
A Benchmark Generator for Dynamic Optimization

ABDUNNASER YOUNES and OTMAN BASIR and PAUL CALAMAI
Systems Design Engineering

University of Waterloo
Waterloo, Ontario, N2L 3G1

CANADA

Abstract: - Almost all real-world problems are dynamic and as such not all problem instances are known a priori.
Many strategies to deal with dynamic problems exist in the literature, however they are not fully tested on
combinatorial problems due to the deficiency of benchmarks. This paper presents a benchmark generator that
uses Genetic Algorithms to produce benchmark problems for the dynamic traveling salesman problem. Various
strategies of solving dynamic problems are compared on the new benchmarks. Generality of the Genetic
Algorithm was retained so as it can be easily adapted for other kinds of combinatorial problems.

Key-Words: - dynamic optimization, traveling salesman problem, genetic algorithms, combinatorial problems.

1 Introduction
Optimization in dynamic environments is gaining
increasing interest due to the simple fact that almost
all real-world problems are dynamic to some degree
or another. Metaheuristics that proved their
effectiveness for static problems are being modified
by different adaptation strategies for the use in
dynamic environments. In addition, benchmark
problems are generated to model the dynamic
environments.
The current paper uses a Genetic Algorithm under
different adaptation strategies to tackle the dynamic
version of the Traveling Salesman Problem (TSP). It
is expected that the GA, as an evolutionary
technique, will work well with dynamic problems.
Another contribution of this paper is a benchmark
generator to create the dynamic instances necessary
for testing and comparing these strategies.
TSP is considered here for its applications in science
and engineering fields and, more importantly,
because it is considered a representative of the larger
class of combinatorial problems. It has often been the
case that progress on the TSP has led to progress on
other combinatorial problems.
Our benchmark generator produces a wide range of
dynamism and in a comparatively small time. In
addition, the approach was made very general by
using a GA as the optimization algorithm.
Although the work in this paper focuses on the TSP,
we believe that our algorithm and benchmark
generator can be easily extended to other important
dynamic combinatorial problems such as job shop
scheduling, vehicle routing, and path planning.

The rest of the paper first discusses related work and
some necessary back ground in Section(2), and then
describes the benchmark generator and the dynamic
strategies in sections (3) and (4). Section(5) presents
our results. The paper concludes with some
comments on the benefits of adaptation and our
future work.

2 Background
Many real-world optimization problems are actually
dynamic [1]. New jobs are to be added to the
schedule, the composition of the raw material may be
changing, new orders are received in the vehicle
routing problem etc.
Solving a dynamic problem is usually harder than
solving its static counterpart due to the uncertainty
associated with dynamic problems. In addition,
solutions of dynamic problems are to be found as
time proceeds concurrently with the arriving
information. Even the goal of the optimization
changes from finding an optimal solution of the static
problem, to continuously tracking the moving
optimum through time in the dynamic problem.

2.1 Benchmarks for Dynamic Optimization
A crucial issue in dynamic optimization is the design
of benchmark problems that can be used to represent
different dynamic fitness landscapes.
There exist many test problems for dynamic
optimization in the literature. Grefenstette [7]
specifies his dynamic landscape as a set components,

Support of this work has been provided by the Natural
Sciences and Engineering Research Council of Canada

each component consists of a single, time varying
n-dimensional Gaussian peak. Each peak is
characterized by three time varying features: its
center, its amplitude, and its width.
In a similar work, Branke [4] suggests a “Moving
Peaks Function”. He introduces a multimodal
function with controllable height, width and center
for each peak. He also gives a detailed literature
review of benchmarks for dynamic landscapes.
However, we note that the majority of these problems
use real space, and hence are not suitable for
combinatorial problems such as the TSP.

2.2 Dynamic Traveling Salesman Problem
Although the TSP finds applications in science and
engineering, as in the manufacture of circuit boards,
its real importance stems from the fact that it is
typical of the larger class of problems known as
combinatorial optimization problems.
The majority of the publications on TSP focus on the
“traditional” static version in which all the problem
instances are known and do not change with time.
However, we believe that the dynamic version in
which the complete picture is not known before hand
due to the environmental shifting is more close to the
real world and even harder to solve.
In part, our work continues a line of research about
solving the dynamic TSP done by Guntsch et al. [8].
The authors solved the problem using an Ant Colony
Optimization. They introduced dynamism by
exchanging a number of cities between the actual
problem and a spare pool of cities. The number of
cities in the actual problem remains constant but the
cities themselves do change.
Eyckelhof and Snoek [6] presented a new Ants
System approach to the dynamic TSP. They
introduced dynamism by changing travel times
between the cities.
In our work, we make dynamism more general by
removing the constraints on the number of cities, i.e.
it will not be necessary to add and delete the same
number of cities. Also, we add a second phase to the
dynamic problem in which we reverse the changes
introduced in the first phase. In this way, we can
simulate cycling environments as well. In addition,
we introduce a new simple, quick and effective way
to create a dynamic TSP by interchanging city
locations.

2.3 GA’s for Dynamic Problems
In addition to the characteristics that make Genetic
Algorithms effective solvers for a broad range of
static problems [10], we identify other attributes that
prompt using GA’s for dynamic problems as well:

their theory is based on natural evolution hence they
are expected to be capable of adaptation to
environmental changes; In addition, GA’s have
proved to be good for “noisy” environments [4, 9],
and hence able to exploit previous or alternate
solutions.
This paper uses GA’s in both the benchmark
generator and the dynamic solver.

3 The Benchmark Generator (BMG)
Benchmarks for dynamic continuous problems, use
functions, with adjustable parameters, developed to
simulate a shifting landscape. With combinatorial
problems the task is much more difficult. We need to
think of the dynamic problem in terms of possible
scenarios in which changes to a particular problem
can happen over time. There can be an infinite
number of such scenarios and this might be a reason
behind the deficiency in benchmarks for dynamic
combinatorial problems
Before discussing our BMG, let us define some terms
used to describe dynamic changes. The BMG
constructs the dynamic problem from a sequence of
static problems. Each static problem is generated by
applying some changes or problem shifts to the
preceding problem. A problem shift is a result of
applying one or more elementary change steps
simultaneously.
Thus, a change step is the smallest possible change
that can be applied. Hence, the severity of a shift is
calculated as the number of change steps in that shift.
The number of the iterations or generation between
successive shifts determines the period of change (?).
In our work we always start with a static problem of a
moderate size taken from the TSP Library [11],
introduce the required number of random shifts then
remove the changes in the reverse order (last
introduced first removed) until we end with exactly
the same initial problem. In other words, the dynamic
problem consists of two phases: the first phase
introducing changes and the second phase removing
those changes. In this way, it is also possible to
investigate the algorithm behavior when some
instances of the problem keep reoccurring.
The BMG works in three different modes: Edge
change mode, insert/delete mode and city swap mode
as follows.

3.1 Edge Change Mode (ECM)
This mode reflects one of the real-world scenarios,
the traffic jam. Here, the distance between the cities
is viewed as a time period or cost that may increase or

decrease with time, hence the introduction and the
removal of a traffic jam, respectively , can be
simulated by the increase or decrease in the distance
between cities. The change step of the traffic jam is
the increase in the cost of a single edge.
Our policy is as follows: If the edge cost is to be
increased then that edge should be selected from the
best tour, but if the cost were to be reduced then the
selected edge should not be part of the best tour.
The BMG starts from one known instance and solves
it to find the best or near best tour. Then an edge is
selected randomly from the best tour, and its cost is
increased by a user defined factor creating a new
instance which will likely have a different best tour.
The new instance is solved statically and again the
best or near best tour is determined. After a
pre-defined number of instances, the problem enters
its second phase and the previously introduced jams
are removed in the reverse order and the final
instance will be exactly the same initial static
problem as shown in Fig.1.
In this way, we can view the removals of the jams as
new random events without the need to resolve them
since all the instances were already solved during the
introduction of the jams in the first phase.

3.2 Insert/Delete Mode (IDM):
IDM reflects the addition and deletion of new
assignments (cities). This mode works similarly to
the ECM mode. The step of the change in this mode
is the addition or the deletion of a single city. This
mode generated the most difficult problems to solve
dynamically since they require variable
representation to reflect the increase or decrease in
the number of cities from one instance to another.

3.3 City Swap Mode (CSM):
CSM presents another way to create a dynamic TSP
by interchanging city locations. Though it does not
reflect direct real-world scenarios, it offers a simple,

quick and easy way to test and analyze the dynamic
algorithm. In CSM, the locations of two randomly
selected cities are interchanged. The length of the
optimal tour remains the same but the tour itself will
be different. The change step is an interchange of
costs between a single pair of cities.
Contrary to the previous modes, in CSM there is no
need to work out the solution after each change, we
only need to swap the cities of the current optimal
solution to determine the optimum of the next
instance.
The next section discusses how the dynamic problem
is solved.

4 The Dynamic Solver:
One of goals of this paper is to compare adaptation
strategies found in the literature on combinatorial
problems. For this purpose, we employed a basically
traditional GA hybridized with local search.
The algorithm is generational and uses tournament
selection, and a two-point order crossover. Pair-wise
interchange is used as a mutation operator. A
straightforward path representation is used for the
chromosomes.
The basic GA was modified in order to apply any of
the following adaptation strategies to tackle dynamic
problems.

4.1 Adapting Mutation Strategy:
The model based on this strategy uses a linearly
changing mutation rate. When the environment
changes, the rate of mutation is set equal to a fairly
large value (P0) then it is decreased linearly with the
number of generation until it reaches the base value
(Pm) just prior to the next environmental change.

4.2 Random Immigrants Strategy (RIS):
Here, the population is partly replaced by randomly
generated individuals whenever the environment

Read Initial Problem From TSP Library;
Do Optimization;
Repeat until half of the required instances // 1st phase
 Increase cost of one edge in the best found tour;
 Do Optimization;
Repeat until half of the required instances // 2nd.phase
 Remove Latest Introduced jam;

Output Best Tours for all instances;

Fig.1 Algorithm for bench mark generator

shifts. In this paper, RIS is adopted in two models:
one model, RIS_10, replaces 10% of the population
by random immigrants and the other model, RIS_20,
replaces 20%.

4.3 Ignore Strategy:
GA’s in their standard form suffer from the problem
that once a population converges around an optimum
it will not be able to further explore the search space
if the environment shifts. Hence, the ignore strategy
which does not apply any specific measures to tackle
dynamism in the problem is expected to perform

poorly. This strategy might produce good solutions if
changes in the dynamic problem are small.

4.4 Restart Strategy:
This is the most straightforward strategy to handle
dynamic problems. The population is regenerated
randomly whenever the problem changes. This
means that each change in the environment is
regarded as a new problem to be solved
independently of the previous instances.
This strategy depends totally on exploration to find
new solutions and does not make use of any past
knowledge.

Cost change
mode

insert/delete
mode

City Swap
Mode

 Severity = 1 step/shift Severity = 10 step/shift) Severity = 100 step/shift

0.8

0.9

1.0

0 0.1 0.2 0.3
0.7

0.8

0.9

0 0.1 0.2 0.3
1.0

1.1

1.2

0 0.1 0.2 0.3

0.7

0.8

0.9

0 0.1 0.2 0.3
0.9

1.0

0 0.1 0.2 0.3

1.1

1.2

1.3

1.4

0 0.1 0.2 0.3

0.8

0.9

1.0

0 0.1 0.2 0.3

0.9

1.0

0 0.1 0.2 0.3
0.9

1.0

0 0.1 0.2 0.3

Fig.2 Population-best vs. mutation rate

Problem changes every 1000 generations
Note that the Results from applying Restart Model are of low quality
(too large to appear with other models in most figures.

Ignore
RIS_10
RIS_20
Restart

Adapt_Mut

5 Computational Results.
The best solution found in the population
“Population-best” is used as the criterion to compare
different strategies. The goodness of a strategy is
measured by how close the population-best is to the
solutions given by the benchmark generator. Since
the optimal solution is likely to vary with time, values
of the population-best are reported as ratios to the
base optimal solution given in the TSP library.
The experiments reported here use a 100-city
problem, kroA100 from the TSP library, as the base
static problem. The BMG is set up to apply 200
successive changes to the base problem. Thus, there
will be a sequence of 200 static problems for each of
the three modes of environmental shifts.
Each sequence of static problems will be translated
into 9 dynamic benchmark problems, resulting from
the combination of three degrees of severity (1, 10,
100 steps per shifts) and three periods of change
(10,100, 1000 generations between shifts). The
dynamic problems are used to test the performance of

the five models representing the strategies of the
previous section.
For each conducted experiment, the results are
reported as the average from 10 runs using different
random initial populations.
In every run, the environment is kept fixed at first
then changes are applied after 10000 generations.
This gives the GA sufficient time to reach initial
convergence. A dynamic solver should be able to
explore the new search space when the problem
changes even after it has converged or nearly
converged to some optimum.
A population size of 50 and crossover rate of 0.9 were
used throughout.
Finally, since the five models depend in part on the
underlying mutation rate, experiments were repeated
for three values of the base mutation rate
(0.0025,0.025 and 0.25).

 Generations
 (a) 1-step shift (b) 10-step shift (c) 100-step shift

11000 12000

0

1

2

3

4

5

6

7

8

9

10

 Population-best

10000 11000 9000 12000 13000 10000 11000 9000 12000 13000 100000 9000

Fig.3 Population best performance – slow changes
Problem changes every 1000 generations in City Insert/Delete benchmark

Restart
Adapt_Mut
Goal

beginning of
anew instance

Fig.2 Population best performance - fast changes.
Problem changes every 10 generations in City Insert/Delete benchmark

Restart
Adapt_Mut
Goal

beginning of
anew instance

0

1

2

3

4

5

6

7

8

9

10

10000 10010 9990 10020 10030 10000 10010 9990 10020 10030 10000 10010 9990 10020 10030
 Generations
 (a) 1-step shift (b) 10-step shift (c) 100-step shift

 Population-best

Fig.3 Population-best performance – fast change
Problem changes every 10 generations in City Insert/Delete benchmark

Fig.4 Population-best performance – slow change
Problem changes every 1000 generations in City Insert/Delete benchmark

Fig.2 summarizes our results. The Population-best
reported in this figure is actually the average of the
values obtained throughout the run. We note that
adaptation strategies tend to be the closest to the goal:
best solutions previously worked out by the BMG.
Also it seems to be a good idea to keep mutation rates
in the vicinity of 0.1
Restart strategy shows the poorest performance,
indeed, their values are so large they do not show in
some slides. Restart does comparatively well only
when changes in the problems are large.
Fig.3 details how the moving optimum is tracked
while new cities are added to the assignment over
time (number of generations) in a fast changing
environment. The benefits of adapting old solutions
are very clear in contrast with the Restart strategy.
Fig.4. also tracks the optimum over time but in a slow
changing environment (frequency of change reduced
to 1 change every 1000 generations). Again, it is clear
that the Restart strategy should only be used when the
changes are very large.

6 Conclusions
A comparison was made between several models of
adaptation.
A benchmark (BM) generator was developed for a
dynamic TSP. It can produce problems with known
shifting optima with controllable qualities.
A dynamic solver was developed to track the moving
optima in dynamic problems. It can run in different
modes that apply strategies found in the literature to
tackle dynamic problems.
The Restart strategy produced solutions of low
quality suggesting that it is very important not to
discard knowledge from past solutions.
We also observe that the best strategy to solve a
dynamic problem depends on its dynamic
characteristics e.g. severity and speed of change.
This prompts us to measure the characteristics online
and use the measurements to recommend the best
strategy to the main algorithm.
In addition, our future work involves an enhancement
to the variable mutation model utilizing a non-linear
mutation model. We should also test a model with a
variable crossover rate.
It should prove to be easy to extend our GA and the
ideas of developing benchmarks in this paper to other
types of combinatorial problems.

References:
 [1] L. Bianchi, Notes on dynamic vehicle routing -

the state of the art - Technical report idsia 05-01,
Italy, 2000.

[2] T. Back, Selfadaptation. In The Handbook of
Evolutionary Computation, IOP Publishing and
Oxford University Press, 1997.

[3] P. Badeau, M. Gendreau, F. Guertin, J.Y. Potvin,
D. Taillard, A Parallel Tabu Search Heuristic for
the Vehicle Routing Problem with Time
Windows, Transportation Research -C 5, 1997,
109-122.

 [4] J. Branke, Evolutionary Optimization in
Dynamic Environments. Kluwer Academic
Publishers, 2002

[5] O. Bräysy, A New Algorithm for the Vehicle
Routing Problem with Time Windows Based on
the Hybridization of a Genetic Algorithm and
Route Construction Heuristics. Proceedings of
the University of Vaasa, Research papers 227,
Vaasa, Finland, 1999.

[6] Casper Joost Eyckelhof, Marko Snoek, Ant
Systems for a Dynamic TSP, ANTS 2002:
Brussels, Belgium, 88-99

[7] J. Grefenstette, Evolvability in Dynamic Fitness
Landscapes: A Genetic Algorithm Approach. In
Proc. 1999 Congress on Evolutionary
Computation (CEC 99), Washington, DC. IEEE
Press, pp. 2031-2038

 [8] M. Guntsch, M. Middendorf, H. Schmeck, An
Ant Colony Optimization Approach to Dynamic
TSP, In: L. Spector et al. (eds.) Proceedings of the
Genetic and Evolutionary Computation
Conference, San Francisco, CA: Morgan
Kaufmann Publishers, 2001, 860-867.

[9] M. Mitchell, An Introduction to Genetic
Algorithms, MIT Press, USA, 1996.

[10] D. T. Pham and D. Karaboga, Intelligent
Optimization Techniques, Springer-Verlag, USA,
2000.

 [11] Library of Traveling Salesman Problems,
<http://www.iwr.uni-heidelberg.de/groups/como
pt/software/TSPLIB95/> (20 December 2002).

