
On Current Strategies for Hardware Acceleration of
Digital Image Restoration Filters

ERIC GRANGER
Laboratoire d’imagerie, de vision et

d’intelligence artificielle
Dépt. de ǵenie de la production automatisée

École de Technologie Supérieure
1100, rue Notre-Dame Ouest

Montreal, QC, H3C 1K3, CANADA

SERGE CATUDAL, ROBERT GROU,
MAME MARIA MBAYE and YVON SAVARIA

Groupe de recherche en microélectronique
Dépt. de ǵenieélectrique

École Polytechnique de Montréal
PO Box 6079, Station centre-ville

Montreal, QC, H3C 3A7, CANADA

Abstract: - Two advanced design methodologies for hardware acceleration of a standard digital image restoration
algorithm are explored and compared. The first one is the custom-designed hardware approach, leading to an
application-specific integrated circuit (ASIC) implementation. The second one consists of the configurable processor
approach, yielding a mixed hardware/software implementation running on a Tensilica Xtensa V (T1050) micropro-
cessor. Both implementations may be embedded as cores in System-on-Chip (SoC) designs. The two methodologies
are compared from several standpoints, including implementation size, data throughput, customization, non-recurring
engineering and production costs, and flexibility.

Key-Words: - Image restoration, adaptive Wiener filter, hardware acceleration, SoC design, ASIC, configurable
processor, Tensilica Xtensa.

1 Introduction
The range of technologies currently available for hard-
ware acceleration of digital filters that are used in
time-critical image processing applications is broader
than ever. The choice of one over the others is
not always straightforward, especially when consid-
ering the fast pace at which technologies, and the
associated design tools are changing. For instance,
mixed hardware/software and reconfigurable plat-
forms are some of the recent alternatives to conven-
tional custom-designed hardware implementations,
i.e.,application-specific integrated circuits (ASIC) and
field-programmable gate array (FPGA) circuits, and
to conventional software implementations running on,
i.e., standard microprocessors and digital signal pro-
cessors (DSP). Selecting a technology that can meet
the throughput, latency, ease of change, reliability,
supportability and size specifications within the devel-
opment and unit cost budgets can be challenging.

As a research experiment, an adaptive Wiener fil-
ter [1] [3] [6] has recently been implemented accord-
ing to different strategies for hardware acceleration.
Wiener filters may be considered as representative of
digital filters used in image restoration and noise re-

duction applications. In fact, one of the first methods
developed for restoring images degraded by additive
random noise is based on Wiener filtering, and it has
since influenced the development of several other im-
age restoration systems [3]. Pixel-by-pixel variants of
adaptive Wiener filters are computationally intensive,
and require hardware acceleration for time-critical ap-
plications, since processing is adapted at each pixel of
an image.

Two different design strategies for hardware ac-
celeration of these filters are presented and compared
in this paper. The first one is a custom-designed hard-
ware strategy, whereas the second one is a config-
urable processor strategy. Both approaches result in an
implementation of a dedicated image restoration core
that may be embedded into System-on-Chip designs.
While a design according to each strategy would be
valuable in itself, the comparison of the results ob-
tained and the lessons learned may also provide useful
insight. The two methodologies are compared to each
other in terms of processing rate, implementation size,
and cost.

In the next section, adaptive Wiener filtering
is briefly reviewed. Then, implementations of the

Wiener filter according to two design strategies are de-
scribed in Section 3. They are compared and discussed
in Section 4.

2 Adaptive Wiener filtering
The Wiener filter is a linear estimator minimizing the
mean-squared error (MSE) between the estimated and
the original signal, knowing some statistic about the
original one. The essential idea behind this filter is
to exploit information contained in the image at hand,
as well as the imaging system being used. It has
been used extensively as a solution to image restora-
tion1 problems, to reduce or eliminate additive random
noise degradation [4]. In this context, the Wiener fil-
ter is a method of image recovery that is designed to
minimize the MSE criterion.

Some adaptive versions of the Wiener filter
perform pixel-by-pixel processing, where filtering is
based on the changing local characteristics of the im-
age, degradation, and any other relevant information in
the neighborhood centered around the pixel. The mean
and power spectrum of the signal and noise are esti-
mated locally instead of being fixed. Although adapt-
ing processing at each pixel is computationally inten-
sive, these filters have the advantage of reducing ad-
ditive random noise without significantly blurring the
image.

Lee’s Minimum Mean Squared-Error (MMSE)
algorithm [3] is a pixel-by-pixel variant of the adap-
tive Wiener filter that is very popular in image pro-
cessing. Additive noise is assumed to be zero mean
and white Gaussian with a variance ofσ2

n. The algo-
rithm progresses through each pixel(x, y) of a noisy
digital image,I, and produces a filtered digital image,
I∗, according to the following equation [6]:

I∗(x, y) = µ(x, y)+
σ2(x, y)− σ2

n

σ2(x, y)
[I(x, y)−µ(x, y)]

(1)
whereσ2

n is the variance of additive Gaussian white
noise, andµ(x, y) and σ2(x, y) are estimates of the
local mean and variance, respectively, associated with
the pixel of coordinate(x, y). The variance of additive
white noiseσ2

n is assumed to be knowna priori, or is
estimated from the local variancesσ2(x, y) of current
and/or previous images in a sequence. The local mean
and variance are calculated based onη, which repre-
sents anN -by-M window of pixels centered over the

1Image restoration refers to the process of recovering an image
that has been contaminated by noise, and blurred by the image
system involved [4].

COMPUTE
µ(x,y)

COMPUTE
σ2(x,y)

I(x,y)
∑

∑

I*(x,y)

+

-

+

+

COMPUTE
2 2

2
(,)

(,)
nx y

x y
σ σ
σ

−

UPDATE
σn
2

Fig. 1. Block diagram of the MMSE algorithm.

local neighborhood of pixel(x, y). They may be de-
fined by:

µ(x, y) =
1

NM

∑
x,y∈η

I(x, y) (2)

σ2(x, y) =
1

NM

∑
x,y∈η

[I(x, y)2 − µ2(x, y)] (3)

A window size is defined by odd numbers, typically
N = M = 3 or 5. Contour pixels are usually handled
by using a mirror of defined pixels in the correspond-
ing window.

Figure 1 shows the bloc diagram of the MMSE
algorithm applied to each pixel of an image, for a given
M andN value. It is assumed thatσ2

n is obtained by
progressively updating an averageσ2(x, y) value from
the current and previous images in a sequence. Several
computational aspects of this algorithm are demand-
ing, and may require hardware acceleration for time-
critical application. They include the multiplications
and accumululations to compute the local mean and
variances in Eqs. (2) and (3), and the division by the
local variance, and, potentially, the estimation ofσ2

n

needed to perform filtering in Eq. (1).

3 Methodologies for hardware accel-
eration

Figure 2 presents the architecture of a dedicated image
restoration system to implement the adaptive Wiener
filter described in Section 2. It consists of a pixel
receiver and transmitter, input/output devices, a di-
rect memory access (DMA) controller, an internal line
buffer, a generic high speed bus, and a main controller.

Pixel

Receiver

Pixel

Transmitter

Parallel Input/Output Memory

Application Specific Coprocessor

NoiseLocal Mean /
Controller

Main
Local Variance Estimator Image Filter

DMA

Controller

I/O

Devices

Generic High Speed Bus

Line buffer

Internal External background

Memory bank

Fig. 2. Architecture of a system to reduce additive
white Gaussian noise degradation based on the MMSE
algorithm.

In order to accelerate filtering for time-critical appli-
cations, the architecture also contains an application-
specific coprocessor that computes the local mean and
variance, the variance of noise, and image filtering in
the place of software running on the main controller.
The architecture also interfaces with an external mem-
ory bank via an external memory controller to expand
storage capabilities.

To filter a noisy image, successive pixels are re-
ceived by the pixel receiver, and transferred to external
memory. The DMA controller ensures that relevant
lines of pixels are progressively transferred between
the external memory and the line buffer without inter-
vention by the main controller. The line buffer stores
M lines of pixels that are as long as the image being
processed, and transfers successiveM ×N pixel win-
dows to the application-specific coprocessor. Pixels
inside the line buffer are therefore used by the copro-
cessor to either (1) estimate local mean and variance
values, (2) estimate the variance of additive noise, or
(3) filter the noisy pixels. As pixels are processed, re-
sults are stored in external memory, where they may
be transferred to the pixel transmitter.

From this point on, this paper focuses on
currently-available strategies to implement the
application-specific coprocessor for filtering a set of
pixels stored in an internal line buffer. Although the
division in Eq. (1) is an issue for any implementation,
more emphasis is placed on accelerating implementa-
tions of other computationally demanding parts of the
MMSE algorithm, as similar computations are more
commonly found in digital image processing filters.
In order to eliminate another potential bottleneck,
the estimate ofσ2

n is obtained progressively, by
updating an averageσ2(x, y) value from the stream

of images. (Otherwise, a frame buffer and significant
processing would be required for each new image.)
It is assumed that the system’s controller is a simple
finite state machine (FSM) dedicated to orchestrating
this task. It is also assumed that the window size is of
M × N = 3 × 3 = 9 pixels, and that each pixels is
stored with 8 bits.

The options available to implement the
application-specific coprocessor for time-critical
image processing applications range from software
running on a standard microprocessor to custom-
designed hardware. For instance, given C or C++
software corresponding to the application-specific
processing, the code can be quickly compiled for,
and then run on, a DSP, or alternately, it can be
mapped to high-performance FPGA or ASIC de-
signs. Between these two extremes, several mixed
hardware/software and reconfigurable platforms offer
interesting performance-cost trade-offs. In either case,
these implementations can be viewed as cores to be
embedded into SoC designs.

The rest of this section presents the main steps
required to design the application-specific coproces-
sor, using currently-available design tools, according
to two advanced design methodologies.

3.1 Custom-designed hardware approach:

Designing custom hardware represents a conventional
approach to accelerating functions needed in embed-
ded systems. This approach is traditionally employed
to achieve a very high level of performance for large
production. It offers low-level control over the cir-
cuitry that is generated, and therefore allows optimize
the circuit size, clock frequency, and power consump-
tion to suit the application needs. Although this paper
focuses on ASIC implementation, some or all of the
general approach described in this section may also
lead to FPGA and SoC designs.

With this approach, a designer would usually be-
gin his design with a specification, and a software
model in,e.g., C or C++. The following is a standard
ASIC design methodology for custom hardware.

Architecture modeling.At first, the software model is
translated to a dedicated hardware architecture. This
architecture is analyzed to ensure that estimates of per-
formance meet design constraints. SystemC and re-
lated design tools such as CoCentic Studio may be
used to develop an executable model or virtual proto-
type of the architecture, and thus perform architectural

A/B

B

A

I(x,y) I*(x,y)2
nµ

2
nσ

2σ

Fig. 3. Data path for the ASIC implementation of the
application-specific coprocessor.

exploration, asses performance, etc. [11]

Design entry and analysis.Functional blocks of the ar-
chitecture are coded using a hardware description lan-
guage (HDL), such as Verilog or VHDL, and then in-
terconnected to form the the coprocessor’s data path.
For more standard functional blocks, design time may
be reduced by purchasing IP cores, and embedding it
into the design. Internal operation of all the functional
blocks is controller by a FSM. This design step also in-
volves behavioral simulation using a pre-defined test-
bench, and tools such as Synopsys VCS or Cadence
NC Verilog, and yields an RTL-level description of the
application-specific coprocessor.

The block diagram of Figure 3 shows the data
path described in RTL for the application-specific co-
processor. As shown in the figure, successive pixels
are pipelined through a chain of functional blocks. A
pipelined fixed-point divider (a non-restoring division
array [2]) was implemented with 17 pipeline to in-
crease throughput. In addition, previously-calculated
values were stored in delay buffers and reused to
streamline performance. After an initial latency of 41
clock cycles to fill the pipeline, the data path filters
pixels of an image at a rate of 1 pixel per clock cy-
cle. Since this design is cascadable, the application-
specific coprocessor is implemented with 4 such data
paths, to filter 4 pixels in parallel. In this case, how-
ever, the line buffer must store 6 lines of pixels.

Technology optimization.This step in the design flow
involves logic and physical synthesis of the RTL-
level description using tools such as Synopsys De-
sign Compiler and Physical Compiler, and Cadence
RTL compiler. Synthesis calls on standard-cell hard-
ware technology libraries, wire load models, etc., to
map the RTL-level description to the gate-level or
netlist description of the application-specific coproces-
sor. Physical synthesis approaches may be employed
to address the shortcomings of traditional flows by
concurrently optimizing the logical and physical de-

sign, rather than relying on statistically-based wire-
length models.

The RTL-level description of the data path pre-
sented in Figure 3 was synthesized using Synopsys
Design Compiler, and the TSMC 0.18µm worst-case
technology. The delay between divider pipeline reg-
isters constitute the design’s critical path, and sets the
maximum clock frequency at 120 MHz. In this case,
circuit size of the data path is about 18.5k gates.

Design verification. The netlist description is sub-
jected to static timing analysis (STA), gate-level simu-
lation, formal verification, power estimation, and pre-
layout technology checking (e.g., timing convergence)
using well-known design tools. Critical paths are esti-
mated from statistical models and timing violations are
fixed by re-synthesizing with new timing constraints
or by restructuring the logic.

Layout. Layout of the verified netlist involves floor
planning to arrange cores from a hard macro library
and I/Os, placement of synthesized gates, clock tree
synthesis, post-layout technology checks, and auto-
matic test pattern generation. From the layout, crit-
ical paths from the placed design are extracted, and
back-annotated to the STA tool. However, when ac-
tual wirelengths do not match predicted pre-placement
statistical based wire lengths, this can cause a timing
problem and can lead to costly design iterations.

Finally, once this ASIC design flow is completed,
the resulting ASIC core may be embedded into a SoC
design. For addition information on this approach to
hardware acceleration, the reader is referred to [9].

3.2 Configurable processor approach:
Configurable processors represent newer alternatives
to embedded systems design, where current technolo-
gies allow to generate application specific instruction-
set processors (ASIP). This approach allows to con-
nect a specialized hardware coprocessor to the proces-
sor core2, with the advantage of reducing the commu-
nication costs (typically associated with multiproces-
sor approaches to hardware acceleration), and the de-
sign effort [8] to mostly crafting specialized instruc-
tions (SIs).

Although Altera offers similar technology with
the NIOS processor [7], which is targeted for FPGA
designs, this papers focuses on Tensilica’s Xtensa V
(T1050) processor technology [10], which is targeted

2The processing core implements base instructions, and op-
tional modules, such as a floating point coprocessor.

for ASIC designs. This technology effectively yields a
mixed hardware/software implementation running on
a Tensilica Xtensa V (T1050) microprocessor.

A designer would usually begin his design of
a configurable Xtensa processor with a specification,
and the initial executable software code in,e.g., C or
C++. The following is the basic design methodology
for the Xtensa configurable processor.

Initial code profiling. For comparison purposes, it is
important that the design cycle begin by measuring
the performance of the initial code before optimizing
the processor. Code profiling allows to isolate perfor-
mance bottlenecks or areas of the code that may be
accelerated.

Code cleaning.For code that is destined for embedded
systems, it is important to verify that relevant program-
ming rules [5] are respected.

Specialized instruction design.At this point, the de-
signer begins iteratively optimizing, where each iter-
ation consists in designing a SI, and profiling the re-
sulting code until a timing performance target has been
reached. Tensilica’s Instruction Set Simulator (ISS) al-
lows to estimate the number of cycles associated with
a SI.

Several SIs were implemented optimize the
speed of the application-specific coprocessor. The first
SI allows to compute the local mean and variance for
one pixel, whereas the second one allows to compute
the same values for 4 pixels at a time. These com-
putations constitute a performance bottleneck for the
MMSE algorithm. Finally, a third SI allows to apply
adaptive filtering to 4 pixels simultaneously.

For the first instruction, internal registers that
store the local mean and variance are created. These
registers are initialized to zero prior to pixel process-
ing, and assigned intermediate results as processing
progresses through a pixel window. The final regis-
ter values are read by the code. An acceleration factor
of almost 30 was achieved by implementing the local
mean and variance with a SI, instead of in software.

For the second instruction, 3 words, each consist-
ing of 4 pixels, are stored in 32 bit internal registers.
These words represent a total of 12 pixels, which pro-
vide 3 processing windows. The local mean and vari-
ance may be computed directly with these 3 words.
Since some pixels are missing from its processing win-
dow, the computation of the 4th pixel cannot be com-
puted directly. To compute this last pixel, 3 registers
were defined inside the processor core, which imple-
ment a stack, and which store the last pixels of a win-

dow. The local mean and variance of the last pixel
are thereby computed while processing the next set of
4 pixels. Overall, this SI processes 4 pixels at a time,
with the exception of the 1st pixel of a line, where only
3 pixel can be processed.

Finally, one last SI was implemented to perform
filtering on 4 pixels simultaneously, based on the local
mean and variance of 4 pixels, as well as the variance
of the additive white noise. Using SIs to process 4
pixels in parallel only yields a speedup factor of about
2. Indeed, our parallel processing approach requires
loading data into the internal registers of the processor
core, which tends to decrease performance gains. The
line buffer must also store 6 lines of pixels.

Specialized instruction synthesis.Once the timing per-
formance targets have been reached through the in-
clusion of specialized instructions, the Xtensa Proces-
sor Generator allows to generate a RTL-level descrip-
tion for a specialized coprocessor that implements the
set of SIs. Synthesis of this description for a spe-
cific hardware technology yields a specialized copro-
cessor containing the circuitry required to implement
the SIs. This coprocessor also contains additional
circuitry, such as a decoder, for integration into the
Xtensa processor.

Based on synthesis reports for the resulting co-
processor, and the design constraints, a SI may or may
not be acceptable. Other instructions may also be de-
signed to further optimize performance. For instance,
the parallel computation of the local mean and vari-
ance for 4 pixels creates a long data path with two
stages of multipliers and adders. Pipelining the crit-
ical path can be achieved by splitting the second SI
into two separate SIs, each one associated with a with
a single stage of operations. As a result, the maximum
clock frequency almost doubles, although the special-
ized coprocessor increases in size by about 10% (since
additional internal registers are needed to store inter-
mediate results between the two stages).

Finally, once the performance targets have been
reached in terms of both speed and area, the resulting
processor – core processor connected to the special-
ized coprocessor – may be generated, and then em-
bedded into a SoC design. For addition information
on this approach to hardware acceleration, the reader
is referred to [10].

4 Comparison of design strategies
The purpose of this section is to compare the two
methodologies and corresponding implementations to

each other, for the same hardware technology and ap-
plication, from the standpoint of their processing rate,
implementation size, and cost.

The custom-designed RTL-level description of
the application-specific coprocessor was synthesized
using Synopsys Design Compiler, and the TSMC
0.18µm worst-case technology. The maximum clock
frequency of this ASIC design is 120 MHz, and the
circuit size is about 74.0k gates.

An Xtensa V (T1050) processor has been gen-
erated to implement the application-specific coproces-
sor. From the performance estimate provided by Ten-
silica’s tool suite, and with TSMC 0.18µm worst-case
technology, the processing core has a maximum clock
frequency that ranges from 100MHz to 215MHz, and
a circuit size that rages from about 66.9k to 80.6k
gates. Finally, the RTL-level description correspond-
ing to the specialized coprocessor was synthesized us-
ing Synopsys Design Compiler, and the same hard-
ware technology as the processor core. The coproces-
sor has a maximum clock frequency of 211MHz and a
circuit size of about 48.5k gates.

Table 1 presents a summary of performance es-
timates obtained by using the custom-designed hard-
ware and the configurable processor strategies to im-
plement the application-specific coprocessor. The pro-
cessing rate estimates are given for images of size
256 × 256 pixels, and352 × 288 pixels (used for
Motion JPEG). The processing time is defined by
the clock frequency, and the number of clock cycles
needed by the coprocessor to filter all pixels of an
image. This time includes the number of cycles to
computeµ(x, y) andσ2(x, y), to progressively update
σ2

n and to perform filtering for each pixel of the im-
ages. The time required to move successive pixels to
and from the line buffer is excluded, since it is identi-
cal for both implementations. The gate count consists
of the sum of NAND gates required to implement the
application-specific coprocessor.

As shown on the table, the ASIC implementa-
tion achieves a processing rate that is two orders of
magnitude faster that that of the Xtensa processor, yet
requires a much smaller number of gates. In fact, the
specialized coprocessor generated by the Xtensa pro-
cessor incurs significant overhead (decoder, MUXs,
etc.) to allow for operation with the core processor.
The custom-designed hardware strategy, on the other
hand, offers greater control over the circuit that is gen-
erated from its RTL-level description.

The non-recurrent engineering (NRE) cost of an
implementation is a function of the length of the de-

Table 1. Estimated performance resulting from the
two different hardware acceleration strategies used to
implement the application-specific coprocessor with
image sizes of256× 256, and352× 288 pixels.

Performance ASIC Tensilica
measures design Xtensa T1050

(@120 MHz) (@211 MHz)

Processing rate:
- 256× 256 pixels:

clock cycles 16,578 2,982,853
processing time 0.138 msec 14.14 msec

- 352× 288 pixels:
clock cycles 22,578 4,299,954
processing time 0.213 msec 20.38 msec

Total gate count: 74.0k 129.1k

sign flow, the required software tools, and the experi-
ence of the designers [9].

The custom-designed hardware approach in-
volves the highest NRE cost. It involves expensive
software tools, by companies such as Synopsys, Ca-
dence and Mentor Graphics, and a relatively complex
design flow, entailing a long learning curve and highly
specialized designers. Moreover, this implementation
is the most difficult and expensive to modify once the
devices have been produced. On the plus side, for a
large production, the ASIC implementation offers an
economical unit cost.

Even though the design flow is less complex, the
unit cost associated with the configurable processor
approach is moderate, and it requires a specialized de-
signer, and complex software tools. Significant knowl-
edge of the software and architecture of embedded
processors, and of digital VLSI circuit design is re-
quired to generate an optimized Xtensa processor. For
instance, reordering the operation sequence of an SI
requires considerable expertise in order to assess its
impact on the area and clock frequency of the result-
ing coprocessor. Otherwise, the circuitry created by
the SI quickly becomes the performance bottleneck of
the processor. The designer must also keep track of
data dependencies between SIs, and of the processor’s
pipeline. Finally, a significant amount of design effort
must be invested in verifying that an SI functions in
the same way as the initial code sequence. The de-
sign effort may be alleviated with Tensilica’s trend to-
wards the automated proposal of SIs and correspond-
ing speedup factors.

On the plus side, the software component of the
processor is easy and economical to modify. Another
advantage of the configurable processor approach is
that hardware/software codesign analysis is performed
directly in the development environment. Hardware
components of the application-specific coprocessor
are generated automatically from performance bottle-
necks found during code profiling.

Although outside the scope of this paper, the di-
vision in Eq. (1) represents a potential bottleneck to
hardware acceleration. A basic pipelined fixed-point
divider was implemented for the ASIC design. There
are several alternative designs to accelerate the divi-
sion, each one having a different impact on the circuit
size. For instance, one could alternate use of 2 ba-
sic dividers operating in parallel, such that the clock
frequency is effectively doubled, or one could use a
Taylor series expansion to estimate the division, and a
look-up table to store common factors. A software di-
vision was performed with the Xtensa processor. Since
this operation requires about 100 clock cycles, crafting
SIs to accelerate this operation would have a signifi-
cant impact on overall performance.

5 Conclusions
In this paper, two advanced design strategies for hard-
ware acceleration of an adaptive Wiener filter are ex-
plored and compared. The first one is a custom-
designed hardware strategy, leading to an ASIC imple-
mentation, an the second one is a configurable proces-
sor strategy, yielding a mixed hardware/software im-
plementation running on a Tensilica Xtensa V (T1050)
microprocessor. Both approaches result in an imple-
mentation of an application-specific coprocessor that
may be embedded into SoC designs.

Performance estimates indicate that the ASIC
implementation can process images at a rate that is
two orders of magnitude greater that that of the Xtensa
processor. This level of performance is attained with a
much smaller gate count. The ASIC implementation,
however, has higher NRE costs, and is difficult to mod-
ify once it has been fabricated. Nonetheless, it offers
an economical solution for high volume production.

The Xtensa processor implementation presents
an interesting alternative in that the design flow is less
complex, and software components of the implemen-
tation can easily be modified, and hardware/software
codesign analysis is performed on the fly. However,
this approach still required a very specialized designer,
and a potentially long design cycle to produce an opti-

mized Xtensa processor, especially for larger, complex
application code. Even then, specialized coprocessors
generated for the Xtensa processor incur a significant
overhead in terms of circuit size.

Acknowledgements: -
This research was supported in part by Gennum Cor-
poration, the Canadian Microelectronics Corporation,
Micronet R&D, and the Natural Sciences and Engi-
neering Research Council of Canada.

References: -

[1] H. C. Andrews and B. R. Hunts,Digital Image
Restoration, (Englewood Cliffs, NJ: Prentice Hall,
1977).

[2] J. F. Cavanagh,Digital Computer Arithmetic: De-
sign and Implementation, (McGraw-Hill, 1984).

[3] J.-S. Lee, Digital Image Enhancement and Noise
Filtering by Use of Local Statistics,IEEE Trans.
Pattern Analysis and Machine Intelligence, 1980,
165-168.

[4] C. M. Leung and W.-S. Lu, A Modified Wiener
Filter for the Restoration of Blurred Images,IEEE
Pacific Rim’93, 1993, 166-169.

[5] R. Leupers, Code Generation for Embedded Pro-
cessors,Proc. 13th Annual Int’l Synposium on
System Synthsis, September 2000, 173-179.

[6] J. S. Lim, Two-Dimensional Signal and Image
Processing, (Englewood Cliffs, NJ: Prentice Hall,
1990).

[7] Altera Inc.,NIOS 3.0 CPU Data Sheet, 2003.

[8] A. Peymandoust, L. Pozzi, P. Ienne and G. De
Micheli, Automatic Instruction Set Extension and
Utilization for Embedded Processors,IEEE Com-
puter Society, 2003.

[9] M. J. S. Smith, Application-Specific Integrated
Circuits, (Addison-Wesley, 1997).

[10] Tensilica Inc.,Xtensa Microprocessor Data Book
– for Xtensa V (T1050) Processor Cores, 2002.

[11] Open SystemC Initiative,SystemC 2.0.1 Lan-
guage Reference Manual, 2003.

