
Fuzzy Neural Network Implementation of Q(λ)

for Mobile Robots

AMIR MASSOUD FARAHMAND1, CARO LUCAS2
(1) Department of Electrical & Computer Engineering

University of Tehran
North Karegar Street, Tehran

IRAN

Abstract: Programming mobile robots can be long and difficult task. The idea of having a robot learn how to
accomplish a task, rather than being told explicitly is appealing.)(λTD implementation of Reinforcement Learning
(RL) using Fuzzy Neural Network (FNN) is suggested as plausible approach for this task, while Q-Learning is shown
to be inadequate. Although there is no formal proof of its superiority, but it did better in a simple simulation.

Keywords: Mobile robots, Reinforcement learning, Fuzzy neural network,)(λTD

1 Introduction
The need for using robots is increasing. They can help us
in a lot of jobs which are not suitable for humans, e.g.
they can manipulate heavy materials, explore dangerous
places or simply helping us clean the room. We will
focus on one of the main problems, which prevents us to
get maximum benefit from them. The problem is that, in
general we do not know how a robot should do its job! In
order to do so, we should design suitable controller for
the robot but this job can be very time-consuming or
even impossible due to the ill-known dynamics of robots
and environment or more importantly, time-varying
dynamics of the whole system. Our robot might be
placed in some priori unknown environment and our
desire is that it learns how to comply with what it is
supposed to accomplish without knowing exactly how it
should be done. Thus, it is necessary to have some
learning mechanism that enable the robot to confront
changing dynamics of environment and ideally learn all
the controlling mechanism from scratch [1].
There are several learning methods in machine learning
domain that are more proper in robotics [2]. On one side,
we can use supervised-learning methods to enable the
robot to imitate some prescribed behavior and on the
other side, we can use reinforcement learning to enable
it to change its behavior according to the reward it takes
from some critic. The first method is well suited for the
cases that a human operator (or some other experts,
which might also be another robot) can do the robot’s
job well enough and the robot’s controller changes in a

way to imitate that behavior. On the other hand, RL is
suitable whenever we do not know (or do not want to
specify) how the robot should do a task, but know what
is desirable to do and what is not, so we can reward or
punish it accordingly. It is possible to mix these two
methods and have something between them; the robot
learns its general behavior by imitating an operator and
fine tunes by RL[1].
Reinforcement learning is a well-known psychological
phenomenon which many complex animals use it to
adapt to their environment. Suppose an agent who
perceives S state from its environment and act A action
accordingly. Depending on properness of its action, it
may receive reward or punishment. If the agent changes
its behavior in order to increase the chance of receiving
rewards in future, it is called that it uses RL as a learning
paradigm. More formally, the agent can observe

Sst ∈ from state space and act Aat ∈ from its action

space at time t and accordingly it receives tr from the
environment.
The goal of RL is to maximize some optimality criterion
that might be finite-horizon, average-reward, infinite-
horizon discounted or some other model [3]. The
infinite-horizon discounted model which is stated bellow
is what most of RL literature is based on








∑
∞

=0t
t

trE γ (1)

that E[.] is expectation operator and γ is discount factor
which is 10 <≤ γ .
There are some method for learning proper action for a
given state in order to maximize this criterion. One of
most famous method that is often used in RL is Q-
learning [4]. Q-learning is a good framework because it
can be proved that whenever an agent is situated in a
Markovian environment, the agent can learn optimal
strategy if it visits each state infinitely. Although the
convergence ensuring property is very good, but it is not
all one wants from a machine learning method. There are
two kinds of disadvantages in Q-learning. One of them is
that it works in discrete spaces which is not of the kind
of problems we face in real world and the next is it uses
of)0(TD ([5]) kind of temporal credit assignment
which do not credit previous actions (except the just
before one) whenever the agent receives reward or
punishment. The first property forces us to discretize
state-space. This can be severe problem when the
dimension of that space is rather high (well-known curse
of dimensionality) [3]. Beside that, selecting appropriate
discretization is not so easy job. The later property slows
down learning in situations that the agent should act
some long chain of well-selected actions in order to
receive reward. Noting that most real-world problems do
not obey Markov process, we are encouraged to dismiss
the original version of Q-learning (that has convergence
proof) and extend it in order to be more suitable for our
robotics problems, though we will loss some aspects of
that well-defined theoretical basis. So we have extended
Q-learning to have both these desirable features: dealing
directly with continuous spaces and use)(λTD method
for temporal credit assignment. We will discuss our
method in section 2, experimental results will be given in
section 3, the conclusion will be presented in section 4
and finally in section 5 we will state the references.

2 Neurofuzzy-based)(λQ
In order to overcome the mentioned problems with
ordinary Q-learning, we have extended it to have two
previous properties. We have used Peng’s)(λTD [6]
extension of Q-learning that is an incremental multi-step
credit assignment version of Q-learning to enable our
agent to learn faster. Then we use some implementation
of Fuzzy Neural Network (FNN) as Q-Table [7]. FNN
can be a general function approximator with some
special properties. First, it has linguistic interpretation
that simplifies working with it [8]. We can easily convert
it to some set of fuzzy rules. It has a good intuition to
change a priori knowledge expressed with some fuzzy

rules into this FNN framework too. Therefore, we can
represent a rough control mechanism in our system and
then let RL fine-tunes it. Beside that, simply replacing
lookup tables with general function approximators has
been shown that might cause learning to fail [9], [10],
[11]. Without going to details, one cause of this problem
is hidden extrapolation – the approximator should not
extrapolate whenever it has not seen any input data in
that part of space. FNN with compact membership
functions is a local approximator and do not suffer from
this problem or at least suffers less in comparison with
MLP. Now we introduce)(λQ and then FNN will be
discussed.
Suppose that we have a Markov Decision Process
(MDP), which is defined as follow [3], [12]:

• a set of states S,
• a set of actions A,
• a reward function ℜ→× ASR :
• a state transition function)(: SPAST →× in

which)(SP is the probability distribution of
being in some specific state. We write

),,(sasT ′ for the probability of making a
transition from state s to state s′ using action a.

The model is said to be Markovian if the state transition
depends only on current state and action and not the
previous ones. We want to seek a policy that maximizes
some optimality criterion. Here we use infinite-horizon
discounted model as introduced before. We will speak of
the optimal value of a state, which is the expected
reward gained by an agent if it starts at that state and
executes the optimal policy. Using π as a policy, optimal
value is written









= ∑

∞

=

∗

0

max)(
t

t
trEsV γ

π
 (2)

Now we define),(asQ which is a value of taking action
a in state s. Note that)(sV ∗ is a value of being in state
s and taking best action, so),(max)(asQsV

a

∗∗ = . We

can update our estimate of),(* asQ using






 −+

+=

++
+

),(ˆ),(ˆmax

),(ˆ),(ˆ

11
1

ttttat

tttt

asQasQr

asQasQ

t

γα
 (3)

Without going into any details, we state that if each
action is executed in each state an infinite number of
times on an infinite run and α is decayed appropriately,
the Q̂ value will converge with probability of 1 to ∗Q if
the state-action space is discrete.
Now we are ready to introduce the)(λTD formulation
of Q-learning as proposed by [6]. We define two
prediction errors as follow, one for difference between
predicted state value function ()(ˆ

1++ tt sVr γ) and

current estimate of value function ()(ˆ
tsV) and the other

for difference between predicted state value function (as
before) and estimated state-action value

),(ˆ
tt axQ function.

)(ˆ)(ˆ

1 tttt sVsVre −+= +γ (4)

),(ˆ)(ˆ
1 ttttt asQsVre −+=′ +γ (5)

where),(maxarg)(ˆ

ttat asQsV
t

= . In order to assign

credit for previous visited state-actions with)(λTD , we
should know when they were visited before and thus
they must be stored in some table which indicates when
this particular state-action pair have been visited. But as
for 0≠λ , this credit assigning task extends to every
previously seen steps, this table enlarges tremendously.
One way of overcoming this problem is using finite-time
window, which stores only some previous steps and not
all of them. The other method is using some structure

that inherently discounts the effect of previous state-
actions. This structure is known as eligibility trace as
described in [13]. This table can be a look-up table for
discrete problems or some kind of general function
approximator for continuous ones. We have
implemented eligibility trace with the similar FNN to
that we use for Q-Table. The algorithms of)(λQ is
written in Table 1.
Before discussing FNN, it is necessary to mention some
notes. First is the way we store these tables which as
stated before is a FNN that will be discussed soon. The
second is the way we choose action (part b of algorithm).
One way is greedy action-selection in which the action
that maximizes action-state value function will be
selected (),(ˆmaxarg tt

a
t asQa

t

←). However, in order to

increase the exploration, we should have some amount
of randomness. There are different techniques such as ε-
greedy, choosing according to Boltzman probability
distribution or simply adding some random noise to
selected action. We have chosen ε-greedy because of its
simple implementation. Although it might be not as good
as Boltzman method, but it works. The third note to
mention is experimentation-sensitiveness of)(λQ when
non-greedy action selection is used. This is a big
disadvantageous of this method [6]. Now we are ready to
introduce our FNN.
Suppose that nℜ∈ts and ℜ∈ta . We may have
following simple Mamdani fuzzy rule-base in order to
determine how much a given state-action is valuable

1. 0),(ˆ =asQ and 0),(=asTr for all s and a. We do this by zeroing every weight of FNN (we
will discuss it more later).

2. Do Forever
a. statecurrent ←ts
b. Choose an action ta
c. Carry out action ta in the world. Let the short term reward be tr , and the new state be

1+ts

d.)(ˆ)(ˆ
1 tttt sVsVre −+= +γ

e.),(ˆ)(ˆ
1 ttttt asQsVre −+=′ +γ

f. For each state-action pair (s,a) do
•),(),(asTrasTr γλ=
•),(),(ˆ),(ˆ asTrasQasQ α+←

g. ttttt easQasQ ′+← α),(ˆ),(ˆ
h. 1),(),(+← tttt asTrasTr

Table 1-)(λQ algorithms

1Rule : If 1
ts is 11S and … and n

ts is nS1 and ta is
1A then value is 1q

2Rule : If 1
ts is 21S and … and n

ts is nS 2 and ta is
2A then value is 2q

…

mRule : If 1
ts is 1mS and … and n

ts is mnS and ta is
mA then value is mq

If all of the state and action labels (klS and kA) were
crisp set, and the value is crisp too, it is exactly the same
as look-up form of Q-Table. However, by having fuzzy
labels, it becomes Fuzzy version of that. It is important
to mention that the consequent part (value part) is a crisp
value. In order to make this structure suitable for Q-
Learning, we must make it flexible. In this naïve form, it
is a rigid structure but it can simply be modified to
acquire the ability of learning. Suppose that membership
function of ijS is)(j

ij xµ . Therefore, truth-value of

antecedent part of thi rule is

))(),(),....,(),((1
2

1
1

1 asssT in
n

iniii += µµµµσ (6)

If we use product as t-norm, we have

∏
=

+ ⋅=
n

j

i
ijini sa

1
1)()(µµσ (7)

Considering consequent part is a crisp value and using
Center of Area (COA) method as defuzzifier, we have

∑

∑

=

== m

i
i

m

i
ii

as

asw
asQ

1

1

),(

),(.
),(

σ

σ
 (8)

Thus, we could express the output of a defuzzified Fuzzy
inference engine in a neural network-like structure.
Learning is easy now. Having supervisor which provides
the correct value of output (which is available in Q-
learning formulation), we can express necessary changes
of output weights this way

()
0 ;

),(

),(
)ˆ(

ˆ
2
1

1

descentsteepest 2

>−−=
∂
∂

⇒−=

∑
=

η
σ

σ
η m

i
i

i

i as

as
QQ

w
E

QQE

 (9)

Although we can also change membership functions in a
similar way (though much more involved formulas
would be obtained), we avoid doing so because it is not
much necessary and beside that, doing this job using
some clustering method would give better results. It
might be interesting to note that FNN is structurally
similar to Radial Basis Function (RBF) Neural
Networks. So although we look at them from different
perspectives, some similar conclusion can be made. For
instance by comparing FNN and RBF, it is evident that
by choosing appropriate membership functions, we can
make FNN a universal function approximator. Beside
that, as mentioned before, we can use clustering method
for finding parameters of membership functions as one
can do for RBF [14]. In addition, by investigating the
general form of FNN, we can interpret iw as a crisp

Fig 1. Simulator environment

consequent part, which is weighted by truth of
antecedent, and learning can be thought as adjusting this
crisp membership function (which is actually a
singleton). We could consider some more general form
of consequents (e.g. Fuzzy consequents), but it increases
the computational complexity too much.

3 Experiments
For testing the proposed ideas, we have made a mobile
robot simulator (Figure 1). This simulator enables the
robot to have sonar sensors with beamwidth and distance
precision uncertainty and also a simple vision system
that can detect some predefined (e.g. balls) objects in the
field. In this experiment, we want the robot to learn how
to follow a moving object in the field. The robot uses its
vision system to detect the relative angular distance of
the object with its head. Then, it determines the relative
speed of its two wheels. Therefore, the state space is
θ∆ (relative angular distance) and its output is v∆ and

the speed of each wheel is determined using following
equations

)1(0 vVVleft ∆+= (10)

)1(0 vVVleft ∆−= (11)

Now it should be decided how to divide the state and
action space and what kind of membership function to
use. Gaussian membership function is used here. The
centers and variances of membership functions are as
follow

θ∆ : (-0.5,0.4), (-0.1,0.1), (0,0.05), (0.1,0.1),

 (0.5,0.4) (in radian) (12)
v∆ : (-1,0.4), (-0.4,0.3), (0.4,0.3), (1,0.4) (13)

It is evident that this partitioning is rather small and
results in only 20 rules (weights in FNN framework) if
we use fully connected network (relating every label of
an input to the others of other inputs) which we do so.
During training, selected object moves across the field in
a circular path with random speed and initial location.
Whenever the robot reaches it, a one point (1=r)
reward is given to it and if it cannot do so, it will be
punished half a point (5.0−=r). Learning parameters
were set as

4.0=α (14)
95.0=γ (15)
1.0=ε (16)

and λ was set different values in order to investigate the
effect of λ in)(λQ , more precisely we set it 0 (simple
Q-Learning), 0.1, 0.4, and 0.8. Beside that, we decreased
α whenever the agent got reward. In order to measure
the effectiveness of our method, we run an evaluation
test after every five randomly chosen learning situation
(which results in a reward or punishment). The test is
consist of running the robot in five predefined situations
and counting how many times it can catch that object
(similar to learning phase the objects moves in a circular
path, but with prescribed speed). As learning is depend
on randomly generated learning situations, its
convergence to optimal solution is not the same in every
run, so we run each test for 22 times and average over it.
The comparison of results for)(λTD cases is depicted
in Figure 2 and comparison of)2.0(TD with simple Q-
Learning ()0(TD) is presented in Figure 3. For small
λ s all of them are the same, although 2.0=λ seems to
be a little better. However, when λ is not small, the
results degrades significantly. Comparing with simple Q-

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trials

G
oa

l R
ea

ch
in

g

Probability of Reaching Goal

0.1
0.2
0.4
0.8

Fig 2. Comparison of results with different λ

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trials

G
oa

l R
ea

ch
in

g

Probability of Reaching Goal

0.2
0

Fig 3. Comparison of)2.0(TD and)0(TD (simple Q-Learning)

Learning (although implemented in the same FNN
framework), it is evident that these)(λQ extension
results better which is intuitively correct, because by
using)(λTD , previous states-actions which leads into
goal (or hell) can be rewarded or punished.

4 Conclusion
We have proposed a framework for RL. It is based on
implementing)(λQ with FNN that enhances RL’s
generalization capability. Using)(λQ , we can back-
propagate rewards and punishments into previously seen
states. This improves learning speed considerably,
especially in tasks that exact scheduling and selection of
actions in each state is important. FNN is used as
function approximator with two main properties: it is
local, so it does not extrapolate too much in places where
there was no experience in it. Another important feature
of FNN is its linguistically interpretability which enables
the designer to put his/her knowledge into the structure
(although it is not as apparent as simple Fuzzy rule-
based system, but it is not difficult to learn FNN to work
same).
RL seems sensitive to learning parameters and choosing
best parameters in some situation is not an easy task. For
instance, we observed that the way we decrease α is too
important and increasing it too fast may lead to sticking
in a suboptimal solution while not doing so, learning is
too slow and the agent learns something and forgets it
again repeatedly. So it seems plausible to use some
adaptive schemes to change learning parameters. One
nominee is Doya metalearning theory, which states that
the brain has the capability of adjusting its learning
parameters dynamically using neuromodulators (most
notable are dopamine, serotonin, noradrenalin, and
acetylcholine) [15]. Due to its biological plausibility it is
a good candidate for RL. We will consider the effect of
this mechanism in our future works with some more
complicated problems.

5 References
[1] W. D. Smart and L. P. Kaelbling, “Effective

Reinforcement Learning for Mobile Robots,”
Int. Conf. Robotics and Automation, May 11-15,
2002.

[2] Ch. Balkenius, “Natural Intelligence for
Autonomous Agents,” Lund University
Cognitive Studies, 29, 1994.

[3] L. P. Kaelbling and M. L. Littman,
“Reinforcement Learning: A Survey,” J.
Artificial Intelligence Research, vol. 4, 1996, pp.
237-285.

[4] C. J. C. H. Watkins and P. Dayan, “Q-
Learning,” Machine Learning, 8, 1992, pp. 279-
292.

[5] R. S. Sutton, “Learning to Predict by The
Method of Temporal Differences,” Machine
Learning, 3(1), 1988, pp. 9-44.

[6] J. Peng and R. J. Williams, “Incremental Multi-
Step Q-Learning,” In Proc. 11th Int. Conf.
Machine Learning, 1994, pp. 226-232, Morgan
Kaufmann.

[7] B. J. Park, W. Pedrycz, and S. K. Oh, ”Fuzzy
Polynomial Neural Networks: Hybrid
Architectures of Fuzzy Modeling,” IEEE Trans.
Fuzzy Syst., vol. 10, no.5, 2002.

[8] A. Bonarini, “Delayed Reinforcement, Fuzzy Q-
Learning and Fuzzy Logic Controllers,” In
Herrera, F., Verdegay, J. L. (Eds.) Genetic
Algorithms and Soft Computing, (Studies in
Fuzziness, 8), Physica-Verlag, Berlin, D, 1996,
pp. 447-466.

[9] S. Thrun and A. Schwartz, “Issues in Using
Function Approximation for Reinforcement
Learning,” In Proceedings of the 4th
Connectionist Models Summer School, 1993.

[10] J. Boyan and A. W. Moore, “Generalization in
Reinforcement Learning: Safely Approximating
the Value Function,” in G. Tesauro, D. S.
Touretzky, and T. K. Leen, eds., Advances in
Neural Information Processing System 7, MIT
Press, Cambridge MA, 1995.

[11] W. D. Smart and L. P. Kaelbling, “Practical
Reinforcement Learning in Continuous Spaces,”
In Proceedings of the 7th Int. Conf. on Machine
Learning (ICML 2000), 2000, pp. 903-910.

[12] R. S. Sutton, and A. G. Barto, Reinforcement
Learning: An Introduction, MIT Press,
Cambridge, MA, 1998.

[13] A. G. Barto, R. S. Sutton, and C. W. Anderson,
“Neuronlike Elements That Can Solve Difficult
Learning Control Problems,” IEEE Trans. Syst.,
Man, and Cyber., vol. 13, 1983.

[14] S. Theodoridis and K. Koutroumbas, Pattern
Recognition, Academic Press, 1999.

[15] K. Doya, “Metalearning, neuromodulation, and
emotion,” Hatano G., Okada N., Tanabe H.,
Affective Minds, Elsevier Science, 2000, pp.
101-104.

