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Abstract: - Almost all real-world problems are dynamic and as such not all problem instances are known a priori. 
Many strategies to deal with dynamic problems exist in the literature, however they are not fully tested on 
combinatorial problems due to the deficiency of benchmarks. This paper presents a benchmark generator that 
uses Genetic Algorithms to produce benchmark problems for the dynamic traveling salesman problem. Various 
strategies of solving dynamic problems are compared on the new benchmarks. Generality of the Genetic 
Algorithm was retained so as it can be easily adapted for other kinds of  combinatorial problems. 
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1   Introduction 
Optimization in dynamic environments is gaining 
increasing interest due to the simple fact that almost 
all real-world problems are dynamic to some degree 
or another. Metaheuristics that proved their 
effectiveness for static problems are being modified 
by different adaptation strategies for the use in 
dynamic environments. In addition, benchmark 
problems are generated to model the dynamic 
environments. 
The current paper uses a Genetic Algorithm under 
different adaptation strategies to tackle the dynamic  
version of  the Traveling Salesman Problem (TSP). It 
is expected that the GA, as an evolutionary 
technique, will work well with dynamic problems. 
Another contribution of this paper is a benchmark 
generator to create the dynamic instances necessary 
for testing and comparing these strategies. 
TSP is considered here for its applications in science 
and engineering fields and, more importantly, 
because it is considered a representative of the larger 
class of combinatorial problems. It has often been the 
case that progress on the TSP has led to progress on 
other combinatorial problems.  
Our benchmark generator produces a wide range of 
dynamism and in a comparatively small time. In 
addition, the approach was made very general by 
using a GA as the optimization algorithm.  
Although the work in this paper focuses on the TSP, 
we believe that our algorithm and benchmark 
generator can be easily extended to other important 
dynamic combinatorial problems such as job shop 
scheduling, vehicle routing, and path planning. 

The rest of the paper first discusses related work and 
some necessary back ground in Section(2), and then 
describes the benchmark generator and the dynamic 
strategies in sections (3) and (4). Section(5) presents 
our results. The paper concludes with some 
comments on the benefits of adaptation and our 
future work. 
 
 
2 Background 
Many real-world optimization problems are actually 
dynamic [1]. New jobs are to be added to the 
schedule, the composition of the raw material may be 
changing, new orders are received in the vehicle 
routing problem etc. 
Solving a dynamic problem is usually harder than 
solving its static counterpart due to the uncertainty 
associated with dynamic problems. In addition, 
solutions of dynamic problems are to be found as 
time proceeds concurrently with the arriving 
information. Even the goal of the optimization 
changes from finding an optimal solution of the static 
problem, to continuously tracking the moving 
optimum through time in the dynamic problem.   
 
 
2.1 Benchmarks for Dynamic Optimization 
A crucial issue in dynamic optimization is the design 
of benchmark problems that can be used to represent 
different dynamic fitness landscapes.  
There exist many test problems for dynamic 
optimization in the literature. Grefenstette [7] 
specifies his dynamic landscape as a set components, 
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each component consists of a single, time varying 
n-dimensional Gaussian peak. Each peak is 
characterized by three time varying features: its 
center, its amplitude, and its width.   
In a similar work, Branke [4] suggests a “Moving 
Peaks Function”.  He introduces a multimodal 
function with controllable height, width and center 
for each peak. He also gives a detailed literature 
review of  benchmarks for dynamic landscapes.   
However, we note that the majority of these problems 
use real space, and hence are not suitable for 
combinatorial problems such as the TSP. 
 
2.2 Dynamic Traveling Salesman Problem  
Although the TSP finds applications in science and 
engineering, as in the manufacture of circuit boards, 
its real importance stems from the fact that it is 
typical of the larger class of problems known as 
combinatorial optimization problems.  
The majority of the publications on TSP focus on the 
“traditional” static version in which all the problem 
instances are known and do not change with time. 
However, we believe that the dynamic version in 
which the complete picture is not known before hand 
due to the environmental shifting is more close to the 
real world and even harder to solve. 
In part, our work continues a line of research about 
solving the dynamic TSP done by Guntsch et al. [8]. 
The authors solved the problem using an Ant Colony 
Optimization. They introduced dynamism by 
exchanging a number of cities between the actual 
problem and a spare pool of cities. The number of 
cities in the actual problem remains constant but the 
cities themselves do change.  
Eyckelhof and Snoek [6] presented a new Ants 
System approach to the dynamic TSP. They 
introduced dynamism by changing travel times 
between the cities.  
In our work, we make dynamism more general by 
removing the constraints on the number of cities, i.e. 
it will not be necessary to add and delete the same 
number of cities. Also, we add a second phase to the 
dynamic problem in which we reverse the changes 
introduced in the first phase. In this way, we can 
simulate cycling environments as well.  In addition, 
we introduce a new simple, quick and effective way 
to create a dynamic TSP by interchanging city 
locations.  
 
 
2.3   GA’s for Dynamic Problems  
In addition to the characteristics  that make Genetic 
Algorithms effective solvers for a broad range of 
static problems  [10], we identify other attributes that 
prompt using GA’s for dynamic problems as well: 

their theory is based on natural evolution hence they 
are expected to be capable of adaptation to 
environmental changes; In addition, GA’s have 
proved to be good for “noisy” environments [4, 9], 
and hence able to exploit previous or alternate 
solutions.  
This paper uses GA’s in both the benchmark 
generator and the dynamic solver. 
  
 
3   The Benchmark Generator (BMG) 
Benchmarks for dynamic continuous problems, use 
functions, with adjustable parameters, developed to 
simulate a shifting landscape. With combinatorial 
problems the task is much more difficult. We need to 
think of the dynamic problem in terms of possible 
scenarios in which changes to a particular problem 
can happen over time. There can be an infinite 
number of such scenarios and this might be a reason 
behind the deficiency in benchmarks for dynamic 
combinatorial problems  
Before discussing our BMG, let us define some terms 
used to describe dynamic changes. The BMG 
constructs the dynamic problem from a sequence of 
static problems. Each static problem is generated by 
applying some changes or problem shifts to the 
preceding problem. A problem shift is a result of 
applying one or more elementary change steps  
simultaneously.  
Thus, a change step is the smallest possible change 
that can be applied. Hence, the severity of a shift is 
calculated as the number of change steps in that shift. 
The number of the iterations or generation between 
successive shifts determines the period of change (?).  
In our work we always start with a static problem of a 
moderate size taken from the TSP Library [11], 
introduce the required number of random shifts then 
remove the changes in the reverse order (last 
introduced first removed) until we end with exactly 
the same initial problem. In other words, the dynamic 
problem consists of two phases: the first phase 
introducing changes and the second phase removing 
those changes. In this way, it is also possible to 
investigate the algorithm behavior when some 
instances of the problem keep reoccurring.   
The BMG works in three different modes: Edge 
change mode, insert/delete mode and city swap mode 
as follows.  
  
  
3.1   Edge Change Mode (ECM) 
This mode reflects one of the real-world scenarios, 
the traffic jam. Here, the distance between the cities 
is viewed as a time period or cost that may increase or 



decrease with time, hence the introduction and the 
removal of a traffic jam, respectively , can be 
simulated by the increase or decrease in the distance 
between cities.  The change step of the traffic jam is 
the increase in the cost of a single edge.    
Our policy is as follows: If the edge cost is to be 
increased then that edge should be selected from the 
best tour, but if  the cost were to be reduced then the 
selected edge should not be part of the best tour.  
The BMG starts from one known instance and solves 
it to find the best or near best tour.  Then an edge is 
selected randomly from the best tour, and its cost is 
increased by a user defined factor creating a new 
instance which will likely have a different best tour. 
The new instance is solved statically and again the 
best or near best tour is determined.  After a 
pre-defined number of instances, the problem enters 
its second phase and the previously introduced jams 
are removed in the reverse order and the final 
instance will be exactly the same initial static 
problem as shown in Fig.1.     
In this way, we can view the removals of the jams as 
new random events without the need to resolve them 
since all the instances were already solved during the 
introduction of the jams in the first phase. 
 
 
3.2   Insert/Delete Mode (IDM): 
IDM reflects the addition and deletion of new 
assignments (cities).  This mode works similarly to 
the ECM mode. The step of the change in this mode 
is the addition or the deletion of a single city. This 
mode generated the most difficult problems to solve 
dynamically since they require variable 
representation to reflect the increase or decrease in 
the number of cities from one instance to another.  
 
 
3.3   City  Swap Mode (CSM):  
CSM presents another way to create a dynamic TSP 
by interchanging city locations. Though it does not 
reflect direct real-world scenarios, it offers a simple, 

quick and easy way to test and analyze the dynamic 
algorithm. In CSM, the locations of two randomly 
selected cities are interchanged. The length of the 
optimal tour remains the same but the tour itself will 
be different.  The change step is an interchange of 
costs between a single pair of cities.   
Contrary to the previous modes, in CSM there is no 
need to work out the solution after each change,  we 
only need to swap the cities of the current optimal 
solution to determine the optimum of the next 
instance.  
The next section discusses how the dynamic problem 
is solved. 
 
 
4   The Dynamic Solver: 
One of goals of this paper is to compare adaptation 
strategies found in the literature on combinatorial 
problems. For this purpose, we employed a basically 
traditional GA hybridized with local search.  
The algorithm is generational and uses tournament 
selection, and a two-point order crossover. Pair-wise 
interchange is used as a mutation operator. A 
straightforward path representation is used for the 
chromosomes.  
The basic GA was modified in order to apply any of 
the following adaptation strategies to tackle dynamic 
problems. 
 
 
4.1   Adapting Mutation Strategy: 
The model based on this strategy uses a linearly 
changing mutation rate. When the environment 
changes, the rate of mutation is set equal to a fairly 
large value (P0) then it is decreased linearly with the 
number of generation until it reaches the base value 
(Pm) just prior to the next environmental change. 
 
 
4.2   Random Immigrants Strategy (RIS): 
Here, the population is partly replaced by randomly 
generated individuals whenever the environment 

 

Read Initial Problem From TSP Library; 
Do Optimization; 
Repeat until half of the required instances // 1st phase 
    Increase cost of one edge in the best found tour; 
    Do Optimization; 
Repeat until half of the required instances // 2nd.phase 
    Remove Latest Introduced jam; 

Output Best Tours for all instances; 
 

Fig.1  Algorithm for bench mark generator  



shifts. In this paper, RIS is adopted in two models: 
one model, RIS_10, replaces 10% of the population 
by random immigrants and the other model, RIS_20, 
replaces 20%.  
 
 
4.3   Ignore Strategy: 
GA’s in their standard form suffer from the problem 
that once a population converges around an optimum 
it will not be able to further explore the search space 
if the environment shifts. Hence, the ignore strategy 
which does not apply any specific measures to tackle 
dynamism in the problem is expected to perform  
 
 

poorly. This strategy might produce good solutions if 
changes in the dynamic problem are small.  
 
 
4.4   Restart Strategy: 
This is the most straightforward strategy to handle 
dynamic problems. The population is regenerated 
randomly whenever the problem changes. This 
means that each change in the environment is 
regarded as a new problem to be solved 
independently of the previous instances.  
This strategy depends totally on exploration to find 
new solutions and does not make use of any past 
knowledge. 
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Fig.2  Population-best vs. mutation rate  
 
Problem changes every 1000 generations 
Note that the Results from applying Restart Model are of low quality 
( too large to appear with other models in most figures. 

Ignore 
RIS_10 
RIS_20 
Restart 

Adapt_Mut 



 
 
5   Computational Results. 
The best solution found in the population 
“Population-best”  is used as the criterion to compare 
different strategies. The goodness of a strategy is 
measured by how close the population-best is to the 
solutions given by the benchmark generator. Since 
the optimal solution is likely to vary with time, values 
of the population-best are reported as ratios to the 
base optimal solution given in the TSP library. 
The experiments reported here use a 100-city 
problem, kroA100 from the TSP library, as the base 
static problem. The BMG is set up to apply 200  
successive changes to the base problem. Thus, there 
will be a sequence of  200 static problems for each of 
the three modes of environmental shifts.  
Each sequence of static problems will be translated 
into 9 dynamic benchmark problems, resulting from 
the combination of three degrees of severity (1, 10, 
100  steps per shifts) and three periods of change 
(10,100, 1000 generations between shifts). The 
dynamic problems are used to test the performance of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
the five models representing the strategies of the 
previous section. 
For each conducted experiment, the results are 
reported as the average from 10 runs using different 
random initial populations.  
In every run, the environment is kept fixed at first 
then changes are applied after 10000 generations. 
This gives the GA sufficient time to reach initial 
convergence. A dynamic solver should be able to  
explore the new search space when the problem 
changes even after it has converged or nearly 
converged to some  optimum.  
A population size of 50 and crossover rate of 0.9 were 
used throughout. 
Finally, since the five models depend in part on the 
underlying mutation rate, experiments were repeated 
for three  values of the base mutation rate 
(0.0025,0.025 and 0.25).   
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Fig.3  Population best performance –  slow changes 
Problem changes every 1000 generations in City Insert/Delete benchmark 
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Fig.2  Population best performance  - fast changes. 
Problem changes every 10 generations in City Insert/Delete benchmark 
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Fig.3  Population-best performance – fast change 
Problem changes every 10 generations in City Insert/Delete benchmark 
 
 

Fig.4  Population-best performance – slow change  
Problem changes every 1000 generations in City Insert/Delete benchmark 
 
 
 



Fig.2 summarizes our results. The Population-best 
reported in this figure is actually the average of the 
values obtained throughout the run. We note that  
adaptation strategies tend to be the closest to the goal: 
best solutions previously worked out by the BMG.  
Also it seems to be a good idea to keep mutation rates 
in the vicinity of 0.1 
Restart strategy shows the poorest performance, 
indeed, their values are so large they do not show in 
some slides. Restart does comparatively well only 
when changes in the problems are large.  
Fig.3 details how the moving optimum is tracked 
while new cities are added to the assignment over 
time (number of generations) in a fast changing 
environment. The benefits of adapting old solutions 
are very clear in contrast with the Restart strategy. 
Fig.4. also tracks the optimum over time but in a slow 
changing environment (frequency of change reduced  
to 1 change every 1000 generations). Again, it is clear 
that the Restart strategy should only be used when the 
changes are very large.  
  
 
6   Conclusions   
A comparison was made between several models of 
adaptation. 
A benchmark (BM) generator was developed for a 
dynamic TSP. It can produce problems with known 
shifting optima with controllable qualities. 
A dynamic solver was developed to track the moving 
optima in dynamic problems. It can run in different 
modes that apply strategies found in the literature to 
tackle dynamic problems. 
The Restart strategy produced solutions of  low 
quality suggesting that it is very important not to 
discard knowledge from past solutions.  
We also observe that the best strategy to solve a 
dynamic problem depends on its dynamic 
characteristics e.g.  severity and speed of change. 
This prompts us to measure the characteristics online 
and use the measurements to recommend the best 
strategy to the main algorithm. 
In addition, our future work involves an enhancement 
to the variable mutation model utilizing a non-linear 
mutation model. We should also test a model with a 
variable crossover rate.  
It should prove to be easy to extend our GA and the 
ideas of developing benchmarks in this paper to other 
types of combinatorial problems. 
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