defined in Eq. (2), the
SLA revenueF obtained in hosting of the e-commerce site
during one measurement period is defined as follows.

F =

m
∑

i=1

ri(d̄i) =

m
∑

i=1

[bi − ki(
L̄i

C
+

λiL̄i
2

2C(niC − λiL̄i)
)] (3)

As a result of the above definition, the issue of maximizing
SLA revenue in hosting of an e-commerce Web site can be
formulated as follows:

max F =

m
∑

i=1

[bi − ki(
L̄i

C
+

λiL̄i
2

2C(niC − λiL̄i)
)] (4)

s.t.

m
∑

i=1

ni = N, 0 < ni < N (5)

niC > λiL̄i (6)

Theorem 1. Under the linear pricing strategy, the maximum
SLA revenue F in hosting an e-commerce site built upon the
target cluster architecture is achieved by using the optimal
server resource partitioning scheme:

ni =
(CN −

∑m

j=1 λjL̄j)

√

kiλiL̄i
2

2

C
∑m

j=1

√

kjλjL̄j
2

2

+
λiL̄i

C
, i ∈ [1,m] (7)

Proof: Based on Eqs. (4) and (5), we can construct the

following Lagrangian equation.

P = P (n1, n2, ..., nm)

=

m
∑

i=1

[bi − ki(
L̄i

C
+

λiL̄i
2

2C(niC − λiL̄i)
)] + σ(N −

m
∑

i=1

ni)

(8)

Set the partial derivative ofP in Eq. (8) to zero, i.e.,

∂P

∂ni

=
kiλiL̄i

2

2(niC − λiL̄i)2
− σ = 0 (9)

It follows that

σ =
kiλiL̄i

2

2(niC − λiL̄i)2
(10)

leading to the solution

ni =
1

C
(

√

kiλiL̄i
2

2σ
+ λiL̄i), i ∈ [1,m]. (11)

Substituting Eq. (11) to Eq. (5), we get

1

C

m
∑

i=1

(

√

kiλiL̄i
2

2σ
+ λiL̄i) = N

√
σ =

∑m

i=1

√

kiλiL̄i
2

2

CN −
∑m

i=1 λiL̄i

(12)

And when
√

σ in Eq. (12) is substituted to Eq. (11), the closed-
form solution in Eq. (7) is obtained.

Because of the constraintniC > λiL̄i in Eq. (6), obviously,
m

∑

j=1

njC = NC >

m
∑

j=1

λjL̄j (13)

Hence, the closed-form solution in Eq. (7)ni > 0. Moreover,
as

∑m

i=1 ni = N andni > 0, we can conclude that the closed-
form solution0 < ni < N .

To prove that the closed-form solution in Eq. (7) is the
optimal one, we consider the second order derivative ofP.

∂2P

∂w2
i

= − kiλiL̄i
2C

(niC − λiL̄i)3
< 0 (14)

due to the constraint in (6). Therefore, the revenueF is strictly
convex in the interval0 < ni < N , having one and only one
maximum. This completes the proof.Q.E.D.

Furthermore, when the optimal resource partitioning scheme
is deployed, the analytic maximum revenue obtained in hosting
the e-commerce site can be acquired by substituting the
optimal solutionni in Eq.(7) into Eq. (3).

IV. SIMULATIONS

In this section we present the simulation results which
demonstrate the effectiveness of the derived optimal resource
partitioning scheme for maximizing the SLA revenues under
linear pricing strategy. A number of simulations have been
conducted under different parameter settings. In each case, we
first numerically determine the optimal resource partitioning
scheme using Theorem 1, and then we investigate through
simulations the benefits of the optimal scheme by comparing



the SLA revenues obtained under the optimal scheme with
those obtained under a natural scheme of proportional resource
partitioning as well as the analytic maximum revenues. A
representative set of these simulations are presented herein.
Throughout this section, we shall focus on an e-commerce
Web site consisting of a layer-7 Web switch and 16 back-end
server nodes (N=16), where the processing capacity of each
back-end nodeC equals 5.95MB/s and the number of service
classes supported in the sitem = 3 (namely, Gold, Silver and
Bronze classes).

For actual Web workloads, it is recognized that Web object
sizes are distributed with a heavy tail. Here the Bounded Pareto
distribution (BP (p, q, α)) [5] is used to model the heavy-tailed
characteristic of Web objects. Specifically, the mean size of
Web objects is set to 21KB as measured in [2] andp=1KB and
q=10MB are chosen as the reasonable minimum and maximum
Web object size, respectively. The resultingα=0.8037 is within
the range ofα values measured in [1] and [4]. The arrival
process of client requests destined for the e-commerce site
was modelled by Poisson distribution. Additionally, we first
set the base arrival rates for each service class and then a
multiplicative load factor ρ > 0 is used to scale these base
arrival rates to consider different workload intensities;i.e.,
λjρ will be used in the simulations as class-j arrival rate.
The base arrival rate for Gold, Silver and Bronze classes is
100 requests/s, 150 requests/s and 250 requests/s, respectively,
throughout the following simulations. As mentioned above,we
deploy a scheme that partitions the server resources among
the supported service classes in proportional to their inbound
workload (λiL̄i) (bytes) for comparison with our derived
optimal resource partitioning scheme, which was also used by
Liu et al in [7]. Specifically, theproportional scheme results
in the number of server nodes assigned to classi as below:
ni = λiL̄i

∑

m

j=1
(λjL̄j)

, i ∈ [1,m]. Note that this proportional

scheme is a natural way to allocate server resources in a Web
cluster system.

A. The first set of simulations

In the first set of simulations, the set of linear pricing
functions deployed is as follows: for the Gold class,r1(d̄1) =
200 − 5000d̄1, for the Silver class,r2(d̄2) = 120 − 2000d̄2

and for the Bronze class,r3(d̄3) = 40 − 500d̄3 (note that the
time unit is second here). We first investigate the relationship
between the mean request delay generated by simulation
and the analytic mean request delay by Eq. (1) (the closed-
form solution in Eq. (7) is substituted into Eq. (1)) under
different workload intensities. Then the simulation-generated
SLA revenue by the optimal resource partitioning scheme is
evaluated by comparing it with the one by the proportional
scheme as well as the analytic maximum SLA revenue under
multiple workload levels.

Fig. 2 shows the simulation-generated mean request delays
by the optimal scheme and the analytic mean request delays
under different load factors. Fig. 3 presents the simulation-
generated request delays by the proportional resource parti-
tioning scheme under the same workload intensities. It can be
seen from Fig. 2 that for each service class, its simulation-
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Fig. 2. For the first set of simulations: the mean request delaysby the optimal
scheme under different load factorρ.
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Fig. 3. For the first set of simulations: the mean request delaysby the
proportional scheme under different load factorρ.
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Fig. 4. For the first set of simulations: SLA revenue comparisonunder
different load factorρ.

generated mean request delay is always pretty close to its
analytic mean request delay under all the offered load factors,
which demonstrates the correctness of the above assumption
that the real mean request delay of classi, i ∈ [1,m], can
be estimated by Eq. (1). Additionally, the optimal resource
partitioning scheme enables the differentiated services in the
e-commerce Web site as shown in Fig. 2, whereas the propor-
tional scheme does not.

Fig. 4 shows the simulation-generated SLA revenues by
the optimal scheme, the simulation-generated revenues by
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Fig. 5. For the second set of simulations: the mean request delays by the
optimal scheme under different load factorρ.

the proportional scheme and the analytic maximum revenues,
respectively, under the same load factors. It is clear that the
optimal resource partitioning scheme achieves the maximum
revenue under different workload intensities. More impor-
tantly, the value of the simulation-generated revenue by the
optimal scheme is very close to the one of the analytic
maximum revenue, which demonstrates the effectiveness of the
derived optimal resource partitioning scheme for maximizing
SLA revenues.

B. The second set of simulations

In this part, the above simulations were made again under
different linear pricing functions to investigate the performance
robustness of the optimal resource partitioning scheme for
maximizing SLA revenues. The set of linear pricing functions
deployed in the second set of simulations is as below: for
the Gold class,r1(d̄1) = 200 − 10000d̄1, for the Silver
class, r2(d̄2) = 150 − 5000d̄2 and for the Bronze class,
r3(d̄3) = 80 − 2000d̄3. Figs. 5-7 present the simulation
results, where it is clear that the simulation-generated mean
request delay by the optimal scheme is very close to the
analytic mean request delay and the simulation-generated SLA
revenue by the optimal scheme, which is larger than the
one by the proportional scheme, is always pretty close to
the analytic maximum SLA revenue although different set of
linear pricing functions is deployed. Therefore, we conclude
that our derived optimal resource partitioning scheme can
succeed in implementing the maximization of SLA revenues
under different workload intensities and different set of linear
pricing functions when a Web service provider hosts an e-
commerce Web site by cluster-based Web server systems.

V. CONCLUSIONS

In this paper, we link the issue of resource partitioning
scheme with the pricing strategy in a Service-Level-Agreement
(SLA) and explore the problem of maximizing the SLA
revenues in the hosting of an e-commerce Web site with
a SLA contract by optimally partitioning server resources
among the supported service classes. The optimal resource
partitioning scheme is derived under the linear pricing strategy,
which has the closed-form solution to the optimal number
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Fig. 6. For the second set of simulations: the mean request delays by the
proportional scheme under different load factorρ.
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Fig. 7. For the second set of simulations: SLA revenue comparison under
different load factorρ.

of the back-end server nodes assigned to each service class.
The simulation results demonstrate that the derived optimal
resource partitioning scheme can succeed in implementing
the maximization of SLA revenues under different system
parameter settings when a Web service provider hosts an e-
commerce Web site by cluster-based Web server systems.

In the future work, the issue of revenue maximization under
flat pricing strategy will be investigated.
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