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Abstract: The paper primarily deals with exposing a simple statistical equation to analyse a system in dynamic equilibrium or in steady state. Though such a system in equilibrium can be studied by detailed analysis of physical situation and its microscopic behavior, yet the proposed statistical equation, which basically relates number density in a state to rate of exchange, makes such analysis incredibly simpler and easier. Despite of the remarkable simplicity of the equation, it finds its application in diverse field of study ranging from Relativity to insect behavior. The equation not only simplifies the analysis of behavior of a system, but also allows mathematical study of systems that were earlier regarded as   completely chaotic. The paper reveals many applications of the equation in the field of science and technology of which notable ones are reinterpretation of magnetic force as electrical effect, the rate of attaining a given momentum state by molecules in Maxwell-Boltzmann distribution, average life time of a newly created molecule etc..    
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1.
Introduction
Dynamic equilibrium [1] is one of the most common and interesting situation in nature. It occurs when the no visible changes are taking place in a system. Such condition arises when the rate of appearance / creation of a quantity in a given state just equals the rate of disappearance/ destruction of a quantity from that state. Here, the state may correspond to any situation or condition of possessing a definite energy, momentum, direction etc.; and entity may correspond to any thing like population, current, photons, atoms, galaxies etc..

An undissolvable extra sugar lying in a container of water is an interesting example to explain dynamic equilibrium. When sugar beyond the capacity of dissolution of a limited quantity of water is added into it, some amount of sugar seems to lie there statically, but actually it’s in the state of dynamic equilibrium – i.e., it’s a critical situation in which the seemingly lying sugar is constantly dissolving, but the effect of continuous dissolution is neutralized by the continuous deposition of the sugar. 

Similarly if there is a gas in a given chamber then, according the Maxwell-Boltzmann Distribution a set number of gas molecule will be moving with a given speed at a given temperature. But not the same molecules will always be moving with that particular speed. Continuously, molecules moving with different speeds will be attaining that particular velocity and continuously exactly that many number of molecules will be leaving that speed range to gain some other, maintaining the equilibrium. Analysis of such system in dynamic equilibrium is of great importance in field of science and technology. 

This paper primarily deals with presenting a statistical equation to determine the rate at which the change of state is taking place. With reference to above example, though we have got theory to determine the number of molecules moving with a particular speed, but the rate at which molecules are attaining that state is not known. This paper, very precisely deals with very simple equation to determine the rate at which entities are attaining / departing from a given state and such similar systems. 

2. Statistical Determination of Density in a State
Originally the statistical equation was derived unintentionally while analyzing a problem of Ballistics. However, more mathematical and logical derivation is given below. 
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Equilibrium is a situation when the rate of arrival / creation of any entity in a state just equals the rate of departure / destruction of that entity from that state. Let there be two states α and β (might be two electronic levels exchanging electron) exchanging the entities with rate rα(β and rβ(α. If the situation is in equilibrium, then obviously, rα(β = rβ(α. Let nα and nβ be the number density in states α and β. 

Then,     nα = rβ(α. (s Let and nβ = rα(β.(β
Where, (s and (β are the average time for which the particles stay in state α and β, respectively.  

Since the two states are in equilibrium, both the sides of rates of exchange are equal, i.e., rα(β = rβ(α. A more general equation of number of entities in any state ‘s’, when the rate of arrival / departure (or creation / destruction) is rE; and if each entity stays in state ‘s’ for time (s, then the density is given by the equation: 

n =  rE .(s
Though there are a number of methods of concluding this equation, one is given below:

Let there be a state which is empty at time t = 0. Let the entities start arriving into it with rate rE, and each entity depart from that state after average time (s. Then since the arrival of first entity there will be no departure till time (s. By the time first departure takes place (or rather equilibrium is maintained) the number of entities in the state will be rE.(s. 


After the first departure the number density will not change in time, as equilibrium is now maintained. Thus it can be concluded that for any state in which the entities are arriving at rate rE, and (s is the average time for which entities remain in the state, then number density n for that state can be given by: 

n =  rE.(s
The above equation (henceforth called state density equation),in differential form, can be rewritten as: 

n = (dn/dt).(s
Where n can take any form, not just of number density. For different system ‘n’ and ‘dn/dt’ will be modified accordingly; for example they can take the form of population and birth-rate, or it can take the form of energy density and rate of emission, or concentration of chemical and rate of reaction. In the following lines we will not only see various applications of the equation, but also various forms and versions of it.    

3. 
Applications of the equation

Though the equation is exceedingly simple, yet it has overwhelming range of application – demography, chemistry, economics, signal processing etc. to name a few. Some of the interesting applications of the equation are given below: 

3.1
Demographic analysis: Let there be a country whose growth rate is zero, i.e., the population is in equilibrium (a usual observation in highly developed or highly under developed country). Zero growth rate or equilibrium of population corresponds to equality of birth rate and death rate. If, on an average, a person lives for time (s (technically also called average life expectancy), then using the state density equation the population of a country can be given by:

n = rE.(s   = birth rate. average life expectancy = death rate. average life expectancy

Thus, using the state density equation we can determine the birth rate / death rate if we know the population or average life expectancy. 

3.2 
Energy possessed by pure reflector: Let there be an ideal reflector (i.e., reflectance =1). Let a radiation beam is falling on it at the rate of ‘S’ (Pyonting vector [2]) Joule per second per squared meter. That means per second ‘S’ Joule of energy is falling on per squared meter of reflector; and being a perfect reflector the same amount of energy is being reflected. Since the energy falling on the reflector is equal to the reflected energy, therefore ‘energy in the reflector’ is in equilibrium, and the state density equation can be applied here.  

Though common sense says there is no radiation energy in the reflector. But energy ‘E’ is there until the process of reflection is going on. It’s very easy to determine the surface energy on the reflector using the state density equation. By state density equation we know that n = rE.(s or n = (dn/dt) (s 

In the above equation the number density can be replaced by energy density. That is, E = (dE/dt).(s. Here dE/dt = S. Thus, the amount of energy lying on the surface of the reflector is E = S.(s – (2). Usually the reflection process takes 10-8 seconds to occur. Thus, we can calculate the approximate energy on the surface of the reflector. 

Beside this the precise value of time of reflection can also be calculated using the equation. This additional energy (2) in the reflector will obviously increase the temperature of the reflector. Energy due to the increment of temperature is given by the formula E= mC(T [3] -(3); where C is specific heat of the body and m is the mass per unit surface. Equating equation (2) and (3) we get:    (s = m C (T/S.

Since, S, m, C, (T are measurable, thus by using modified version of state density equation the precise value of time of reflection can be determined.

3.3
Number of projectiles at various potentials: Suppose the projectiles are being fired at constant rate ‘r’, with speed ‘v’ inclined to a constant angle ‘(’; then find the number of projectiles between height h1 and h2 (this was the actual problem, the analysis of which led to the derivation of state density equation). 

Though, this problem can be solved by the detailed application of derived mathematical equations, but more elegant calculation using the state density equation is given below. Since, the particles are being projected at the constant rate, there fore the particles entering the height h1 are equal to the particles leaving the from height h2; hence the system is in equilibrium, and state density equation can be applied here. 

By state density equation, the particles between the two states h1 and h2, is product of the rate r of particle entering height h1 / leaving height h2 (as both are same) and time ‘(’ for which the particles stay in between state h2 and h2.Applying the state density equation, number of particle, n in between height h1 and height h2 = r.(. 

In this case, ( is the difference between the time taken to reach height h1(t1) and the time taken to reach height h2(t2). By using the elementary equations of projectile motion [4], the value of ( = t1 ~ t2 = | [ (vcos()2 – 2g h1 ]1/2 - [ (vcos()2 – 2g h2 ]1/2 | /g. Now, the projectiles are entering / departing from the mentioned state at the rate of ‘r’, therefore, the number of projectiles in between the height h1 and height h2 are: 

                        n = 2r. | [ (vcos()2 – 2g h1 ]1/2 - [ (vcos()2 – 2g h2 ]1/2 | /g

3.4
Rotating coins: Suppose identical coins of moment of inertia ‘I’, are being rotated on a table at the rate ‘r’ coins per second. After some time the system will be in equilibrium; i.e., the number of coins newly rotated will be equal to the coins attaining speed zero (i.e., falling down). Let the initial angular velocity is ‘(0’. Due to friction of the table, let the coins get retarded at the uniform rate ‘(’. Now on table there are number coins rotating with various speeds. If it’s required to determine the number of coins in between momentum / energy state of I(1 / ½I(12 and I(2 / ½I(22 , then it can be very elegantly done with the help of state density equation. By elementary equation of dynamics [5] it can be calculated that time for which the coins will be in given state will be ( =  ((1 ~ (2) / (. By state density equation, number of coins in the mentioned state are: n = r. ((1 ~ (2)/ (. This concept can be utilized to study the behavior of spinnig electrons etc..

III. 5
Entomological Study: One of the most remarkable feature of the equation is that one can very easily study and analyse the situations which are seemingly chaotic. For example, number of grass-hoppers at various heights above the ground or number of whales at various depths while moving in a school. 

Suppose there is a ground filled with the grasshoppers (to simplify the case with equally able bodies and of equal age). In this situation, some of them will be on ground preparing to hop, while some of them will be in air preparing to fall. If the density of grasshoppers in air or land is not drastically changing, then the number of grasshoppers in air (na) and number of grasshoppers on land (ng) can be regarded as in approximate equilibrium. Since, they are in approximate equilibrium, the rate at which grasshoppers are falling on land is equal to the rate at which they are leaping up are approximately equal (= r). Applying state-density equation: na = r.( a      and      ng    = r. ( g.

Where, (a and ( g are the average time for which the grasshopper stay in air and land respectively. By elementary equations of ballistics [4], it can be derived that time taken by a projectile launched with speed ‘v’ at an angle ‘(’ is given by T = 2u sin(/g. Since, jumping grasshoppers too are like projectiles, thus, (a = 2u sin(/g. Now suppose, the grasshoppers are jumping in all possible directions with equal probability (just to idealize the case), average (a is <(a > = ((ad(/(d( = 4u/(g. Now one can determine the ratio of density of grasshoppers in air and on ground by diving equation (4) with (5): na / ng = ( a/ ( g. Putting the value of ( a: 

na / ng = 4u/(g( g.

Here, ( g is experimentally determinable.

In fact, many more interesting properties regarding the insect behavior can be determined, like average time between successive hops, density at various heights etc.. These aspects can be studied at various temperatures and pressures to understand the insect behavior.     

3. 6 
Average life time of a newly created molecule: 
Let there be a reaction in equilibrium, with chemicals A and B combining to give C. i.e., 


                        
 
A + B  
       

 C
The rate of forward reaction is given by: rf = Kf [A].[B], where Kf is rate constant [1,6] and [A] is concentration of chemical A. While the rate of backward reaction is given by: rb = Kb [C]. Since the reaction is in equilibrium, the rate of forward reaction is equal to the rate of backward reaction, i.e., rf = rb (=rE).     

Now if it’s required to determine the average life of a newly created molecule in a reaction, it can be determined using the state density equation n = rE.(. Suppose we have to determine the average lifetime of molecule C after its creation. The concentration (modified form of n) is known, [C]. The rate of creation / destruction of molecule C is known (i.e., rb) and we have to determine (c. 

Applying state density equation, [C] =  rb. (c = rf. (c = Kb [C].(c = Kf [A][B].(c
Thus,        

(c = Kb-1= [C]/ (Kf [A][B])-1
 Thus, this was the equation to determine the average life expectancy of newly created molecule, which was unknown so far. 

3. 7 
Another bridge between Electricity and Magnetism: Since the birth of electricity and magnetism, for centuries they developed as separate branches of science, until Oersted discovered that when a magnet moved in a coil generates current. Reciprocating it, Faraday discovered that time varying magnetic field generates electric field. It was Maxwell who synthesized all discovered equations of electricity and magnetism to generate light. Later on, Einstein’s relativity became a bridge between electricity and magnetism, proving it to be different aspects of same electromagnetic phenomena.  

In this paper we will see yet another bridge which will establish magnetism as purely an electrical effect – arising due to the additional charge in conductor, arriving because of the cause mentioned while deriving the state density equation in II. 

  

Let there be two wires of infitesimal length ‘l’ parallel to each other, carrying current I1 and I2. Then the magnitude of magnetic force per unit length between them is: 



FB /l = 1/(4((c2). I1.I2 / r2    - (7)           [7]
This equation can be derived by the Biot-Savart law [7] and by the theory of relativity [8]. The relativistic derivation proved that electric and magnetic phenomena are different interpretation of same electromagnetic phenomena. In the following lines we will derive the equation using the state-density equation and the coulombs law. 

In the conductor, the current is flowing at the steady rate – if any two surfaces are drawn amount of charge entering any surface is equal to the amount of charge exiting the other surface – i.e., equilibrium is existing. The rate at which charge entering any surface is obviously ‘I’ (= dq/dt), and time which current takes to pass distance ‘l’ is l/c, where c is speed of light. 

Thus, the additional charge ‘q’ which is always maintained in the conductor, by state density equation is: 

 q = (rate of arrival / departure of charge). (average time for which charge remains in conductor). Putting the values, q = (dq/dt).l/c = Il/c. Thus additional charge on conductor 1 is q1 = I1. l/c. Similarly, additional charge on conductor 2 is q2 = I2. l/c. Electric field created by conductor 1 at distance r, by Gauss law [9] is: E = 1/(2((). (q1/l).r -2 = 1/(2((). (I1/c).r -2.

Now, the electrical force per unit length on conductor 2 is: 


FE / l
=  E.q2 / l = 1/(4((). (I1/c)(I2 l/c)/ l.r2     = 1/(4((c2). I1. I2. / r2  
- (8)

Comparing (7) and (8), we find that Coulombic interaction derived above is exactly equal to the magnetic interaction. Thus we can say that magnetism is purely an electrical effect. Though state density equation can determine the magnitude of the force but it’s difficult to find direction using it. However [10] can be used in determining same. 

3. 8 
The rate of attaining a given momentum state in Maxwell-Boltzmann distribution: In an equilibrium condition, different molecules travel with different velocities. The number of molecules traveling with speed ‘v’ is given by the Maxwell-Boltzmann distribution law [11]: 

N(v) = 4(N0 (m/2(kT)3/2 v2 e-mv2/2kT       

During dynamic equilibrium, at a given temperature, the number of particles with a given state of momentum is same, but the particles themselves are not same. Constantly molecules of different momentum state leave their state to gain the given state of ‘v’. In case of equilibrium, the rate (r(v) with which different molecules attain state ‘v’ is equal to the rate at which the molecules of state ‘v’ attain different states. Both the rates are precisely equal; therefore the number of particles in a given state is constant during thermal equilibrium.

By state density equation, we have n = r(v.(s; meaning thereby, the rate at which the particles are arriving at the state ‘v’ is equal to number of particle in the given state (calculable by (12)) divided by stability time of that state. Here, this stability time is technically called the mean relaxation time – i.e., the time required in between two successive collisions. In this case, the relaxation time is calculated by the dividing the mean free path, ( by the velocity of the particle. That is ( = (/v. And, ( = (2½(N0d2)-1 [12], where ‘d’ is molecular diameter. Now, ( = (2½(N0d2v)-1.

Putting the values in the state density equation we get: r(v = 4.2½(2N02d2(m/2(kT)3/2 v3 e-mv2/2kT.

Thus, we have derived an equation to determine the rate at which Boltzons in different state attains a given state and also, the rate at which the particles of a given state attain different state. 

So these were a few interesting illustrations to show the wide range of applicability of state density equation. We see that equation not only simplifies the analysis of a situation but also allows the study of system that were earlier thought to be absolutely chaotic and indeterminable.

4.
The Problem of Microscopic Determination of Stability Time

In the paper we have seen the wide range of applicability of state density equation. However, often the applicability of this equation is restricted by our inability to determine the stability time ((s), microscopically. The problem can be understood in a better manner by following example. 

Suppose there is a tree standing in rainfall for prolonged time, and it’s required to determine the amount of water lying on the tree. It’s obvious that after some time the water on the tree will be in equilibrium – i.e., the amount of water falling on the tree is equal to the water falling from the tree. If the situation is not in equilibrium, then either the tree will collapse under its own weight (this usually happens more with winds than rain; trees often fall in a windy day when the winds entering tree is not equal to the winds exiting it (however, it will be more convenient to understand it in conventional way)), or will lead to a peculiar scene of a dry tree standing in rainfall!

If we want to calculate the amount of water on tree, during the state of equilibrium, it could have been easily done by applying the modified version of state density equation, i.e., m = r.(; where ‘r’ is the rate at which the water is falling on / from the tree. But the problem is, of the two factors required to determine the amount of water on tree in equilibrium, though the rate of water falling on tree can be easily determined. But the problem is that we do not know the average stability time of water drop (i.e., the time for which water drop lies on the tree). 

This section of paper precisely written to call the attention of scientific community towards the problem of microscopic determination of stability time, which will enhance our understanding of the nature. 

Attempting to determine the average stability time in case of tree, it could be said that stability time of water drops is not same for through out the tree. It’s minimum at the periphery and maximum at the apex. And the average stability time can be determined by: 

· =  (or ((r)2(rdr/ (r2 .

But the problem is to determine stability time ((r) as function of radius – i.e., the microscopic determination of radius. 

Such determination will offer incredible help in understanding of nature. Let’s see another example to understand the problem. It’s known that sun radiates energy at the rate of 4 million tones per second. The amount of energy created in the sun is equal to the amount of energy released by it. Had such equilibrium not existed either the sun would have grown progressively brighter or progressively fainter. Though we know the rate ‘r’ at which the sun is radiating energy, but what’s the energy that visible to us as sun? Repeating it once again, sun is constantly ‘creating’ and releasing the energy (at rate r), but there is an energy which is hanging there in space, visible to us as sun, what’s the magnitude of that energy. We could have easily applied sate density equation to determine the “energy which is sun”, had the average stability time of radiation was known. 

State density equation states n = r.(. Modifying the equation we get, E = r.(. Here, r is the rate at which energy is emitted from sun, and is already known. But ( is not known. However, average stability time, ( can be determined by solving few well established equations. In this case, dE/dt (=r), by Stefan-Boltzmann equation is equal to (T4. (r2. And the energy ‘which is sun’ is its mass multiplied by its integrated value of thermal capacity ‘C’ and temperature ‘T’, as various radial parts of sun are at different temperature and of different thermal capacity. That is, Energy ‘which is sun’, E = (((r)(r2C(r)T(r)dr; where ( is the density of the sun. 

Applying state density equation, E = (dE/dt).(. Putting the values from above: 



              ( =  (T4. (r2/ (((r)(r2C(r)T(r)dr  - (9)

Though the average time for which the radiation remains stable in sun is determinable. But what I wish is a microscopic derivation of same equation. That derivation will also reveal the stability time of radiation of various wavelengths, i.e., derive relation for stability time as function of wave length of radiation, which will help in better understanding of quantum mechanics and LASER action.  At least, one thing is obvious; the above-derived value of ( will be equal to the average value of (((). That is, 




( =  (((().n(()d(  /  (n(()d(
There is a technical advantage of finding ((() and regulating it. By increasing ((() one can fabricate very luminous source with relatively low power output and by decreasing it very low luminous source with high power output can be created.                        

5. Conclusion

Though the proposed state density equation is exceedingly simple, yet it has surprisingly wide range of applicability. The importance of the equation, in the form which it is presented, lies in the fact that it can macroscopically analyse the physical situation for which detailed microscopic analysis was necessary. Secondly, the equation, with great ease, is capable of analyzing the situation, which earlier seemed to be completely chaotic – might it be behavior of quantum objects or mosquitoes.

In the past, the Boltzmann equation n = n0e–U/kT [13], too was derived from the analysis of a physical situation (density of isothermal atmosphere), but now it is one of the most fundamental equation of thermodynamics and quantum mechanics. In the paper we saw how easily new conclusions like rate of arrival of Boltzons in a state, average lifetime of newly created molecule, average life time of radiation in plasma were reached; newer interpretation of preexisting concepts were gave a new direction to understand pre-existing concepts; besides it was seen how easily the equation analyzed the situation which were earlier thought to be completely chaotic.  Hope in the years to come, the equation will be utilized to conclude newer things.
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Fig.1: Two states ( and ( exchanging entities at rate rα(β and rβ(α, with number density,    nα and nβ.
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Fig.2: Entities entering state S at rate rE, and each entity on average stays for time (s.
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Fig.3: Projectiles being launched at constant rate.  
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Fig.4: Magnetic force between current carrying conductors.  
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