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Abstract: - The paper deals with the reuse of behavioral specifications for embedded systems design employing state or 
timed-state sequences, their closed-form descriptions by finite-state or timed automata, and corresponding formulae of 
temporal logics. To demonstrate reusing those formal specifications by means of application patterns, the contribution 
presents two case studies based on two real design projects: (1) petrol pumping station dispenser controller and (2) 
multiple lift control system. The last part of the paper provides an insight into case-based reasoning support as applied 
to formal specification reuse of application patterns represented by finite-state and timed automata; moreover, it 
discusses possible strategies for automated retrieval of similar patterns from the case library that provides a knowledge 
base supporting an efficient reuse of formal specifications. 
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1   Introduction 
Every real-world embedded system design stems from 
decisions based on an application domain knowledge 
that includes facts about some previous design practice. 
Evidently, such decisions relate to systems architecture 
components, called in this paper as application patterns, 
that determine not only a required system behavior but 
also some presupposed implementation principles. 
Application patterns should respect those particular 
solutions that were successful in previous relevant 
design cases. While focused on the system architecture 
range that covers more than software components, the 
application patterns look in many features like object-
oriented design concepts such as reusable patterns [3], 
design patterns [4], and frameworks [8]. To reuse an 
application pattern, whose implementation usually 
consists both of software and hardware components, it 
means to reuse its formal specification, development of 
which is very expensive and, consequently, worthwhile 
for reuse. This paper is aimed at behavioral 
specifications employing state or timed-state sequences, 
which correspond to the Kripke style semantics of linear, 
discrete time temporal or real-time logics, and at their 
closed-form descriptions by finite-state or timed 
automata [1]. 
     The following two sections provide two case studies, 
based on implemented design projects, using application 
patterns that enable to discuss concrete examples of 
application patterns reusability. Next three sections 
introduce the principles and initial results of the 

knowledge-based support for an efficient reuse of formal 
specifications stemming from case-based reasoning 
complemented by fitting retrieval techniques. 
 
 

2   Petrol Dispenser Control System 
The first case study pertains to a petrol pumping station 
dispenser with a distributed, multiple microcomputer 
counter/controller [13], formerly specified using so 
called Asynchronous Specification Language [15]. A 
dispenser controller is interconnected with its 
environment through an interface with volume meter 
(input), pump motor (output), main and by-pass valves 
(outputs) that enable full or throttled flow, release signal 
(input) generated by cashier, unhooked nozzle detection 
(input), product's unit price (input), and volume and 
price displays (outputs). 
 
2.1 Two-Level Structure 
The first employed application pattern is two-level 
structure proposed by Xinyao et al. in [16]: the higher 
level behaves as an event-driven component, and the 
lower level behaves as a set of real-time interconnected 
components. The behavior of the higher level component 
can be described by the following state sequences of a 
finite-state automaton with states "blocked-idle," 
"ready," "full fuel," "throttled" and "closed," and with 
inputs "release," (nozzle) "hung on/off," "close" (the 
preset or maximal displayable volume achieved), 



"throttle" (to slow down the flow to enable exact dosage) 
and "error": 
 
blocked-idle  release→   ready  hung off→   full_fuel  hung on→   blocked-idle 
blocked-idle  release→   ready  hung off→   full_fuel  throttle→   throttled  hung on→    

      hung on→   blocked-idle 
blocked-idle  release→   ready  hung off→   full_fuel  throttle→   throttled  close  →  

      close  →  closed  hung on→    blocked-idle 
blocked-idle  error→   blocked-error 
blocked-idle  release→   ready  error→   blocked-error 
blocked-idle  release→   ready  hung off→   full_fuel  error→   blocked-error 
blocked-idle  release→   ready  hung off→   full_fuel  throttle→   throttled  error →    

      error →   blocked-error 

 
     The states "full_fuel" and "throttled" appear to be 
hazardous from the viewpoint of unchecked flow 
because the motor is on and the liquid is under pressure -
- the only nozzle valve controls an issue in this case. 
Also, the state "ready" tends to be hazardous: when the 
nozzle is unhooked, the system transfers to the state 
"full_fuel" with flow enabled. Hence, the accepted fail-
stop conception necessitates the detected error 
management in the form of transition to the state 
"blocked-error." To initiate such a transition for flow 
blocking, the error detection in the hazardous states is 
necessary. On the other hand, the state "blocked-idle" is 
safe because the input signal "release" can be masked 
out by the system that, when some failure is detected, 
performs the internal transition from "blocked-idle" to 
"blocked-error." 
 
2.2 Incremental Measurement 
The volume measurement and flow control represent the 
main functions of the hazardous states. The next applied 
application pattern, incremental measurement, means the 
recognition and counting of elementary volumes 
represented by rectangular impulses, which are 
generated by a photoelectric pulse generator. The 
maximal frequency of impulses and a pattern for their 
recognition depend on electro-magnetic interference 
characteristics. The lower-level application patterns are 
in this case noise-tolerant impulse detector and checking 
reversible counter. The first one represents a clock-
timed impulse-recognition automaton that implements 
the periodic sampling of its input with values 0 and 1. 
This automaton with n states recognizes an impulse after 
n/2 (n>=4) samples with the value 1 followed by n/2 
samples with the value 0, possibly interleaved by 
induced error values, see the following timed-state 
sequence: 
 
(0, q1) 

inp=0 →  ... inp=0 →  (i, q1) 
inp=1 →  (i+1, q2) 

inp=0 →  ...  
... inp=0 →  (j, q2) ... 

inp=1 →  (k, qn/2+1) 
inp=1 →   ...  

... inp=1 →  (m, qn-1) 
inp=0 →  (m+1, qn) 

inp=1 →  ... inp=1 →   (n, qn)  
inp=0/IMP   →      (n+1, q1)  

 
i, j, k, m, n are integers representing discrete time instances: 
 0 < i < j < k < m < n  

For the sake of fault-detection requirements, the 
incremental detector and transfer path are doubled. 
Consequently, the second, identical noise-tolerant 
impulse detector appears necessary. 
 The subsequent lower-level application pattern used 
provides checking reversible counter, which starts with 
the value (h + l)/2 and increments or decrements that 
value according to the "impulse detected" outputs from 
the first or the second recognition automaton. Overflow 
or underflow of the pre-set values of h or l indicates an 
error. Another counting automaton that counts the 
recognized impulses from one of the recognition 
automata maintains the whole measured volume. The 
output of the letter automaton refines to two displays 
with local memories not only for the reason of 
robustness (they can be compared) but also for 
functional requirements (double-face stand). To 
guarantee the overall fault detection capability of the 
device, it is necessary also to consider checking the 
counter. This task can be maintained by I/O watchdog 
application pattern that can compare input impulses from 
the photoelectric pulse generator and the changes of the 
total value; evidently, the appropriate automaton 
provides again reversible counting. 
 
2.3 Fault Management 
To prevent unregistered flow, the fail-stop conception 
used appraises as more acceptable the forced blocking of 
the dispenser with frozen actual data on displays instead 
of an untrustworthy issue. The application patterns, so 
far introduced stepwise, cooperate so that they 
accomplish a consequent application pattern, fault 
management based on fail-stop behavior approximation, 
in the form of (a) hazardous state reachability control 
and (b) hazardous state maintenance. In all safe states 
("blocked-idle," "closed," and "blocked-error"), any fuel 
flow is disabled by power hardware construction; in the 
same time, the contents of all displays are protected 
against any change required by possibly erroneous 
control system. The system is allowed to reach 
hazardous states ("ready," "full_fuel," and "throttled") 
when the installed processors successfully have passed 
start-up checks and interprocessor communication 
initiation. The hazardous state maintenance includes 
doubled input path check for detected product impulses 
and I/O watchdog check. Hard kernel items such as the 
nozzle with hydraulic shut-off and mechanical blocking 
the hooked nozzle eliminate the danger of explosion in 
the case of uncontrolled petrol flow. 
 
 

3   Multiple Lift Control System 
The second case study deals with a multiple lift control 
system based on a dedicated multiprocessor architecture 



[14], again originally specified using Asynchronous 
Specification Language [15]. An incremental 
measurement device for position evaluation, and position 
and speed control of a lift cabin in a lift shaft can 
demonstrate reusability. The applied application pattern, 
incremental measurement, means in this case the 
recognition and counting of rectangular impulses that are 
generated by an electromagnetic or photoelectric 
sensor/impulse generator, which is fixed on the bottom 
of the lift cabin and which passes equidistant position 
marks while moving along the shaft. That device 
communicates with its environment through interfaces 
with impulse generator and drive controller. So, the first 
input, I, provides the values 0 or 1 that are altered with 
frequency equivalent to the cabin speed. The second 
input, D, provides the values "up," "down," or "idle." 
The output, P, provides the actual absolute position of 
the cabin in the shaft. 
 
3.1 Two-Level Structure 
The next employed application pattern is the two-level 
structure: the higher level behaves as an event-driven 
component, which behavior is roughly described by the 
state sequence 
 
initialization  →  position_indication  →  fault_indication 
 
     The lower level behaves as a set of real-time 
interconnected components. The specification of this 
lower level can be developed by refining the higher level 
state "position_indication" into three communicating 
lower level automata: two noise-tolerant impulse 
detectors and one checking reversible counter. 
 
3.2 Incremental Measurement 
The first automaton models noise-tolerant impulse 
detector, see the following timed-state sequence: 
 
(0, q1) 

inp=0 →  ... inp=0 →  (i, q1) 
inp=1 →  (i+1, q2) 

inp=0 →  ... inp=0 →  (j, q2) ... 
 ... inp=1 →  (k, qn/2+1) 

inp=1 →  ... inp=1 →  (m, qn-1) 
inp=0 →  (m+1, qn) 

inp=1 →  ... 
 ... inp=1 →   (n, qn)  

inp=0/IMP   →      (n+1, q1)  
i, j, k, m, n are integers representing discrete time instances:  
0 < i < j < k < m < n  

 
The information about a detected impulse is sent to the 
counting automaton that can also access the indication of 
the cabin movement direction through the input D. For the 
sake of fault-detection requirements, the impulse generator 
and the impulse transfer path are doubled. Consequently, a 
second, identical noise-tolerant impulse detector appears 
necessary. The subsequent application pattern is the 
checking reversible counter, which starts with the value (h 
+ l)/2 and increments or decrements the value according to 
the "impulse detected" outputs from the first or second 
recognition automaton. Overflow or underflow of the 
preset values of h or l indicates an error. This detection 

process sends a message about a detected impulse and the 
current direction to the counting automaton, which 
maintains the actual position in the shaft. To check the 
counter, an I/O watchdog application pattern employs 
again a reversible counter that can compare the impulses 
from the sensor/impulse generator and the changes of the 
total value. 
 
3.3 Fault Management 
The approach used accomplishes a consequent 
application pattern, fault management based on fail-stop 
behavior approximation, in the form of (a) hazardous 
state reachability control and (b) hazardous state 
maintenance. In safe states, the lift cabins are fixed at 
any floors. The system is allowed to reach any hazardous 
state when all relevant processors have successfully 
passed the start-up checks of inputs and monitored 
outputs and of appropriate communication status. The 
hazardous state maintenance includes operational 
checks and consistency checking for execution 
processors. To comply with safety-critical conception, 
all critical inputs and monitored outputs are doubled and 
compared. When the relevant signals differ, the 
respective lift is either forced (with the help of a 
substitute drive if the shaft controller is disconnected) to 
reach the nearest floor and to stay blocked, or (in the 
case of maintenance or fire brigade support) its services 
are partially restricted. The basic safety hard core 
includes mechanical, emergency brakes. 
 
 

4   Application Patterns Reuse 
The two case studies presented above demonstrate the 
possibility to reuse effectively substantial parts of the 
specifications dealing with petrol pumping station 
technology for a lift control technology project. While 
both cases belong to embedded control systems, their 
application domains and their technology principles 
differ: volume measurement and dosage control seems 
not too close to position measurement and control. 
Evidently, the similarity is observable by employment of 
application patterns. 
 The reused upper-layer application patterns presented 
include the automata-based descriptions of incremental 
measurement, two-level (event-driven/real-time) 
structure, and fault management stemming from fail-stop 
behavior approximations. The reused lower-layer 
application patterns are exemplified by the automata-
based descriptions of noise-tolerant impulse detector, 
checking reversible counter, and I/O watchdog. 
 Clearly, while all introduced application patterns 
correspond to design patterns in the above-explained 
interpretation, the upper-layer application patterns can be 
related also to frameworks. Moreover, the presented 



collection of application patterns creates a base for a 
pattern language supporting reuse-oriented design 
process for a subclass of real-time embedded systems. 
 
 

5   Knowledge-Based Support 
Case-based reasoning, see e.g. [10], differs from other 
rather traditional methods of Artificial Intelligence relying 
on case history. For a new problem, the case-based 
reasoning strives for a similar old solution. This old 
solution is chosen according to the correspondence of a 
new problem to some old problem that was successfully 
solved by this approach. Hence, previous significant cases 
are gathered and saved in a case library. Case-based 
reasoning stems from remembering a similar situation that 
worked in past. For software reuse, case-based reasoning 
utilization has been studied from several viewpoints, see 
e.g. [6] and [11]. 
 The case-based reasoning method contains (1) 
elicitation, which means collecting those cases, and (2) 
implementation, which represents identification of 
important features for the case description consisting of 
values of those features. Case library serves as the 
knowledge base of a case-based reasoning system. The 
system acquires knowledge from old cases while 
learning can be achieved accumulating new cases. 
Solving a new case, the most similar old case is retrieved 
from the case library. The suggested solution of the new 
case is generated in conformity with this retrieved old 
case. 
 
 

6   Case-Based Reasoning Application  
The problem to be solved arises how to measure the 
similarity of state-based specifications for retrieval. 
Retrieval schemes proposed in the literature for software 
component reuse can be classified based upon the 
technique used to index cases during the search process 
[2]: (a) classification-based schemes, which include 
keyword or feature-based controlled vocabularies; 
(b) structural schemes, which include signature or 
structural characteristics matching; and (c) behavioral 
schemes, which seek relevant cases by comparing input 
and output spaces of components. 
 The primary approach to the current application 
includes some equivalents to the component retrieval 
schemes mentioned above. All of them, i.e. keyword 
controlled vocabularies belonging to classification 
schemes, abstract data type signatures belonging to 
structural schemes, and state-space trajectories belonging 
to behavioral schemes can provide promising similarity 
metrics for retrieval. The first alternative means in this 
case creating a controlled vocabulary of such archetypal 
temporal logic or real-time temporal logic formulae that 

represent some key features of the relevant application 
patterns. The second alternative is based in this context on 
the algebraic approach employing some process algebras 
or real-time process algebras corresponding to operational 
semantics of the relevant temporal logics. Finally, the third 
alternative denotes for this purpose a quantification of the 
similarity by some topological characteristics of associated 
finite automata state-transition graphs, such as the number 
and placement of loops. The current research task of our 
group focuses on experiments enabling to compare those 
alternatives. 
 
 

6   Related Work 
Our approach resembles work [7] that aims at not only 
specification reuse but also at specification refinement, 
selection of optimal components, black box and white 
box software components reuse and adaptation. In 
contrary to our method, Jilani, Desharnais and Mili use 
relational specifications. Similarly, Geppert and Roessler 
[5] apply reuse for SDL specifications. Inspiring for our 
continuing research can be also the contribution by 
Justo, Howells and d’Inverno [9], who provide formal 
framework for software design methodologies using Z. 
 
 

7   Conclusions 
This paper is devoted to the reuse of behavioral 
specifications for embedded systems design employing 
state or timed-state sequences, their closed-form 
descriptions by finite-state or timed automata, and 
corresponding formulae of temporal logics. It provides 
two case studies, which are based on implemented 
design projects, with application patterns that enable to 
discuss concrete examples of reusability. The 
contribution introduces principles and initial results of 
the knowledge-based support for an efficient reuse of 
formal specifications stemming from case-based 
reasoning complemented by appropriate retrieval 
techniques. 
 Concurrently, the paper informs about case studies 
and concepts that are available at the opening phase of 
the research aiming at knowledge-based support for 
industrial, embedded systems specification and design. 
Case-based reasoning was successfully utilized by one of 
the authors and his colleagues previously for another 
industrial application, see [12]. Therefore, the authors 
believe that also this higher-level reuse of methodology 
can improve design processes. 
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