
Embedded System Specifications
Reuse by a Case Based Reasoning Approach

MIROSLAV SVEDA*, RADIMIR VRBA**

*) Faculty of Information Technology, **) Faculty of Electrical Engineering & Communication
Brno University of Technology

61266 Brno, Bozetechova 2
CZECH REPUBLIC

Abstract: - The paper deals with the reuse of behavioral specifications for embedded systems design employing state or
timed-state sequences, their closed-form descriptions by finite-state or timed automata, and corresponding formulae of
temporal logics. To demonstrate reusing those formal specifications by means of application patterns, the contribution
presents two case studies based on two real design projects: (1) petrol pumping station dispenser controller and (2)
multiple lift control system. The last part of the paper provides an insight into case-based reasoning support as applied
to formal specification reuse of application patterns represented by finite-state and timed automata; moreover, it
discusses possible strategies for automated retrieval of similar patterns from the case library that provides a knowledge
base supporting an efficient reuse of formal specifications.

Key-Words: - Embedded systems, formal specifications, finite-state and timed automata, case-based reasoning, reuse

1 Introduction
Every real-world embedded system design stems from
decisions based on an application domain knowledge
that includes facts about some previous design practice.
Evidently, such decisions relate to systems architecture
components, called in this paper as application patterns,
that determine not only a required system behavior but
also some presupposed implementation principles.
Application patterns should respect those particular
solutions that were successful in previous relevant
design cases. While focused on the system architecture
range that covers more than software components, the
application patterns look in many features like object-
oriented design concepts such as reusable patterns [3],
design patterns [4], and frameworks [8]. To reuse an
application pattern, whose implementation usually
consists both of software and hardware components, it
means to reuse its formal specification, development of
which is very expensive and, consequently, worthwhile
for reuse. This paper is aimed at behavioral
specifications employing state or timed-state sequences,
which correspond to the Kripke style semantics of linear,
discrete time temporal or real-time logics, and at their
closed-form descriptions by finite-state or timed
automata [1].
 The following two sections provide two case studies,
based on implemented design projects, using application
patterns that enable to discuss concrete examples of
application patterns reusability. Next three sections
introduce the principles and initial results of the

knowledge-based support for an efficient reuse of formal
specifications stemming from case-based reasoning
complemented by fitting retrieval techniques.

2 Petrol Dispenser Control System
The first case study pertains to a petrol pumping station
dispenser with a distributed, multiple microcomputer
counter/controller [13], formerly specified using so
called Asynchronous Specification Language [15]. A
dispenser controller is interconnected with its
environment through an interface with volume meter
(input), pump motor (output), main and by-pass valves
(outputs) that enable full or throttled flow, release signal
(input) generated by cashier, unhooked nozzle detection
(input), product's unit price (input), and volume and
price displays (outputs).

2.1 Two-Level Structure
The first employed application pattern is two-level
structure proposed by Xinyao et al. in [16]: the higher
level behaves as an event-driven component, and the
lower level behaves as a set of real-time interconnected
components. The behavior of the higher level component
can be described by the following state sequences of a
finite-state automaton with states "blocked-idle,"
"ready," "full fuel," "throttled" and "closed," and with
inputs "release," (nozzle) "hung on/off," "close" (the
preset or maximal displayable volume achieved),

"throttle" (to slow down the flow to enable exact dosage)
and "error":

blocked-idle release→ ready hung off→ full_fuel hung on→ blocked-idle
blocked-idle release→ ready hung off→ full_fuel throttle→ throttled hung on→

 hung on→ blocked-idle
blocked-idle release→ ready hung off→ full_fuel throttle→ throttled close →

 close → closed hung on→ blocked-idle
blocked-idle error→ blocked-error
blocked-idle release→ ready error→ blocked-error
blocked-idle release→ ready hung off→ full_fuel error→ blocked-error
blocked-idle release→ ready hung off→ full_fuel throttle→ throttled error →

 error → blocked-error

 The states "full_fuel" and "throttled" appear to be
hazardous from the viewpoint of unchecked flow
because the motor is on and the liquid is under pressure -
- the only nozzle valve controls an issue in this case.
Also, the state "ready" tends to be hazardous: when the
nozzle is unhooked, the system transfers to the state
"full_fuel" with flow enabled. Hence, the accepted fail-
stop conception necessitates the detected error
management in the form of transition to the state
"blocked-error." To initiate such a transition for flow
blocking, the error detection in the hazardous states is
necessary. On the other hand, the state "blocked-idle" is
safe because the input signal "release" can be masked
out by the system that, when some failure is detected,
performs the internal transition from "blocked-idle" to
"blocked-error."

2.2 Incremental Measurement
The volume measurement and flow control represent the
main functions of the hazardous states. The next applied
application pattern, incremental measurement, means the
recognition and counting of elementary volumes
represented by rectangular impulses, which are
generated by a photoelectric pulse generator. The
maximal frequency of impulses and a pattern for their
recognition depend on electro-magnetic interference
characteristics. The lower-level application patterns are
in this case noise-tolerant impulse detector and checking
reversible counter. The first one represents a clock-
timed impulse-recognition automaton that implements
the periodic sampling of its input with values 0 and 1.
This automaton with n states recognizes an impulse after
n/2 (n>=4) samples with the value 1 followed by n/2
samples with the value 0, possibly interleaved by
induced error values, see the following timed-state
sequence:

(0, q1)

inp=0 → ... inp=0 → (i, q1)
inp=1 → (i+1, q2)

inp=0 → ...
... inp=0 → (j, q2) ...

inp=1 → (k, qn/2+1)
inp=1 → ...

... inp=1 → (m, qn-1)
inp=0 → (m+1, qn)

inp=1 → ... inp=1 → (n, qn)
inp=0/IMP → (n+1, q1)

i, j, k, m, n are integers representing discrete time instances:
 0 < i < j < k < m < n

For the sake of fault-detection requirements, the
incremental detector and transfer path are doubled.
Consequently, the second, identical noise-tolerant
impulse detector appears necessary.
 The subsequent lower-level application pattern used
provides checking reversible counter, which starts with
the value (h + l)/2 and increments or decrements that
value according to the "impulse detected" outputs from
the first or the second recognition automaton. Overflow
or underflow of the pre-set values of h or l indicates an
error. Another counting automaton that counts the
recognized impulses from one of the recognition
automata maintains the whole measured volume. The
output of the letter automaton refines to two displays
with local memories not only for the reason of
robustness (they can be compared) but also for
functional requirements (double-face stand). To
guarantee the overall fault detection capability of the
device, it is necessary also to consider checking the
counter. This task can be maintained by I/O watchdog
application pattern that can compare input impulses from
the photoelectric pulse generator and the changes of the
total value; evidently, the appropriate automaton
provides again reversible counting.

2.3 Fault Management
To prevent unregistered flow, the fail-stop conception
used appraises as more acceptable the forced blocking of
the dispenser with frozen actual data on displays instead
of an untrustworthy issue. The application patterns, so
far introduced stepwise, cooperate so that they
accomplish a consequent application pattern, fault
management based on fail-stop behavior approximation,
in the form of (a) hazardous state reachability control
and (b) hazardous state maintenance. In all safe states
("blocked-idle," "closed," and "blocked-error"), any fuel
flow is disabled by power hardware construction; in the
same time, the contents of all displays are protected
against any change required by possibly erroneous
control system. The system is allowed to reach
hazardous states ("ready," "full_fuel," and "throttled")
when the installed processors successfully have passed
start-up checks and interprocessor communication
initiation. The hazardous state maintenance includes
doubled input path check for detected product impulses
and I/O watchdog check. Hard kernel items such as the
nozzle with hydraulic shut-off and mechanical blocking
the hooked nozzle eliminate the danger of explosion in
the case of uncontrolled petrol flow.

3 Multiple Lift Control System
The second case study deals with a multiple lift control
system based on a dedicated multiprocessor architecture

[14], again originally specified using Asynchronous
Specification Language [15]. An incremental
measurement device for position evaluation, and position
and speed control of a lift cabin in a lift shaft can
demonstrate reusability. The applied application pattern,
incremental measurement, means in this case the
recognition and counting of rectangular impulses that are
generated by an electromagnetic or photoelectric
sensor/impulse generator, which is fixed on the bottom
of the lift cabin and which passes equidistant position
marks while moving along the shaft. That device
communicates with its environment through interfaces
with impulse generator and drive controller. So, the first
input, I, provides the values 0 or 1 that are altered with
frequency equivalent to the cabin speed. The second
input, D, provides the values "up," "down," or "idle."
The output, P, provides the actual absolute position of
the cabin in the shaft.

3.1 Two-Level Structure
The next employed application pattern is the two-level
structure: the higher level behaves as an event-driven
component, which behavior is roughly described by the
state sequence

initialization → position_indication → fault_indication

 The lower level behaves as a set of real-time
interconnected components. The specification of this
lower level can be developed by refining the higher level
state "position_indication" into three communicating
lower level automata: two noise-tolerant impulse
detectors and one checking reversible counter.

3.2 Incremental Measurement
The first automaton models noise-tolerant impulse
detector, see the following timed-state sequence:

(0, q1)

inp=0 → ... inp=0 → (i, q1)
inp=1 → (i+1, q2)

inp=0 → ... inp=0 → (j, q2) ...
 ... inp=1 → (k, qn/2+1)

inp=1 → ... inp=1 → (m, qn-1)
inp=0 → (m+1, qn)

inp=1 → ...
 ... inp=1 → (n, qn)

inp=0/IMP → (n+1, q1)
i, j, k, m, n are integers representing discrete time instances:
0 < i < j < k < m < n

The information about a detected impulse is sent to the
counting automaton that can also access the indication of
the cabin movement direction through the input D. For the
sake of fault-detection requirements, the impulse generator
and the impulse transfer path are doubled. Consequently, a
second, identical noise-tolerant impulse detector appears
necessary. The subsequent application pattern is the
checking reversible counter, which starts with the value (h
+ l)/2 and increments or decrements the value according to
the "impulse detected" outputs from the first or second
recognition automaton. Overflow or underflow of the
preset values of h or l indicates an error. This detection

process sends a message about a detected impulse and the
current direction to the counting automaton, which
maintains the actual position in the shaft. To check the
counter, an I/O watchdog application pattern employs
again a reversible counter that can compare the impulses
from the sensor/impulse generator and the changes of the
total value.

3.3 Fault Management
The approach used accomplishes a consequent
application pattern, fault management based on fail-stop
behavior approximation, in the form of (a) hazardous
state reachability control and (b) hazardous state
maintenance. In safe states, the lift cabins are fixed at
any floors. The system is allowed to reach any hazardous
state when all relevant processors have successfully
passed the start-up checks of inputs and monitored
outputs and of appropriate communication status. The
hazardous state maintenance includes operational
checks and consistency checking for execution
processors. To comply with safety-critical conception,
all critical inputs and monitored outputs are doubled and
compared. When the relevant signals differ, the
respective lift is either forced (with the help of a
substitute drive if the shaft controller is disconnected) to
reach the nearest floor and to stay blocked, or (in the
case of maintenance or fire brigade support) its services
are partially restricted. The basic safety hard core
includes mechanical, emergency brakes.

4 Application Patterns Reuse
The two case studies presented above demonstrate the
possibility to reuse effectively substantial parts of the
specifications dealing with petrol pumping station
technology for a lift control technology project. While
both cases belong to embedded control systems, their
application domains and their technology principles
differ: volume measurement and dosage control seems
not too close to position measurement and control.
Evidently, the similarity is observable by employment of
application patterns.
 The reused upper-layer application patterns presented
include the automata-based descriptions of incremental
measurement, two-level (event-driven/real-time)
structure, and fault management stemming from fail-stop
behavior approximations. The reused lower-layer
application patterns are exemplified by the automata-
based descriptions of noise-tolerant impulse detector,
checking reversible counter, and I/O watchdog.
 Clearly, while all introduced application patterns
correspond to design patterns in the above-explained
interpretation, the upper-layer application patterns can be
related also to frameworks. Moreover, the presented

collection of application patterns creates a base for a
pattern language supporting reuse-oriented design
process for a subclass of real-time embedded systems.

5 Knowledge-Based Support
Case-based reasoning, see e.g. [10], differs from other
rather traditional methods of Artificial Intelligence relying
on case history. For a new problem, the case-based
reasoning strives for a similar old solution. This old
solution is chosen according to the correspondence of a
new problem to some old problem that was successfully
solved by this approach. Hence, previous significant cases
are gathered and saved in a case library. Case-based
reasoning stems from remembering a similar situation that
worked in past. For software reuse, case-based reasoning
utilization has been studied from several viewpoints, see
e.g. [6] and [11].
 The case-based reasoning method contains (1)
elicitation, which means collecting those cases, and (2)
implementation, which represents identification of
important features for the case description consisting of
values of those features. Case library serves as the
knowledge base of a case-based reasoning system. The
system acquires knowledge from old cases while
learning can be achieved accumulating new cases.
Solving a new case, the most similar old case is retrieved
from the case library. The suggested solution of the new
case is generated in conformity with this retrieved old
case.

6 Case-Based Reasoning Application
The problem to be solved arises how to measure the
similarity of state-based specifications for retrieval.
Retrieval schemes proposed in the literature for software
component reuse can be classified based upon the
technique used to index cases during the search process
[2]: (a) classification-based schemes, which include
keyword or feature-based controlled vocabularies;
(b) structural schemes, which include signature or
structural characteristics matching; and (c) behavioral
schemes, which seek relevant cases by comparing input
and output spaces of components.
 The primary approach to the current application
includes some equivalents to the component retrieval
schemes mentioned above. All of them, i.e. keyword
controlled vocabularies belonging to classification
schemes, abstract data type signatures belonging to
structural schemes, and state-space trajectories belonging
to behavioral schemes can provide promising similarity
metrics for retrieval. The first alternative means in this
case creating a controlled vocabulary of such archetypal
temporal logic or real-time temporal logic formulae that

represent some key features of the relevant application
patterns. The second alternative is based in this context on
the algebraic approach employing some process algebras
or real-time process algebras corresponding to operational
semantics of the relevant temporal logics. Finally, the third
alternative denotes for this purpose a quantification of the
similarity by some topological characteristics of associated
finite automata state-transition graphs, such as the number
and placement of loops. The current research task of our
group focuses on experiments enabling to compare those
alternatives.

6 Related Work
Our approach resembles work [7] that aims at not only
specification reuse but also at specification refinement,
selection of optimal components, black box and white
box software components reuse and adaptation. In
contrary to our method, Jilani, Desharnais and Mili use
relational specifications. Similarly, Geppert and Roessler
[5] apply reuse for SDL specifications. Inspiring for our
continuing research can be also the contribution by
Justo, Howells and d’Inverno [9], who provide formal
framework for software design methodologies using Z.

7 Conclusions
This paper is devoted to the reuse of behavioral
specifications for embedded systems design employing
state or timed-state sequences, their closed-form
descriptions by finite-state or timed automata, and
corresponding formulae of temporal logics. It provides
two case studies, which are based on implemented
design projects, with application patterns that enable to
discuss concrete examples of reusability. The
contribution introduces principles and initial results of
the knowledge-based support for an efficient reuse of
formal specifications stemming from case-based
reasoning complemented by appropriate retrieval
techniques.
 Concurrently, the paper informs about case studies
and concepts that are available at the opening phase of
the research aiming at knowledge-based support for
industrial, embedded systems specification and design.
Case-based reasoning was successfully utilized by one of
the authors and his colleagues previously for another
industrial application, see [12]. Therefore, the authors
believe that also this higher-level reuse of methodology
can improve design processes.

Acknowledgements:
This research has been partly funded by the Czech
Ministry of Education in frame of the Research intention

No. MSM 262200022 - Research in microelectronic
systems and technologies, and by the Grant Agency of
the Czech Republic through the grant GACR
102/02/1032: Embedded Control Systems and their
Inter-Communication.

References:
[1] R. Alur and T.A. Henzinger, Logics and Models of

Real Time: A Survey, In: de Bakker, J.W., et al.,
Real-Time: Theory in Practice, Springer-Verlag,
LNCS 600, 1992, pp. 74-106.

[2] S. Atkinson, Modeling Formal Integrated
Component Retrieval, Proceedings of the Fifth
International Conference on Software Reuse, IEEE
Computer Society, Los Alamitos, California, 1998,
pp. 337-346.

[3] P. Coad, P. and E.E. Yourdon, Object-Oriented
Analysis. Yourdon Press, New York, 1990.

[4] E. Gamma and R. Helm and R. Johnson and J.
Vlissides, Design Patterns -- Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[5] B. Geppert and F. Roessler, The SDL Pattern
Approach – A Reuse-Driven SDL Design
Methodology, Computer Networks, Vol. 35, 2001,
pp. 627-645.

[6] S. Henninger, An Environment for Reusing Software
Processes. Proceedings of the Fifth International
Conference on Software Reuse, IEEE Computer
Society, Los Alamitos, California, 1998, pp. 103-
112.

[7] L.L. Jilani and J. Desharnais and A. Mili, Defining
and Applying Measures of Distance Between
Specifications, IEEE Transactions on Software
Engineering, Vol. 27, 2001, pp. 673-703.

[8] R.E. Johnson, Frameworks = (Components +
Patterns). Communications of the ACM, Vol. 40, No.
10, 1997, pp. 39-42.

[9] G.R. Riberio Justo and P. Howells and M. d’Inverno,
Formalising High-Performance Systems
Methodologies, Systems Architecture, Vol. 45, 1999,
pp. 441-464.

[10] J. Kolodner, Case-based Reasoning, Morgan
Kaufmann, San Mateo, CA, USA, 1993.

[11] N. Soundarajan and S. Fridella, Inheritance: From
Code Reuse to Reasoning Reuse, Proceedings of the
Fifth International Conference on Software Reuse,
IEEE Computer Society, Los Alamitos, California,
1998, pp. 206-215.

[12] M. Sveda and O. Babka and J. Freeburn,
Knowledge Preserving Development: A Case Study.
Proceedings of the Engineering of Computer-Based
Systems, IEEE Computer Society, Los Alamitos,
California, 1997, 347-352.

[13] Sveda, M. (1996) Embedded System Design: A
Case Study. Proceedings of the Engineering of
Computer-Based Systems. IEEE Computer Society,
Los Alamitos, California, 260-267.

[14] Sveda, M. (1997) An Approach to Safety-Critical
Systems Design. In: (Pichler, F., Moreno-Diaz, R.).
Computer Aided Systems Theory. Springer-Verlag,
LNCS 1333, 34-49.

[15] M. Sveda and R. Vrba, Executable Specifications for
Distributed Embedded Systems, IEEE Computer, Vol.
34, No. 1, 2001, pp. 138-140.

[16] Xinyao, Y., Ji, W., Chaochen, Z., Pandya, P.K.
(1994) Formal Design of Hybrid Systems. In:
(Langmaack, H., de Roever, W. P., Vytopil, J.)
Formal Techniques in Real-Time and Fault-Tolerant
Systems. Springer-Verlag, LNCS 863, 738-755.

