
On the Design and Implementation of User-friendly Interface
for Scientific and Engineering Applications

W. SUN, Y. CHEN, H. BOUSSALIS, C. W. LIU, K. RAD, J. DONG

Electrical and Computer Engineering
California State University, Los Angeles, CA 90032, USA

,

Abstract: - Sophisticated visual programming environments facilitate the implementation of graphic user
interface (GUI) from the programming aspect. However, how to design an effective and efficient GUI to meet
the requirements of large-scale scientific and engineering software still remains an interesting research topic.
This paper presents a methodology of GUI design for engineering applications. First, the requirements and the
tasks of the specific engineering application should be carefully analyzed. Second, a prototype of the GUI is
generated. Then, the concept of interactive GUI design is employed to improve the user friendliness. Finally,
extensive testing is conducted, and iterative software design method is applied to improve the GUI design based
on the testing results. The presented methodology is employed in the design procedure of the user-friendly
graphic user interface in a 3-D animation system for a large space segmented telescope test-bed.

Keywords : - Graphic User Interface, interactivity, user-friendliness

1 Introduction
Recent developments in software architecture present
new opportunities and challenges for user interface
design. On one hand, sophisticated visual
programming environments, such as Microsoft
Visual Studio, etc., facilitate the implementation of
graphic user interface (GUI) from the programming
aspect. On the other hand, how to design a good GUI
still remains an interesting research topic. Many
research efforts have been made to address this
question [1,2,3]. In general, GUI design consists of
the following phases: user requirement analysis, task
analysis and modeling, GUI prototyping, and
usability evaluation. However, to design an effective
GUI for large-scale scientific and engineering
applications, the above deign methodology is not
sufficient. To model the tasks of a sophisticated
scientific or engineering system, a large number of
parameters are necessary.
 Therefore, users without background
knowledge may get lost when confronting the
inputs/outputs. Or, they may get confused about the
steps needed to go through before getting a result. In
our paper, the methodology of GUI design is
improved to achieve better user friendliness. Taking
the specific concern of scientific/engineering
applications into accounts, our proposed GUI design

procedure is tuned to reduce the user errors and
increase the efficiency of the software.

To illustrate our proposed methodology, the
design procedure of the user-friendly GUI for a 3-D
animation software package of a large space
segmented telescope test-bed is presented as an
example. As a NSF-sponsored project, the goal of
developing the 3-D animation system is to
demonstrate the effect of various control algorithms
proposed in our previous research [5,6], and to
disseminate the knowledge to the public. Hence, a
well-designed user-friendly interface is essential to fit
the needs of audience with different professional
background.

The rest of the paper is organized as follows:
Section 2 provides an overview of the GUI design
methodology. The details of the design of GUI for
two engineering applications are presented in section
3. Section 4 described the implementation steps as
well as the results. Section 5 concludes the paper and
shows the future work.

2 GUI Design Methodologies for
Engineering Software
The design procedure of a generic user-friendly
interface, from the aspect of software engineering,

mailto:andysunwei@hotmail.com
mailto:krad@calstatela.edu

takes four major steps: 1) user requirement analysis,
2) user objects modeling, 3) GUI prototyping, and 4)
usability evaluation [4]. Through the first two steps,
the requirements of usability is examined, an
abstraction of user requirements is created, and user
objects model of the system is established based on
the user action and the corresponding system
responses. Step 3 and 4 creates and evaluates the
GUI for the system. The design procedure works in
an iterative fashion.

To meet the requirements of engineering
application software, additional steps should be
added to the generic GUI development cycle. Figure
1 depicts the improved GUI design procedure for
engineering applications.

Fig. 1- GUI design procedure for engineering software

To better fits the needs of engineering

applications, one optimization step is added to refine
the user objects model generated by user requirement
analysis. Since the GUI interacts with multiple
complicated modules to support the engineering core,
a clear and well modularized interface is essential.
Another additional step is friendliness evaluation. In
engineering applications, to complete a given task
might be very difficult to the users. Therefore, it is
more important to provide an easy-to-use GUI for

engineering software. The feedback of the
friendliness evaluation will be used to improve GUI
prototyping. This iterative process will continue until
the evaluation results are satisfactory. In addition to
the added steps in the design cycle, the testing
process is also revised. The GUI will be tested by
multiple user groups with different levels of
knowledge related to the specific engineering
application, and the feedbacks help improve the GUI
design to meet the requirements of users with
different background

3 GUI Design for 3-D Animation of
Large-scale Segmented Space
Telescope

In this section, the design procedure of a highly user-
friendly GUI for a 3-D animation system of large-
scale segmented space telescope is presented.
Emphasize of the presentation will be focused on the
how to increase the modularity and user-friendliness
in GUI design for engineering applications.

User requirement analysis

User objects modeling

User objects optimization

3.1 Background GUI prototyping
For future space-borne astronomical missions, a
segmented space reflector telescope is preferred
rather than a monolithic one. To mimic the optical
properties of a monolithic telescope using a
segmented one, an effective real-time control system
has to be established for shape control and precision
pointing. Funded by NASA. A segmented reflector
test-bed has been built at the Structures Pointing And
Control Engineering (SPACE) Laboratory at
California State University, Los Angeles, based on
which, several efficient algorithms have been
developed to address the problems associated with
the real-time control of a large segmented optical
system.

Usability evaluation

Friendliness evaluation

Multi-level testing

In order to visualize the effect of the real-
time control algorithm, a 3-D animation system for
the segmented space telescope was developed.
Nevertheless, a well-designed GUI is essential to
allow the interaction between the users and the
control algorithms. Figure 2 shows the controller
implementation of the physical space telescope
testbed. The digital controller for panel shape control
employs one of several control algorithms such as
PID control, H-infinity control, Adaptive, and neural

network control, etc. Figure 3 is a conceptual block
diagram of the closed-loop system that represents the
controller implementation of the physical system in
Figure 2.

Fig. 2 - Real-time control implementation

Fig. 3 - Block diagram of the closed-loop control system

In the block diagram, G(s) is the transfer function of
a physical system. K(s) is the implemented control
algorithm. y, ym, d and n are the actual virtual
displacements, measured virtual displacements,
disturbance, and measurement noise respectively.
Based on [1], the state space realization of a
peripheral segment can be represented as

u
d
d
d

x
x
x

c
c

c

y
y
y

u
B

B
B

x
x
x

A
A

A

x
x
x

T

T

T

T

T

T

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

00
00
00

00
00
00

00
00
00

&

&

&

The above equations were derived from the transfer
function G(s) with the experimental measurements of
the matrices of coefficients based on the test-bed
movement.

In order to obtain a good user objects model,
an in-depth analysis of the control algorithms is
necessary. First, internal (transparent to the users)

and external (inputs and outputs) parameters of the
system should be distinguished. Second, decision
should be made through user requirement analysis
that which external parameters allow user interaction.
For example, in the control system represented by
above equation, (input, output, and
disturbance) are external parameters. Since one of the
user requirements is to view the effect of control
algorithm under various disturbances, d should be
adjustable by the users.

dyu ,,

3.2 Modularity in Engineering Software
Development
As described in section 2, the user objects model
should be further optimized. Due to the complexity of
engineering software and the huge cost associated
with maintenance and re-development, modularity is
one of the most importance criteria for optimization.

Figure 4 shows the modularized design of the
3-D animation system for space telescope [7].

 GUI

Fig. 4 - Modulization of the animation system

The four modules are described briefly as follows:

3.2.1 The Control Interface Module
The control interface module allows users to setup
control algorithms and application-specific input
disturbances. The control interface module defines
the formats of inputs, collects necessary data and
parameters from the user, and then sends them to the
control algorithm module. The purpose of this
module is to support a well-defined and user-friendly
interface. The other components shielded by the
interface can be kept intact to further ease the design
of the system.

3.2.2 The Control Implementation Module
Transparent to the users, the control implementation
module is does the major computation works. This
module receives the data or parameters from the
control interface module and computes results using a
control algorithm chosen by the user. The control
implementation module simulates all the control
devices of the telescope test-bed and generates
decentralized control in an iterative fashion.

3.2.3 The 3-D-Model Module
The OpenGL routines in the 3-D-model module
receive vertices and compose 3-D models using basic
geometric primitives such as points, lines and
polygons. The kinematics properties of 3-D model
also define in this module using OpenGL modeling
transformations. For keeping this module
independent from mathematical computing, we create
geometric primitives and define kinematics properties
only and leave input ports of transformations for
computing results of control implementation module.

3.2.4 The Viewer Module
The viewer module is a user interface for showing the
animation of 3-D telescope models. For observing the
animation, the viewer module should have basic
viewing functions such as zoom, rotation and pan.

In our design, the GUI is split into two
independent modules: the control interface module
and the viewer module. This design maximizes the
modularity of the software, and simplifies the GUI
which makes it easier to use.

3.3 Increase the User-friendliness in
Engineering Software
User friendliness is a serious concern in engineering
software design. A user may be confused when
presented with a large number of inputs and outputs.
If the GUI is designed without considering the user
friendliness, a user may not be able to use the
software without proper training. Thus, in our
proposed GUI design cycle, user friendliness
evaluation is applied iteratively to increase the
viability of the software.

Here an example is used to describe the
iterative process of GUI prototyping and user
friendliness evaluation. Figure 5 (a) shows the first
prototype of the control panel. There were several
problems associates with this design. First, it allows

users to select control algorithms using a group of
radio buttons. Apparently, this “short-sighted”
design did not consider that more control algorithms
might be added in the control implementation
module. A solution is to replace the radio buttons
with a drop-down box that can accommodate new
items easily. Second, the GUI shown in Figure 5-(a)
uses a static chart table of check boxes to allow users
to select the locations of disturbances. After the first
round user friendliness evaluation, the feeling is that
this design is too complicated to use and may cause
confusion to the users. To improve the GUI
prototype, a set of default value is set for the users
such that the user will not go through the complicated
selection procedure for each simulation. In addition,
the concept of dynamical design is incorporated here
to simplify the GUI. As shown in Figure 5-(b), a
show/hide button for the localization of the
disturbance to the panel and actuators is added for
dynamical display of the table of check boxes. In
default setting, the complicated table of check boxes
is not shown (as Figure 5(b)). Whenever the user
want to do the selection by themselves, they can click
on the show button and the chart table of check boxes
will appear on the extended bottom part in the control
panel, as shown in Figure 5(c). After selection, the
user can hide the table by pressing the view/hide
button again.

(a)

(b)

(c)
Fig. 5 - Illustration of GUI improvement by user-friendliness

evaluation

Although the revised GUI prototype is less
complicated after the first round user friendliness
evaluation, it is still not so easy to use for the users
without good knowledge of space telescope. Hence,
after the feedback of the second round user
friendliness evaluation, the prototype of control panel
is further modified. As shown in Figure 6, instead of
using a table of check box for location selection, the
new design allows users to directly click on the
desired location in the graph of telescope panels.
Apparently, this graph-based selection is more user-
friendly.

Fig. 6 - Revised control panel prototype after 2nd round user
friendliness evaluation

4 Implementation and Results
The GUI of the 3-D animation system of large-scale
space telescope is implemented using Microsoft
Foundation Classes (MFC). Due to the modularized

design, the GUI for interacting with control
algorithms and the GUI for viewing 3-D animation
are implemented separately. The window snapshots
for control panel (GUI for interacting with control
algorithms) are similar to the prototype in Figure 6;
the window snapshots of GUI for viewing animation
are displayed in Figure 7, in which a 3-D model of a
peripheral segment is shown on the viewing window
with three slider bars that control three actuators.
When slider bars are moved, the actuators drive the
panel to new position.

5 Conclusion
This paper presents the methodology of GUI design
for complicated engineering applications, with a
focus to optimize software modularity and user
friendliness. As an example, the design procedure of
a highly user friendly GUI of a 3-D animation
software for large-scale space segmented telescope is
used to demonstrate the effectiveness of our proposed
methodology. The GUI is implemented using Visual
C++ in windows platform. It is integrated with
OpenGL to realize the interface for viewing 3-D
animations.

Fig. 7 - GUI for viewing animation: slider bars control the

movement of the panel

6 Acknowledgments
This work was supported by NSF under Grant #
EEC0121026.

References:
[1] C. Phillips, Towards a task-based methodology

for designing GUIs, Int. Conf. On Software
Engineering: Education and Practice, Jan. 1996

[2] T. G. Sparkman, Lessons learned applying
software engineering principles to visual
programming language application development,
The 23rd Annual International Computer
Software and Applications Conference, Oct. 1999

[3] L., Charest, at el, A methodology for interfacing
open source SystemC with a third party software,
conf. On Design, Automation and Test in Europe,
March 2001

[4] D. Redmond-Pyle, Software development
methods and tools: some trends and issues,
Software Engineering Journal, Vol. 11, March
1996

[5] H. Boussalis, M. Mirmirani, Z. Wei,
Decentralization and PID Controller Design for
Large-Spaceborn Telescopes, IASTED
International Conference on Application
Modeling, Simulation and Optimization,
Pittsburgh, 1995.

[6] H. Boussalis, M. Raghavender, The Application
of H-infinity Control Law to a Decentralized
Segmented Reflector, IASTED/SCS Conf.,
Australia, 1996.

[7] Y. Chen, C. Liu, H. Boussalis, et al., 3-D
Animation for a Segmented Space Reflector
Telescope, the 7th World Multiconference on
Systemics, Cybernetics and Informatics (SCI
2003), Orlando, USA, July 27-30, 2003.

	1 Introduction
	Recent developments in software architecture present new opp
	Therefore, users without background knowledge may get lost w
	To illustrate our proposed methodology, the design procedure
	3.2.1 The Control Interface Module
	3.2.2 The Control Implementation Module
	3.2.3 The 3-D-Model Module

