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Abstract : — Chaotic digital transmissions have recently emerged as a way to improve the security and privacy of
digital transmissions. In this paper, we propose a new approach to estimate the transmitted symbols on the receiver
side. This approach, that we call “Symbolic Matching”, consists in matching vectors built from the received signal
with a symbolic model of the chaotic oscillator trajectories. Simulation results are also provided and they show
that low error rates are obtained.
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1 Introduction

In the last few years, chaos-based modulation tech-
niques have emerged as an interesting alternative to
standard spread spectrum techniques [5][7][9]. Indeed,
chaotic transmissions provide many advantages, among
which we can mention:

• Their wideband nature which provides robustness
against frequency selective fading in multipath chan-
nels and against narrowband interference.

• The intricate dynamic of chaos which significantly
increases the privacy of communications in compari-
son with standard pseudo-noise codes used in spread-
spectrum. Without knowledge about the chaotic os-
cillator on which the transmission is based, it is ex-
tremely difficult for the unauthorized user aware of
the transmission to access the information.

Indeed, standard spread spectrum transmissions are
not so secure. For instance, in [3][4] we proposed ap-
proaches for interception of standard spread spectrum
transmissions. On the contrary, no efficient approach is
known today for interception of chaotic signals.
Chaos can be used in multiple ways in a digital com-

munication system. In this paper we will focus on one
of the most efficient technique, which is called CD3S
(Chaotic Direct-Sequence Spread Spectrum) [6]. In or-
der to get reliable communication for realistic propaga-
tion conditions, a robust synchronization procedure and
gain control has to be developed at the receiver side.
Readers interested by these aspects can refer to our pre-
vious papers[1][2], in which we report experiments on

real-world application and signals in the context of a
chaotic underwater acoustic network.
In this paper, we assume synchronization and gain

control done and we focus on the estimation of the
transmitted symbols. A simple and efficient approach
was proposed by Milanovic et al. [8]. In the present pa-
per, we propose a new approach, which we call “Sym-
bolic Matching”. From the received signal, we build
N -dimensional vectors composed of N successive re-
ceived samples, and we match these vectors with a sym-
bolic model. A criterion, based on the result of the
matching, is then used to estimate the transmitted sym-
bols. Simulation results show that this approach pro-
vides a lower error rate than the approach described in
[8].
The paper is organized as follows. In Section 2, we

recall the principle of CD3S chaotic digital transmis-
sions. Then, in Section 3, the approach described in
[8] is summarized. Our “Symbolic Matching” method
is explained in Section 4, and illustrated by simulation
results in Section 5. Finally, a conclusion is drawn in
Section 6.

2 Principle of CD3S chaotic digital
transmissions

2.1 Overview

A chaotic oscillator is a system which is extremely de-
pendent on the initial conditions. If we consider two
identical chaotic oscillators, an extremely small differ-
ence of their initial state causes the signals they gener-



ate to quickly diverge. A chaotic signal is therefore un-
predictable in the long term. An n-dimensional chaotic
system can be described by state space equations:

ck = g (ck−1) (1)

where ck ∈ Rm is called the state, and nonlinear func-
tion g maps state ck−1 to the next state ck .
A chaotic dynamical system is one that is determin-

istic but appears not to be so, as a consequence to its
extreme sensitivity to initial conditions. This can be ob-
served even for very simple (one dimensional discrete
time) chaotic dynamical system. In this paper, for clar-
ity purpose, we will focus on one dimensional discrete
time chaotic dynamical system (another reason is that
most chaotic oscillators in use in actual transmission ap-
plications are one dimensional).
In most chaotic transmission systems, a BPSK (Bi-

nary Phase Shift Keying) is used, hence the symbols an
belong to {−1,+1}. If we note P the spreading factor
(i.e. the number of chaotic samples per symbol), the
transmitted signal is:

xk = a k/P ck (2)

where k/P stands for k/P rounded to the nearest
integer towards minus infinity. The received signal is
then:

yk = xk + nk (3)

where nk stands for the noise. Usually, the nonlinear
function g is such that:

g (−x) = g (x) (4)

Let us note ga (x) = ag(x). We can write:

xk = a k/P ck (5)
= a k/P g (ck−1) (6)
= a k/P g a k/P ck−1 (7)
= a k/P g (xk−1) (8)
= ga k/P (xk−1) (9)

This result will be used for estimation of the symbol.

2.2 A simple example of chaotic oscillator

Let us consider the nonlinear function below:

g (x) = 1− 2x2 (10)

This map generates intricate chaotic trajectories. The
corresponding state equation is:

ck = 1− 2c2k−1 (11)

Figure 1 illustrates two chaotic sequences: a low
cross-correlation is clearly seen, although the initial
states for the two sequences differ only by 10−3.
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Figure 1: Two chaotic sequences generated by the map
g(x) = 1− x2. The initial states differ only by 10−3.

3 Milanovic receiver

3.1 Principle

In [8], Milanovic et al. proposed a simple and efficient
chaotic receiver. Synchronization is assumed, hence we
know where begins and ends each block of P samples
corresponding to a symbol. For simplicity, let us ex-
plain the approach for the estimation of the first sym-
bol (generalization to other symbols is trivial, since it
only requires an offset on index k). The index k/P of
a k/P is also omitted.
First, from the received samples {yk}, the values be-

low are computed:

yk = g (yk−1) (12)

for k ∈ {1, 2, . . . , P − 1}. Then, the following crite-
rion is computed:

C =
P−1

k=1
yk yk (13)

If C < 0 then the estimated symbol is a = −1 else it
is a = +1.



3.2 Justification

If there is no noise, we have yk = xk and
yk = g (yk−1) (14)
= g (xk−1) (15)

Therefore:

C =
P−1

k=1
yk yk (16)

=
P−1

k=1
g (xk−1) xk (17)

=
P−1

k=1
g (xk−1) ag (xk−1) (18)

= a
P−1

k=1
g2 (xk−1) (19)

Since the sum is positive, the sign of C is equal to the
sign of the transmitted symbol a.

4 Proposed “Symbolic Matching” re-
ceiver

4.1 Overview

Let us consider P successive received samples corre-
sponding to a symbol. For simplicity, as in the previous
Section, let us explain the approach for the estimation
of the first symbol (generalization to other symbols is
trivial, since it only requires an offset on index k). The
index k/P of a k/P is also omitted.
Let us consider N successive received samples (N

P ) and note:

yk = yk, yk+1, ..., yk+N−1
T (20)

and define a symbolic vector za(x):

za(x) = x, ga(x), g(2)a (x), . . . , g
(N−1)
a (x) T (21)

where x is a symbolic variable, a ∈ {−1,+1}, and
g(n)(x) is defined as:

g(n)(x) = g(g(. . . (g
n times

(x)))) (22)

za(x) is a symbolic model of chaotic trajectories.
When x varies, za(x) moves along a one-dimensional
curve into an N -dimensional vector space.
Let us compute:

xa,k = argminx yk − za(x) 2 (23)

xa,k is the value of x which moves za(x) as close as
possible to yk (hence, which provides the best corre-
spondence between the symbolic model and the actual
received data). Details about this computation are given
in next subsection.
Then, compute the vector below:

xa,k = za xa,k (24)

that is:

xa,k = xa,k, ga(xa,k), g(2)a (xa,k), . . . , g
(N−1)
a (xa,k)

T

(25)

The criterion below is computed for a ∈ {−1,+1}:

Ca =
P−N

k=0
yk − xa,k 2 (26)

This criterion represents the sum of the distances be-
tween vectors yk built from the received signal and their
closest neighbors on the symbolic model.
Finally, if C−1 < C+1 then the estimated symbol is

a = −1 else it is a = +1. The reason is obvious: if
C−1 < C+1, this means that the symbolic model corre-
sponding to a = −1 is closer to the received signal than
the symbolic model corresponding to a = +1.

4.2 Computation of xa,k
Since the problem is similar whichever the values of k
and a are, these indexes are omitted below. We have:

x = argmin
x

y− z(x) 2 (27)

= argmin
x

N−1

n=0
yn − g(n)(x) 2 (28)

Let us note

d(x) = y− z(x) 2 (29)

=
N−1

n=0
yn − g(n)(x) 2 (30)

Its derivative is:

d (x) = 2
N−1

n=0
g(n)(x)− yn ∂g

(n)

∂x
(x) (31)



Functions d (x) and d (x) can be easily precom-
puted using symbolic computation software, such as
Maple or Matlab symbolic toolbox. For instance, when
g (x) = 1− 2x2, d(x) and d (x) are polynomials.
The numerical value of x is then obtained by solving

d (x) = 0 (32)

and keeping the solution which produces the lowest
value of d(x) when there is more than one root. This
solution is xa,k .

5 Simulation Results

In this section, we show simulation results obtained
with the map g(x) = 1− 2x2.
Let us take N = 3 and consider a signal to noise ra-

tio equal to 15dB on the receiver side. Figure 2 shows
the symbolic models z+1(x) and z−1(x), which are 1D
curves in the 3D space. Vectors yk = yk, yk+1, yk+2

T ,
represented by symbols “+”, and built from a block of
the received signal corresponding to a transmitted sym-
bol a = +1, are shown. It is clear that these vectors are
(on average) closer to the symbolic model z+1(x) than
to z−1(x). Hence, since criterion Ca represents the sum
of the distances between the vectors yk and the symbolic
model za(x), we will have C+1 < C−1 and the receiver
will (correctly) estimate that the transmitted symbol is
+1.
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Figure 2: Representation of vectors yk and symbolic
models z+1(x) and z−1(x) in a 3-dimensional space
(N = 3). The map is g(x) = 1 − 2x2 and the signal
to noise ratio is SN R = 15dB.

If the signal to noise ratio on the receiver side is only
3dB, things are less obvious, as shown on figure 3, and

estimation errors may occur. However, on average, vec-
tors yk are closer to the right model than to the wrong
one.
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Figure 3: Representation of vectors yk and symbolic
models z+1(x) and z−1(x) in a 3-dimensional space
(N = 3). The map is g(x) = 1 − 2x2 and the signal
to noise ratio is SN R = 3dB.

The table below shows simulation results using a
CD3S transmission system with a spreading factor P =
32. On the receiver side, the signal to noise ratio was
SN R = 3dB and 104 symbols were transmitted (i.e.
32×104 signal samples were received). The table shows
the number of symbol errors with respect to the method
used for symbol estimation.

method nb. errors
Milanovic et al. 290
Symbolic Matching (N = 2) 179
Symbolic Matching (N = 3) 151
Symbolic Matching (N = 4) 148

The table shows that Symbolic Matching provides a
lower error rate than Milanovic et al. approach. How-
ever, except for N = 2, the Symbolic Matching requires
more computational power. Hence, due to its simplicity,
Milanovic et al. approach is a very interesting method
when low computational power is available, while when
reasonable computational power is available Symbolic
Matching may be preferred.

6 Conclusion

In this paper, we have proposed a new approach for
symbol estimation in a digital chaotic transmission re-
ceiver. The originality of the approach is to match



vectors built from the received signal with a symbolic
model of the chaotic oscillator trajectories. Experimen-
tal results show that good error rates are obtained. Fur-
ther work will include a more theoretical study of the
performances of this receiver.
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