
 A Coordination Model for Ubiquitous Computing

AMINE TAFAT-BOUZID, MICHELE COURANT, BEAT HIRSBRUNNER
Department of Informatics

University of Fribourg
Chemin du Musée 3 CH 1700 Fribourg

SWITZERLAND

Abstract: -This paper presents a coordination model called XCM, intended to conceptualise coordination
within ubiquitous computing, and one instantiation of this model called UCM. The constraints brought up to
coordination by ubiquitous computing are the need to face immersion within physical environments, a very
strong heterogeneity of software and hardware components, and a very high dynamicity and context-
sensitivity of applications. XCM is an generic model organized around a few abstract concepts (entity,
environment, social law and port) addressing coordination basically in terms of proactive and reactive
contextual behaviours. The UCM instantiation allows us to show how XCM concepts can be applied, and to
discuss the expression power gained through XCM high level of abstraction.

Key-Words: Distributed computing, Ubiquitous systems, Coordination, Service, Composition.

1 Introduction
The ubiquitous computing field denotes a new
dimension of computing induced by the constant
miniaturization of electronic components, entailing
their massive spreading in everyday objects,
combined with the generalization of mobile
communication over professional and personal
environments.
For software design and management, the
characteristics of this domain are: (1) immersion of
computing resources in the physical world and
mobility (2) high heterogeneity of devices and
software components, and (3) very high
dynamicity and context-sensitiveness of
applications. From a coordination perspective, this
moves the focus on to the context-sensitiveness of
the manipulated entities, both from reactive and
proactive points of view, and on to the mobility
management. For tackling this problem, which
marks a complexity increase in interoperability
management regarding classical computing, our
proposal is to make a step forward towards
genericity and abstraction in software component
coordination.

The here presented work is then a generic
coordination model called XCM1 built around a few
abstract concepts allowing a homogeneous
management of heterogeneous context-sensitive
and potentially mobile interacting entities. Its
contribution consists namely in an explicit
management of the environment, and a very
flexible approach of communication.
The present paper is organized as follows. Section
2, describes the abstract model XCM, while section
3 illustrates the introduced concepts through a
paradigmatic example. Section 4 presents an
instantiation of XCM called UCM, which is part of a
Ubiquitous Computing middleware. This allows us
to detail how abstract concepts may be interpreted
within a given framework, and which expression
power is made accessible by the high level of
abstraction of XCM. The conclusion summarizes
the main features of the model, and the main
arguments in favour of the solution proposed for
encompassing ubiquitous computing requirements
within coordination models.

1 XCM for X Coordination Model

2 X Coordination Model (XCM)
XCM is a coordination model intended to support
the specificity of a ubiquitous application. Its
essential characteristics are:
• Genericity, which is obtained through a high

level of abstraction based on the notion of
entity –and agent–;

• A capacity to handle the dynamics of
ubiquitous execution environments –either
they are physical or virtual–, and the context-
sensitivity of applications, thanks to the
explicit notion of environment;

• A homogeneous management of the contextual
dynamics of components by the unique
formalism of social law attached to the notion
of environment, and a mechanism of port
allowing entities to interact both very flexibly
and powerfully.

As a coordination model, XCM comes within P.
Ciancarini’s approach [1], and the vision of
coordination proposed by T. Malone [2], while
prolonging an experience of coordination platform
development we had previously carried on [3].
Within this approach, it however adds on a
theoretical component inspired by « autopoiesis »
i.e. the modelling of living systems elaborated by
F. Varela and H. Maturana [4]. The interest of this
heritage is double. First, it allows profiting from
the specificity of the physical space for modelling
mechanisms like the construction and the
maintenance of organism frontiers. Second, it
introduces a fundamental distinction between
organisation (domain of control expression) and
structure (domain of entity existence).

2.1 Entity and agent

Everything is an entity in XCM. An entity ei is
defined by its structure, which is expressed as a
recursive composition of entities ei1…ein –called
components of ei– and by its organisation.
An entity, whose structure can not be decomposed,
is called atomic; it denotes a pre-constructed
element of the system. Oppositely, the highest-
level entity recursively containing all the other
entities of the system, is called the universe of the
system.
The organisation of an entity ei specifies the rules,
which are governing the assembling of components
in the structure, and their dynamics. It then

characterizes the domain of the interactions, which
are applying to ei. It is expressed as a set of rules
called by extension1 the social laws of ei.

2.2 Environment and social laws

At a given moment of the existence of the system,
every entity ei –except the universe– therefore
exists as a component of another entity e. This
entity, which contains it is called its environment.
Thanks to its social laws, the environment e
prescribes the structure and the dynamics of ei.
These ones determine in particular the interactions
between ei and e, as well as between ei and the ej –
i.e. they rule out the assembling and disassembling
of ei with the other components of e–. These laws
also govern the input of ei into e, and the output of
ei from e. Let us for example consider the case of
an antenna: its environment is its coverage area,
and the entering (respectively leaving) of mobile
devices into (respectively from) it is controlled by
its social laws.
When its social laws confer to an entity the
capacity to initiate operations modifying its own
structure (internal autonomy) or its relations with
its environment (external autonomy), this entity is
commonly called an agent2.
An entity can be tight to several environments.
However, due to the enrooting of «ubiquitous»
entities in the physical space, the Pauli’s principle
applies, this means it can be active at the most in
one environment. Apart from this environment, it
can be at the most «virtually» or «sensorially»
present in the other environments (cf. § 2.3).
The notion of environment then encompasses
within a single concept all the semantic diversity
of the ubiquitous application components: a social
semantics, inherited from coordination in general,
and a physical semantics of entities, which
becomes essential as soon as the entities are
evolving onto –for example mobile– devices
subjected to the laws of the physical space.

1 i.e. independently from the fact that they are governing a
physical, or a virtual space.
2 We do not develop here in formal terms the notion of
autonomy, which is relying behind this terminological
distinction. Note only that “agent” refers to a certain
behavioural indeterminism of the entity when it is perceived
by another entity. The term “agent” is then used here as a
shortcut, intended to reveal the heterogeneity supported by
XCM. For more details on the theoretical underlying questions,
see our previous article [5].

By social semantics, we mean for example the
capacity of an entity to belong to a social structure,
such as a group of entities it is interacting with
(typically a person belongs to a group of persons
with which it is presently in meeting). The model
supports a multiple organisational linking of an
entity, the equivalent of multiple heritage in object
systems (typically a person is linked to the football
club it is member of, but also and mainly to the
company in the name of which it is predominantly
acting during the meeting).
By physical semantics, we namely mean the
impossibility for an agent to act in two
environments at the same time, or to be
«teleported» from one environment to another1.
An entity can however remain « aware of » another
environment than the one in which it is active. As
we will see further, it can open some specific
communication channels in this environment, thus
implementing a remote perception mechanism. It
can also create dedicated entities and « send »
them to others environments for achieving certain
tasks. These entities may act as « avatars » of
itself, thus providing a mean for an entity to be
« virtually» present out of its basic environment.
However, entity and avatar remain distinct entities.
Finally, the same way the «autopoietic dynamics»
rules in Varela & Maturana include meta-control
and self-control, social laws may also govern the
structure and the organisation visibility along the
entangled entity and environment hierarchies.

2.3 Ports

A port is a special type of entity dedicated to
communication between entities. A port p has the
specificity to be generally active while being
coupled to an agent ai, which is the port’s master.
The coupling between ai and p is obtained through
a special type of composition called interface,
which is therefore specified by social laws (of p
and a, and of their common environment). These
ones define how the port is assembled to its

1 In addition the already cited Pauli’s principle, the usual laws
of physics are supposed valid, quantum relativist physics being
excluded. The Heisenberg’s uncertainty principle (present/not
present) hence is eliminated from the model, as well as the
possibility of instantaneous transfer from one environment to
another (teleportation), which would violate the connexity
constraints between environments dictated by the space
topology.

master, for example maintained versus not
maintained by master’s movement, linked by
ownership, or by usage, etc. They may also define
the modalities of using the port (in terms of
communication protocol, of bandwidth, etc). For
answering ubiquitous computing needs, we also
distinguish removable and irremovable ports.

Example: For a human agent, a mobile
phone is a removable port, whereas an
audio-prosthesis is irremovable. A pair of
glasses is somewhere in between, obeying to
coupling laws, that are stronger than the
phone’s ones, but looser than the prosthesis
ones.

An agent a may be coupled to several ports. It can
acquire ports, and dissociate itself from ports
dynamically. The agent-port assembling and
disassembling procedures are triggered either
explicitly, by an initiative of a, or implicitly by the
entrance of a into a new environment, or by the
environment dynamics, which may for example
welcome new ports, which are automatically
coupled to a.
The notion of port is then a fundamental
mechanism, which confers to XCM the ability to
coordinate context-sensitive entities. This context-
awareness is the central characteristics of
application components in ubiquitous computing.

3 Ubiquitous Coordination Model
(UCM)

While the previous section has introduced XCM, a
generic coordination model oriented towards
ubiquitous computing, we will now describe an
instantiation of this model called Ubiquitous
Coordination Model (UCM). UCM is designed as a
coordination layer working over a service-oriented
layer for forming a ubiquitous computing
middleware called UbiDev [6][8].

3.1 UbiDev Middleware

UbiDev is a lightweight middleware aiming at
ubiquitous computing scenario handling, and
providing at application level a host independent
interface of the underlying service-based system

[6][7][8]. It takes place in classical layer
architecture, organized in four levels:
The physical layer manages the resources available
in the application environment, and provides a
uniform access protocol to these resources.
The service layer is responsible for the service
management within the application environment. It
provides service descriptions called capsules to the
coordination layer, in order to hide heterogeneity
of components at the underlying level. A capsule
is an instantiated service, which is wrapped in a
dedicated execution environment. It is an action,
which takes a resource as an input, and produces a
resource as an output.
The coordination layer is in charge of coordinating
services according to context-dependent rules
governing their composition and interactions, i.e.
their coupling, mobility, and communication.
At the application layer, we then find the whole
structure in which homogeneous entities
encapsulating services are coordinated.

Fig.2: UbiDev description of a ubiquitous
communicator

3.2 A UbiDev example

In order to get more familiar with the UbiDev
context, we will now consider a quite trivial
example of «ubiquitous communicator» defined as
a broadcast messaging service tool in UbiDev (see
figure 2). At the service layer, UbiDev provides
basic services like ascii_to_wav, ascii_to_textual,
wav_to_phone, wav_to_speaker (see Service layer
in figure2). Suppose now that in the framework of

a broadcasting application, a user wishes to
execute the message_to_display service (see
Application layer in figure 2). The execution of
this request implies to coordinate the available
basic services. In this case, coordination consists in
a service composition, which aims to find out an
execution path for the requested service, starting
from the basic services. Such a composition is
governed by the social rules attached to the user’s
environment.

3.3 UCM

The UCM model has been designed as an
instantiation of XCM for the UbiDev middleware.
This is how the generic concepts of XCM may be
reinterpreted in UCM:
• Entity / agent: these universal concepts in

XCM naturally correspond to the basic
notion of capsule provided as interface by
the service layer in UbiDev. Capsules are
XCM atomic entities.

• Environment: it is an execution
environment, like the atomic entity’s one
corresponding to capsules, or the user
context.

• Port: it is a capsule input/output port in
UbiDev.

• Social laws: they are matching rules
specifying how to combine capsules in
UbiDev, in order to form higher level
structures through service composition.

For the «ubiquitous communicator» example
considered in section 4.1, this would then give us
three UCM entities: ascii_to_wav, wav_to_voice,
voice_to_phone, with the ports: ascii_in, wav_in
and out_wav, voice_in and out_voice, and
out_phone. The environment of these entities is the
user’s context, and its social rules specify that
entity composition is obtained through coupling of
same type in and out ports (cf figure 3).

3.4 Implementation
The UCM instantiation has been developed within
the UbiDev platform for validating the XCM model
trought WSDL, SOAP, UDDI. It allowed us to test
the expression power of the XCM generic concepts,
and especially how the explicit management of the
environment can be used for service composition.
In addition to the methodological benefits brought
up by a higher level of abstraction regarding

system design, the interest of XCM –and of having
derived UCM from XCM– could however not be
shown through the trivial example previously
selected for didactic reasons. This interest is
actually a significant increase in interoperability
obtained through software composition and
component mobility management, allowing to face
the heterogeneous environments, the variable
conditions, and the mobility imposed by ubiquitous
computing.

Fig.3: UCM, coordination in UbiDev.

4 Conclusion
A model of generic coordination oriented towards
ubiquitous computing called XCM has been
developed, and then instantiated within the
ubiquitous computing dedicated environment
UbiDev.
Through some abstract concepts –entity,
environment, social laws and port– XCM takes
place in a layer architecture allowing to apprehend
in a conceptually simple and homogeneous way
the diversity and the dynamics of ubiquitous
application universes. It integrates in particular the
immersion of the application components within
the physical universe, and the context-
sensitiveness required by the ubiquitous
applications. The abstract model for which a
coordination methodology can now be developed
constitutes a generic middleware suitable for
relieving the applications from the coordination
tasks resulting from their ubiquitous character,
while remaining open downwards (towards the
service level and the physical level) and upwards
(towards the application level). So doing, it
provides interoperability regarding devices,
software components, and platforms, together with
full control and context-awareness at the
application level

References

[1] P. Ciancarini, F. Arbab and C. Hankin:
Coordination languages for parallel programming.
Parallel Computing, 24 (7):989-1004, 1998.
[2] T.W. Malone and K. Crowston: The
interdisciplinary Study of Coordination. ACM
Computing Surveys, 26 (1): 87-119, March 1994.
[3] M. Schumacher: Objective Coordination in
Multi Agent Systems Engineering. Springer
Verlag. LNAI 2039, 2001. (also published as PhD
Thesis, Dept of Informatics, University of
Fribourg, Suisse).
[4] F. Varela and H. Maturana. Autopoiesis and
Cognition: The realization of the Living. Boston
Studies in the Philosophy of Science in Cohen,
Robert S., and Marx W. Wartofsky (eds.) , Vol. 42,
Dordecht (Holland): D. Reidel Publishing Co.,
1980.
[5] M. Courant, B. Hirsbrunner and K. Stoffel:
Managing Entities for an Autonomous Behaviour.
In Nadia Magnenat Thalmann and Daniel
Thalmann (eds): “Artificial Life and Virtual
Reality”, John Wiley & Sons, 1994, 83-95.
[6] S. Maffioletti and B. Hirsbrunner. UbiDev: an
homogeneous environment for ubiquitous
interactive devices. In Short Paper in Pervasive
2002 - International Conference on Pervasive
Computing, Zurich, Switzerland, August 2002.
[7] S. Schubiger. Automatic Software
Configuration, PhD Thesis, Dept of Informatics,
Univ. of Fribourg, Switzerland.
[8] S.Maffioletti, B. Hirsbrunner. Towards a
Homogeneous Coordination Space for Ubiquitous
Interacting Entities. Submitted to Smart Object
Conference (SOC’03), Grenoble, France, May 15-
17, 2003.

