Borland Pascal Tools for Bootstrapping
Dependent Data

A. MOUIHA
Dépt. de Mathématiques.
Faculté des Sciences Dhar Mahraz.
Fès, Maroc.

Abstract

One of the drawbacks of the bootstrap method is that it is time consum-
ing when executing its applications, especially with some statistical software (example: S-plus, Minitab, Gauss...). But when using the programming lan-
guages (example: Borland Pascal, C/C++...) this execution becomes faster. In this paper, we describe some Borland Pascal procedures, functions and
units to overcome this problem.

Key Words: Borland Pascal, S-Plus, Blocks bootstrap, Bootstrap for
stationary processes.

1 Introduction

The bootstrap is a powerful tool for inference in situations where standard approx-
imations are not available. It was introduced in the context of non-parametric
analysis of iid samples (Efron, 1979), but much research into its use in more com-
plicated settings has followed. Künsch (1989), Mouha and Rais (2000) provide an
excellent reference on the uses of bootstrap and related methods. In conjunction
with that, I have written a Borland Pascal program to implement these methods.
Davison and Hinkley (1997) have written other bootstrap programs using S-Plus.

Suppose that we have a sample \(\chi = (X_1, \ldots, X_n) \) come from some n-dimensional
distribution \(F \) and interest is in a functional, \(\theta = t(F_n) \), of that distribution,
where \(F_n \) is the empirical distribution of \(\chi \). Inference for \(\theta \) is often based on as-
sumptions such that \(F_n \) has some specific form which depends on a finite number
of unknown parameters. If the assumed form of \(F_n \) and the functional \(t(.) \) are
sufficiently simple, then exact or asymptotic distribution theory can be used for
inference.

The bootstrap and other resampling methods are designed to allow inference
to proceed with fewer assumptions on the distribution or the functional of interest. They are also useful when the simple size n is too small. See Mouiha and Rais (2000).

Suppose that we are in nonparametric case and the data are iid, then $F(x_1, ..., x_n) = \prod_{i=1}^{n} F(x_i)$ and F is estimated by the empirical distribution function \hat{F}. θ is then estimated by $\hat{\theta} = t(\hat{F}_n)$. Suppose now that χ^* is a dataset with distribution \hat{F}_n and $\hat{\theta}^*$ is the corresponding estimate of $\hat{\theta}$. The bootstrap uses $\hat{\theta}^* - \hat{\theta}$ for inference on $\hat{\theta} - \theta$. Then it is usually necessary to generate many replicates of $\hat{\theta}^* - \hat{\theta}$ and then use Monte Carlo methods for inference.

2 Bootstrap for dependent observations

The ordinary bootstrap will not work for time series as the observations are clearly not iid. It is necessary to make some allowance for the autocorrelation between observations and one way for doing this is the block bootstrap (MBB) (Künsch, 1989) which does not resample individual observations but resamples blocks of length l and fits them together to produce a replicate of length n. Where n is the length of the original dataset and $l = o(n)$. This method, however, does not reproduce the same dependence structure as in the original data because the blocks are not independent. A modification of this last method is bootstrap for stationary processes (BSP) (Mouiha and Rais, 2000) which reproduces the essence of this structure at least at dependence order p. That is, we approximate any stationary process by a p^{th} order Markov Chain, estimate the transition densities and generate our BSP sample from the transitions density of this Markov chain. In fact, and by decomposition theorem (Brockwell and Davis, 1991), we estimate the order p basing on the original data, saying, $\chi = (X_1, ..., X_n)$ and apply the BSP method.

3 An example of Borland Pascal program used in bootstrap

To compare the two last methods, we will describe, in followings, some Borland Pascal procedures, functions and units which will be the basis of the main unit mbb-bsp.

- (unit var-p) contains all variables used in mbb-bsp.
- (unit stat-p) describes the statistics used in mbb-bsp.
• (unit calcul-p) of the influence functions used in the BSP method.
• (unit dens-p) is required for some densities used in the methods.
• (unit arma-p) describes the models used in the simulations.
• Other functions for generating some random numbers are in (unit alea-p).
• To generate the blocks MBB, we need the (procedure bloc).
• To generate the first block used in MBB, we need the (procedure bloc1).
• Or to generate it by using the normal density, we need the (procedure rmulti).
• Generate the BSP sample by the (procedure rcond).

Program 3.1. (Unit mbb-bsf for BSP and MBB methods.)

{$N+,E+}$
unit mbb-bsf;
interface
uses crt, var-p, stat-p, calcul-p, dens-p, arma-p, alea-p;
procedure bloc(l,n:integer;x:vecteur;var x1:vecteur);
procedure bloc1(l,n:integer;x:vecteur;var x1:vecteur);
procedure rmulti(l,n:integer;h1:extended;x:vecteur;var x2:vecteur);
procedure rcond(l,n:integer;h1:extended;a:vecteur; var x2:vecteur);
implementation
(**)
procedure bloc(l,n:integer;x:vecteur;var x1:vecteur); (*Return
resamples from MBB method.
(**)
var j,t,u,b:integer;
begin
 b:=trunc(n/l);
 for j:=1 to b do
 begin
 u:=random((n-l+1));
 for t:=1 to l do
 x1[(j-1)*l+t]:=x^[u+t];
 end;
end;
procedure bloc1; {return one l_block }

var u,t:integer;
begin
 u:=random(n-l+1);
 for t:=1 to l do
 x1^[t]:=x^[u+l];
end;

procedure rmulti; (*Generate the first bloc (x(1),..,x(l+1)) using Normal density. The bloc is X2 and l is the block length. X:Original Sample*)

var k :vecteur0;i,p,j :integer; s,u,s1 :extended;
begin
 if l=0 then x2^[1]:=resnor(x,h1,n)
 else
 begin
 x2^[1]:=resnor(x,h1,n);
 for p:=1 to l do
 begin
 new(k);
 s:=0;k^[0]:=0;
 for i:=1 to n-p do
 begin
 s1:=1;
 for j:=1 to p do
 s1:=s1*dnor(0,1,((x2^[j]-x^[i+j-1])/h1));
 k^[i]:=k^[i-1]+s1;
 s:=s+s1;
 end;
 for i:=0 to n-p do
 k^[i]:=k^[i]/s;
 end;
 u:=random;
 for j:=1 to n-p do
 begin
 k^[i]:=k^[i]/s;
 end;
 end;
end;
if (u>k^[j-1]) and (u<=k^[j]) then
 x2^[p+1]:=rnorm(x^[j+p],h1);
end;
dispose(k);
end;
end;

(**)
procedure rcond; (*Return an n_sample from an l^{th} order markov Chain. This is X2=(x2(1),...,x2(n)). X:original data and X2 the BSP bootstrap sample*)
(**)
var t,i,j :integer; s,u,s1:extended; k :vecteur0;
begin
 if l=0 then rmulti(l-1,n,h1,a,x2)
 else bloc1(l,n,a,x2);
begin
 for t:=0 to n+50-l-1 do
 begin
 new(k);
 s:=0; k^[0]:=0;
 for i:=1 to n-l do
 begin
 s1:=1;
 for j:=1 to l do
 s1:=s1*dnor(0,1,(x2^[j+t]-a^[i+j-1])/h1);
 k^[i]:=k^[i-1]+s1;
 s:=s+s1;
 end;
 for i:=0 to n-l do
 k^[i]:=k^[i]/s;
 u:=random;
 for j:=1 to n-l do
 begin
 if (u>k^[j-1]) and (u<=k^[j]) then
 x2^[t+l+1]:=rnorm(a^[j+l],h1);
 end;
 dispose(k);
 end;
end;
end;

3.1 Program’s results and discussions

To obtain an initial sample for comparing MBB and BSP, we simulate the dataset from the two following models:

M1. AR_1: $X_t = 0.8X_{t-1} + \varepsilon_t$, with ε_t is iid random.

M2. TAR: $X_t = 0.528Z_t$, with

\[
Z_t = (0.9Z_{t-1} + \varepsilon_t)1_{\{Z_{t-1} \leq -2.5\}} + (0.8Z_{t-1} + \varepsilon_t)1_{\{Z_{t-1} > -2.5\}},
\]

and ε_t is iid random.

We generate two samples $n = 27$ and $n = 512$ according to M1 and M2. We use 1000 bootstrap samples and 5000 Monte carlo’s iterations. The results are illustrated in Table 3.1.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Method BSP</th>
<th>Method MBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>E'</td>
<td>SD'</td>
<td>RM'</td>
</tr>
<tr>
<td>n=27 M1</td>
<td>2.91</td>
<td>2.22</td>
</tr>
<tr>
<td>n=27 M2</td>
<td>3.17</td>
<td>2.12</td>
</tr>
<tr>
<td>n=512 M1</td>
<td>3.06</td>
<td>2.80</td>
</tr>
<tr>
<td>n=512 M2</td>
<td>3.21</td>
<td>2.80</td>
</tr>
</tbody>
</table>

$E' = E(\sigma_n^*)$, $SD' = SD(\sigma_n^*)$, $RM' = RMSE(\sigma_n^*)$

Table 3.1: Comparison of BSP versus MBB using mbb-msp Borland Pascal program for: $\sigma_n = [\text{var}(n^{1/2}\text{median}(X))]^{1/2}$.

There is clearly a difference between the two methods because the $RMSE(\sigma_n^*)$ obtained by BSP is smaller than the one obtained by MBB. Here σ_n^* is the bootstrapped value of the true value σ_n. This difference especially in the case of small sample ($n = 27$). This arise because the joins between blocks (in MBB method) there is independence between successive observations which does not occur in the original data. But in the BSP method, the dependence structure presented in the data is reproduced in bootstrap sample (see Mouiha and Rais, 2000, for more details).

Note that the executing time of the same application by using Borland Pascal is faster than the one used in S-Plus. The following results for the two models given above are for showing the fastness of Borland Pascal language:
<table>
<thead>
<tr>
<th>Sample size</th>
<th>Model</th>
<th>Borland Pascal</th>
<th>S-Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=27</td>
<td>M1</td>
<td>00h 12mn 27s 62cs</td>
<td>00h 14mn 35s 89cs</td>
</tr>
<tr>
<td>n=512</td>
<td>M1</td>
<td>03h 47mn 42s 31cs</td>
<td>04h 11mn 15s 75cs</td>
</tr>
<tr>
<td>n=27</td>
<td>M2</td>
<td>00h 16mn 21s 52cs</td>
<td>00h 18mn 25s 42cs</td>
</tr>
<tr>
<td>n=512</td>
<td>M2</td>
<td>03h 58mn 51s 68cs</td>
<td>04h 34mn 41s 93cs</td>
</tr>
</tbody>
</table>

Table 3.2: Executing time by S-Plus and Borland Pascal.

References

