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Abstract: Programming mobile robots can be long and difficult task. The idea of having a robot learn how to 
accomplish a task, rather than being told explicitly is appealing. )(λTD  implementation of Reinforcement Learning 
(RL) using Fuzzy Neural Network (FNN) is suggested as plausible approach for this task, while Q-Learning is shown 
to be inadequate. Although there is no formal proof of its superiority, but it did better in a simple simulation. 
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1  Introduction 
The need for using robots is increasing. They can help us 
in a lot of jobs which are not suitable for humans, e.g. 
they can manipulate heavy materials, explore dangerous 
places or simply helping us clean the room. We will 
focus on one of the main problems, which prevents us to 
get maximum benefit from them. The problem is that, in 
general we do not know how a robot should do its job! In 
order to do so, we should design suitable controller for 
the robot but this job can be very time-consuming or 
even impossible due to the ill-known dynamics of robots 
and environment or more importantly, time-varying 
dynamics of the whole system. Our robot might be 
placed in some priori unknown environment and our 
desire is that it learns how to comply with what it is 
supposed to  accomplish without knowing exactly how it 
should be done. Thus, it is necessary to have some 
learning mechanism that enable the robot to confront 
changing dynamics of environment and ideally learn all 
the controlling mechanism from scratch [1].  
There are several learning methods in machine learning 
domain that are more proper in robotics [2]. On one side, 
we can use supervised-learning methods to enable the 
robot to imitate some prescribed behavior and on the 
other side, we can use reinforcement learning  to enable 
it to change its behavior according to the reward it takes 
from some critic. The first method is well suited for the 
cases that a human operator (or some other experts,  
which might also be another robot) can do the robot’s 
job well enough and the robot’s controller changes in a 

way to imitate that behavior. On the other hand, RL is 
suitable whenever we do not know (or do not want to 
specify) how the robot should do a task, but know what 
is desirable to do and what is not, so we can reward or 
punish it accordingly. It is possible to mix these two 
methods and have something between them; the robot 
learns its general behavior by imitating an operator and 
fine tunes by RL[1]. 
Reinforcement learning is a well-known psychological 
phenomenon which many complex animals use it to 
adapt to their environment. Suppose an agent who 
perceives S state from its environment and act A action 
accordingly. Depending on properness of its action, it 
may receive reward or punishment. If the agent changes 
its behavior in order to increase the chance of receiving 
rewards in future, it is called that it uses RL as a learning 
paradigm. More formally, the agent can observe 

Sst ∈ from state space and act Aat ∈ from its action 

space at time t and accordingly it receives tr from the 
environment. 
The goal of RL is to maximize some optimality criterion 
that might be finite-horizon, average-reward, infinite-
horizon discounted or some other model [3]. The 
infinite-horizon discounted model which is stated bellow 
is what most of RL literature is based on 
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that E[.] is expectation operator and γ is discount factor 
which is 10 <≤ γ .  
There are some method for learning proper action for a 
given state in order to maximize this criterion. One of 
most famous method that is often used in RL is Q-
learning [4]. Q-learning is a good framework because it 
can be proved that whenever an agent is situated in a 
Markovian environment, the agent can learn optimal 
strategy if it visits each state infinitely. Although the 
convergence ensuring property is very good, but it is not 
all one wants from a machine learning method. There are 
two kinds of disadvantages in Q-learning. One of them is 
that it works in discrete spaces which is not of the kind 
of problems we face in real world and the next is it uses 
of )0(TD  ([5]) kind of temporal credit assignment 
which do not credit previous actions (except the just 
before one) whenever the agent receives reward or 
punishment. The first property forces us to discretize 
state-space. This can be severe problem when the 
dimension of that space is rather high (well-known curse 
of dimensionality) [3]. Beside that, selecting appropriate 
discretization is not so easy job. The later property slows 
down learning in situations that the agent should act 
some long chain of well-selected actions in order to 
receive reward. Noting that most real-world problems do 
not obey Markov process, we are encouraged to dismiss 
the original version of Q-learning (that has convergence 
proof) and extend it in order to be more suitable for our 
robotics problems, though we will loss some aspects of 
that well-defined theoretical basis. So we have extended 
Q-learning to have both these desirable features: dealing 
directly with continuous spaces and use )(λTD  method 
for temporal credit assignment. We will discuss our 
method in section 2, experimental results will be given in 
section 3, the conclusion will be presented in section 4 
and finally in section 5 we will state the references. 
 
 

2  Neurofuzzy-based )(λQ  
In order to overcome the mentioned problems with 
ordinary Q-learning, we have extended it to have two 
previous properties. We have used Peng’s )(λTD  [6] 
extension of Q-learning that is an incremental multi-step 
credit assignment version of Q-learning to enable our 
agent to learn faster. Then we use some implementation 
of Fuzzy Neural Network (FNN) as Q-Table [7]. FNN 
can be a general function approximator with some 
special properties. First, it has linguistic interpretation 
that simplifies working with it [8]. We can easily convert 
it to some set of fuzzy rules. It has a good intuition to 
change a priori knowledge expressed with some fuzzy 

rules into this FNN framework too. Therefore, we can 
represent a rough control mechanism in our system and 
then let RL fine-tunes it. Beside that, simply replacing 
lookup tables with general function approximators has 
been shown that might cause learning to fail [9], [10], 
[11]. Without going to details, one cause of this problem 
is hidden extrapolation – the approximator should not 
extrapolate whenever it has not seen any input data in 
that part of space. FNN with compact membership 
functions is a local approximator and do not suffer from 
this problem or at least suffers less in comparison with 
MLP. Now we introduce )(λQ  and then FNN will be 
discussed. 
Suppose that we have a Markov Decision Process 
(MDP), which is defined as follow [3], [12]: 
 

• a set of states S, 
• a set of actions A, 
• a reward function ℜ→× ASR :  
• a state transition function )(: SPAST →×  in 

which )(SP  is the probability distribution of 
being in some specific state. We write 

),,( sasT ′  for the probability of making a 
transition from state s  to state s′  using action a. 

 
The model is said to be Markovian if the state transition 
depends only on current state and action and not the 
previous ones. We want to seek a policy that maximizes 
some optimality criterion. Here we use infinite-horizon 
discounted model as introduced before. We will speak of 
the optimal value of a state, which is the expected 
reward gained by an agent if it starts at that state and 
executes the optimal policy. Using π as a policy, optimal 
value is written 
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Now we define ),( asQ  which is a value of taking action 
a in state s. Note that  )(sV ∗  is a value of being in state 
s and taking best action, so ),(max)( asQsV

a

∗∗ = . We 

can update our estimate of ),(* asQ using 
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Without going into any details, we state that if each 
action is executed in each state an infinite number of 
times on an infinite run and α is decayed appropriately, 
the Q̂  value will converge with probability of 1 to ∗Q  if 
the state-action space is discrete. 
Now we are ready to introduce the )(λTD  formulation 
of Q-learning as proposed by [6]. We define two 
prediction errors as follow, one for difference between 
predicted state value function ( )(ˆ

1++ tt sVr γ ) and 

current estimate of value function ( )(ˆ
tsV ) and the other 

for difference between predicted state value function (as 
before) and estimated state-action value 

),(ˆ
tt axQ function. 
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where ),(maxarg)(ˆ

ttat asQsV
t

= . In order to assign 

credit for previous visited state-actions with )(λTD , we 
should know when they were visited before and thus 
they must be stored in some table which indicates when 
this particular state-action pair have been visited. But as 
for 0≠λ , this credit assigning task extends to every 
previously seen steps, this table enlarges tremendously. 
One way of overcoming this problem is using finite-time 
window, which stores only some previous steps and not 
all of them. The other method is using some structure 

that inherently discounts the effect of previous state-
actions. This structure is known as eligibility trace as 
described in [13]. This table can be a look-up table for 
discrete problems or some kind of general function 
approximator for continuous ones. We have 
implemented eligibility trace with the similar FNN to 
that we use for Q-Table. The algorithms of )(λQ is 
written in Table 1. 
Before discussing FNN, it is necessary to mention some 
notes. First is the way we store these tables which as 
stated before is a FNN that will be discussed soon. The 
second is the way we choose action (part b of algorithm). 
One way is greedy action-selection in which the action 
that maximizes action-state value function will be 
selected ( ),(ˆmaxarg tt

a
t asQa

t

← ). However, in order to 

increase the exploration, we should have some amount 
of randomness. There are different techniques such as ε-
greedy, choosing according to Boltzman probability 
distribution or simply adding some random noise to 
selected action. We have chosen ε-greedy because of its 
simple implementation. Although it might be not as good 
as Boltzman method, but it works. The third note to 
mention is experimentation-sensitiveness of )(λQ  when 
non-greedy action selection is used. This is a big 
disadvantageous of this method [6]. Now we are ready to 
introduce our FNN.  
Suppose that nℜ∈ts and ℜ∈ta . We may have 
following simple Mamdani fuzzy rule-base in order to 
determine how much a given state-action is valuable 
 

1. 0),(ˆ =asQ and 0),( =asTr  for all s and a. We do this by zeroing every weight of FNN (we 
will discuss it more later). 

2. Do Forever 
a. statecurrent ←ts  
b. Choose an action ta  
c. Carry out action ta  in the world. Let the short term reward be tr , and the new state be 

1+ts  

d. )(ˆ)(ˆ
1 tttt sVsVre −+= +γ  

e. ),(ˆ)(ˆ
1 ttttt asQsVre −+=′ +γ  

f. For each state-action pair (s,a) do 
• ),(),( asTrasTr γλ=  
• ),(),(ˆ),(ˆ asTrasQasQ α+←  

g. ttttt easQasQ ′+← α),(ˆ),(ˆ  
h. 1),(),( +← tttt asTrasTr  

 

Table 1- )(λQ  algorithms 



1Rule : If 1
ts is 11S  and … and n

ts is nS1 and ta  is 
1A  then value is 1q  

2Rule : If 1
ts is 21S  and … and n

ts is nS 2 and ta  is 
2A then value is 2q  

… 

mRule : If 1
ts is 1mS  and … and n

ts is mnS and ta is 
mA then value is mq  

 
If all of the state and action labels ( klS  and kA ) were 
crisp set, and the value is crisp too, it is exactly the same 
as look-up form of Q-Table. However, by having fuzzy 
labels, it becomes Fuzzy version of that. It is important 
to mention that the consequent part (value part) is a crisp 
value. In order to make this structure suitable for Q-
Learning, we must make it flexible. In this naïve form, it 
is a rigid structure but it can simply be modified to 
acquire the ability of learning. Suppose that membership 
function of ijS is )( j

ij xµ . Therefore, truth-value of 

antecedent part of thi rule is 
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If we use product as t-norm, we have 
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Considering consequent part is a crisp value and using 
Center of Area (COA) method as defuzzifier, we have 
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Thus, we could express the output of a defuzzified Fuzzy 
inference engine in a neural network-like structure. 
Learning is easy now. Having supervisor which provides 
the correct value of output (which is available in Q-
learning formulation), we can express necessary changes 
of output weights this way 
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Although we can also change membership functions in a 
similar way (though much more involved formulas 
would be obtained), we avoid doing so because it is not 
much necessary and beside that, doing this job using 
some clustering method would give better results. It 
might be interesting to note that FNN is structurally 
similar to Radial Basis Function (RBF) Neural 
Networks. So although we look at them from different 
perspectives, some similar conclusion can be made. For 
instance by comparing FNN and RBF, it is evident that 
by choosing appropriate membership functions, we can 
make FNN a universal function approximator. Beside 
that, as mentioned before, we can use clustering method 
for finding parameters of membership functions as one 
can do for RBF [14]. In addition, by investigating the 
general form of FNN, we can interpret iw as a crisp 

Fig 1. Simulator environment 



consequent part, which is weighted by truth of 
antecedent, and learning can be thought as adjusting this 
crisp membership function (which is actually a 
singleton). We could consider some more general form 
of consequents (e.g. Fuzzy consequents), but it increases 
the computational complexity too much. 
 
 

3  Experiments 
For testing the proposed ideas, we have made a mobile 
robot simulator (Figure 1). This simulator enables the 
robot to have sonar sensors with beamwidth and distance 
precision uncertainty and also a simple vision system 
that can detect some predefined (e.g. balls) objects in the 
field. In this experiment, we want the robot to learn how 
to follow a moving object in the field. The robot uses its 
vision system to detect the relative angular distance of 
the object with its head. Then, it determines the relative 
speed of its two wheels. Therefore, the state space is 
θ∆  (relative angular distance) and its output is v∆  and 

the speed of each wheel is determined using following 
equations 
 

)1(0 vVVleft ∆+=            (10) 

)1(0 vVVleft ∆−=            (11) 
 
Now it should be decided how to divide the state and 
action space and what kind of membership function to 
use. Gaussian membership function is used here. The 
centers and variances of membership functions are as 
follow 
 
θ∆ : (-0.5,0.4), (-0.1,0.1), (0,0.05), (0.1,0.1),  

  (0.5,0.4) (in radian)        (12) 
v∆ : (-1,0.4), (-0.4,0.3), (0.4,0.3), (1,0.4)    (13) 

 
It is evident that this partitioning is rather small and 
results in only 20 rules (weights in FNN framework) if 
we use fully connected network (relating every label of 
an input to the others of other inputs) which we do so. 
During training, selected object moves across the field in 
a circular path with random speed and initial location. 
Whenever the robot reaches it, a one point ( 1=r ) 
reward is given to it and if it cannot do so, it will be 
punished half a point ( 5.0−=r ). Learning parameters 
were set as 
 

4.0=α               (14) 
95.0=γ               (15) 
1.0=ε               (16) 

 
and λ  was set different values in order to investigate the 
effect of λ  in )(λQ , more precisely we set it 0 (simple 
Q-Learning), 0.1, 0.4, and 0.8. Beside that, we decreased 
α whenever the agent got reward. In order to measure 
the effectiveness of our method, we run an evaluation 
test after every five randomly chosen learning situation 
(which results in a reward or punishment). The test is 
consist of running the robot in five predefined situations 
and counting how many times it can catch that object 
(similar to learning phase the objects moves in a circular 
path, but with prescribed speed). As learning is depend 
on randomly generated learning situations, its 
convergence to optimal solution is not the same in every 
run, so we run each test for 22 times and average over it. 
The comparison of results for )(λTD  cases is depicted 
in Figure 2 and comparison of )2.0(TD with simple Q-
Learning ( )0(TD ) is presented in Figure 3. For small 
λ s all of them are the same, although 2.0=λ  seems to 
be a little better. However, when λ  is not small, the 
results degrades significantly. Comparing with simple Q-
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Learning (although implemented in the same FNN 
framework), it is evident that these )(λQ  extension 
results better which is intuitively correct, because by 
using )(λTD , previous states-actions which leads into 
goal (or hell) can be rewarded or punished. 
 
 

4  Conclusion 
We have proposed a framework for RL. It is based on 
implementing )(λQ  with FNN that enhances RL’s 
generalization capability. Using )(λQ , we can back-
propagate rewards and punishments into previously seen 
states. This improves learning speed considerably, 
especially in tasks that exact scheduling and selection of 
actions in each state is important. FNN is used as 
function approximator with two main properties: it is 
local, so it does not extrapolate too much in places where 
there was no experience in it. Another important feature 
of FNN is its linguistically interpretability which enables 
the designer to put his/her knowledge into the structure 
(although it is not as apparent as simple Fuzzy rule-
based system, but it is not difficult to learn FNN to work 
same). 
RL seems sensitive to learning parameters and choosing 
best parameters in some situation is not an easy task. For 
instance, we observed that the way we decrease α  is too 
important and increasing it too fast may lead to sticking 
in a suboptimal solution while not doing so, learning is 
too slow and the agent learns something and forgets it 
again repeatedly. So it seems plausible to use some 
adaptive schemes to change learning parameters. One 
nominee is Doya metalearning theory, which states that 
the brain has the capability of adjusting its learning 
parameters dynamically using neuromodulators (most 
notable are dopamine, serotonin, noradrenalin, and 
acetylcholine) [15]. Due to its biological plausibility it is 
a good candidate for RL. We will consider the effect of 
this mechanism in our future works with some more 
complicated problems.  
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