

An Automatic Word Length Determination Method

MARC-ANDRE CANTIN AND YVON SAVARIA
Electrical Engineering Department
École Polytechnique de Montréal

C.P. 6079, succursale Centre-Ville, Montréal (Quebec), H3C 3A7
CANADA

Abstract: - Automatic word length determination of hardware data paths may require considering several error
models, user specifications and hardware costs. A new automatic method for determining the word length of
hardware data paths that consider these requirements is proposed and analyzed. The search-based method uses a
C/C++ fixed-point simulation tool to model the impact of finite word lengths on overall accuracy. By computing
dissimilarities between fixed-point and floating-point simulation results, a procedure searches for a combination
of word lengths that meets accuracy criteria specified by the designer. This method is presented with four novel
maximization procedures. These four automatic procedures are compared with other procedures given in the
literature and adapted into the method. The comparison helps to select a procedure that finds a combination of
word lengths that meet user specifications, in a small number of iterations. The procedures are characterized and
compared using a dozen DSP algorithms.

Key-Words: - Floating-point, Fixed-Point, Automatic Determination, Optimization, Word Length, Comparison.

1. Introduction

Digital Signal Processing (DSP) algorithms are
often expressed in 32- or 64-bit fixed- or floating-point
data formats since these are available in most
commercial off-the-shelf processors. Yet, in spite of
very significant improvements in processor
performance and the power efficiency, the
requirements of many real-time applications in terms
of pure performance or low power operation command
the use of specialized hardware [1]. Since cost, power
dissipation, and performance are highly dependent on
the number of bits used to represent data, and on the
use of floating-point operators, the problem of precise
word length determination is important. In some
complex designs, half of the design time can be spent
determining word lengths [2]. Moreover, many
algorithms require a careful selection of word lengths
to preserve their stability [3]. Therefore, powerful
automatic word-length determination methods are
required.

For some specific applications, the resulting word
length combination found by these methods, must
meet various error specifications [4][5]. Furthermore,
depending on the application, the resulting word length
combination must minimize the hardware costs,
latency, area, or power consumption, as well as
increases the pure performance. Especially, for search-

based maximization procedures, it is important to
grade all word length combination toward the optimal
solution to guide the search. However, none of
methods found in the literature propose a way to
handle several error models, user specifications, and
implementation cost models in a common optimization
process. Thus a new automatic word length
determination method, which is based on a recent
metric, is proposed.

This paper is structured as follow. Methods found
in the literature and previous works on word length
determination are reviewed in Section 2. A new
automatic word length determination method that
considers these requirements is presented and
described in Section 3 as well as four novel search
procedures. In Section 4, these four novel procedures
are compared with procedures given in the literature.
The methodology and results obtained in this
comparative study are presented in the same section.
The main conclusions are summarized in Section 5.

2. Related Work
In the last 10 years, several techniques have been

proposed to translate floating-point formulations into
fixed-point formulations, especially for specific DSP
applications [3][4][6]. Heuristic techniques and

analytical methods dedicated to specific applications
have been employed. For general DSP applications,
the translation of floating-point formulations into
fixed-point formulations consists of evaluating the
dynamic range and the minimum accuracy, by
determining the Integer Word Length (IWL) and the
Fractional Word Length (FWL), of each operand Oi,
i=0, 1,…, (I−1), where I is the number of operands to
be translated. The Word Length (WL) of each
translated fixed-point operand may then be obtained as
follows:

 WLi = IWLi + FWLi + si (1)

where si=0 for unsigned and si=1 for two’s
complement representations of Oi. In Equation (1), the
IWL and FWL can be either positive or negative. For
example, a 4-bit binary data 1010 with si = 0 and
IWLi=−2 should be interpreted as 0.001010, which
corresponds to a real value of 0.15625. The same 4-bit
binary data with si = 0 and FWLi = −2 will be
interpreted this time as 101000, which corresponds to a
real value of 40. To ensure that the WL is greater than,
or equal to 0, the sum of IWL and FWL must be greater
than, or equal to 0; IWL+FWL ≥ 0.

The required Integer Word Length can be
estimated using 3 methods. The first method computes
the IWLi as follows:

 ()max
2logi iIWL O =   

 (2)

where ⋅ is the “ceiling” function, and where |Oi|max is
the maximum absolute value of the operand Oi
extracted during simulations of the DSP algorithm
[7][8]. The second method computes each IWLi like
the first method, except that the maximum and
minimum values of the operand Oi are replaced by the
values of Oi obtained by propagation of the maximum
and minimum input values through a Data Flow Graph
(DFG) of the DSP algorithm [9]. The third method,
introduced by Sung et al. [10], extracts the mean µi
and the standard deviation σi of the operand Oi during
a simulation of the DSP algorithm, and then computes
the IWLi as follows:

()()max
2log max ,i i i iIWL k O = µ + ×σ  

 (3)

where k is set equal to 4 in [10]. The first method does
not guarantee that overflow will not occur in the data
path. On the other hand, the second method is very
fast, but it is also known to be a conservative approach
that tends to overestimates IWLi [11], even though it
can also underestimate it if partial results cancel out.

Finally, the third method minimizes the probability of
overflow in the data path when k is set to a high value.

After the Integer Word Length, it is, the minimum
accuracy, or minimum Fractional Word Length (FWL)
of each operand Oi that is determined. Like the IWL,
the FWL can be estimated by DFG analysis.
FRIDGE [2] and CoCentric [12] propagate the FWLs
through the DFG, while ensuring that no information is
lost. This technique is called interpolation, and may be
illustrated by a simple example: for a = b + c, no
information is lost if FWL(a) = max(FWL(b), FWL(c)).

Alternatively, Yasuura et al. [8] and Wadekar [9]
perform numerical analysis on the DFG of the DSP
algorithm.

Determining the FWL using a DFG is fast, but the
method overestimates the FWL like it does for the
IWL. Furthermore, the DFG analysis requires a fixed-
point specification of the input signals, and becomes
complex to manage when the algorithm contains data
dependencies.

Cmar et al. [11] recently proposed a method that
combines analytical rules and simulations. The method
determines FWLi by measurement of the mean µi and
standard deviation σi of the dissimilarities between
fixed-point and floating-point simulations.
The C language description of the DSP algorithm
requires major modifications for the method proposed
by Cmar et al., and the bit resolution analysis is
performed only on one operand at a time, instead of on
combinations of operands.

Finally, the FWL can be determined by simulation
only. Sung & Kum [13], Han & al. [14], Choi and
Burleson[15] and Fiore and Lee [16] proposed manual
procedures and guidelines to optimize the FWL. These
procedures and guidelines that use a search-based
methodology are now examined.

A procedure called Sequential Search [14]
proceeds in three phases. In the first phase, for each
operand Oi, i=0, 1,…, (I−1), a minimum bit resolution
is found such that the user specification is met, when
all other operands Oj, j=0, 1,..., (I−1), j≠i, are in
floating-point format. In the second phase of this
procedure, the resolution of each operand is set equal
to the value found in the first phase. This combination
of word lengths is called the Minimum Word Length
(MWL) combination. In the third phase, an iterative
competition takes place between the operands to gain
one bit. A bit is temporarily assigned to each operand,
and the configuration that produces the least
dissimilarities with a floating point simulation is the
one that wins the right to keep the bit. Subsequent

competitions take place until the user specifications are
met.

The Heuristic procedure [13] iteratively increases
all word lengths by one bit from the MWL
combination until the user specifications of the system
are met. At that point, the operand that generates the
largest cost savings wins the right to loose a bit as long
as the error specifications continue to be met.

The Exhaustive procedure [13], as its name
suggest, carries out an exhaustive search, starting from
the MWL combination. The exhaustive search
temporarily assigns B additional bits over the
operands. Every possible assignment combination is
tried. If the system specifications are not met, then B is
increased, that is B=1, 2, 3, … bits, until one
assignment combination meets the system
specifications.

A complex procedure for word length
determination is proposed in [16]. It uses an approach
similar to the classical simulated annealing
algorithm [17]. The Simulated Annealing procedure
only considers solutions that meet the error
specifications, but may temporarily explore some
solutions that increase the total system hardware cost.
The procedure starts with a word length combination
such that the overall solution meets the system
specifications. Then some WLis are increased in order
to allow reducing other WLjs, j≠i, in an attempt to
minimize the total system hardware cost. The user
determines how many times this step is repeated.

The Preplanned procedure [14] proceeds in four
execution phases. The first phase computes the system
performance for each operand Oi, i=0, 1,…, (I−1),
when WLi is set equal to every possible bit resolution,
WLi = 0, 1, ..., (WLmax −1), where (WLmax −1) is the
maximum accuracy supported by the fixed point
simulation tool. During this first phase, all other
operands Oj, j≠i, are in floating-point format, and a
sensitivity parameter, ξi, is computed for each operand:

 ξ i = f (WLi +1) – f (WLi) (4)

where f(.) is an objective function. The second phase
constructs a global priority list in decreasing order of
sensitivity. The third phase computes and sets all the
Oi to the MWL bit resolution. The last phase is an
iterative process. The width of the operand Oi that has
the largest sensitivity is increased by one bit. As long
as the error specifications of the system are not met,
this iterative process is repeated.

The Branch and Bound procedure [15] proceeds
in 3 execution phases. The first phase finds a minimum
uniform word length combination, called the upper
bound solution. The second phase computes the MWL
combination. The third phase tries all word length
combinations exhaustively in the search space between
the upper bound and the MWL combination and keeps
the best solution found. Limiting the search space to
this range tends to drastically prune the search space as
compared to a brute force exhaustive search.

3. An Automatic Optimization Method
Modeling dissimilarities between floating-point and
fixed-point simulation results of a DSP algorithm may
require computing several error models. For example,
the CAS standards Committee of the IEEE Circuits
and Systems Society proposes in [5] five error models
for the Inverse Discrete Cosine Transform (IDCT)
algorithm: the pixel peak error, the pixel mean square
error, the pixel mean error, the overall mean square
error and the overall mean error. However, for all the
simulation-based procedures cited in Section 2, there is
no method in the literature that explain how to handle
several error models, user specifications and hardware
cost models, in a single unified word length
optimization process. Thus, an automatic word length
determination method is proposed, and the metric on
which it is based is presented in this section. Four
novel procedures adapted to the method are also
introduced.

3.1 Description of the Automatic Method
The proposed method is built upon a fixed-point
simulation tool. Two fixed-point simulation tools were
successfully used: SystemC [18] and a fixed-point
utility developed by W. Sung et al. [19]. These fixed-
point simulation tools convert a floating-point DSP
program written in C or C++ into a fixed-point
equivalent description. Fixed-point arithmetic
operations, instead of floating-point arithmetic, are
conducted automatically due to the operator
overloading capability of the C++ language. Except for
declaring which operands belong to a fixed-point class
type, renaming the main function and adding a fixed-
point header file, no other part of the original C
program needs to be changed to use the proposed
method.

The proposed method is composed of six steps, as
shown in Figure 1.

User specifications

1-Test bench
generation

2-Floating-point
simulation

4- Fixed point
simulation

5- Error models
computations

6- Implementation
Cost 7- C metric

Se

εe
H

Selection of the
Fixed-Point Engine

3-Determination
of IWL, FWL,

WL

8- Optimization
procedure

Procedure selection

Automatic
Word Length
Determination
Method

Fig. 1. Proposed method for the automatic determination of word lengths

1- Test bench generation
 The user generates test benches representative of
the application. They must stimulate all
operands, {Oi}, in the DSP algorithm, and all data
paths of interest. The method considers I user-
specified operands, and outputs a word length for
each one. Each test bench is a file containing inputs
to stimulate the DSP algorithm.
 2- Floating-point simulation

A floating-point simulation of the DSP algorithm
is performed for each test bench. Several parameters
for each operand Oi are extracted and computed from
the simulation: the maximum absolute value |Oi|max,
the sign flag, si (see Equation (1)), the mean µi, and
the variance σi. These parameters and output results
produced by the DSP algorithm in floating-point
resolution are recorded for future reference.
 3- Determination of the fixed-point formats.
 For each operand Oi, the integer word length
IWLi is set equal to Equation (3), and si to 0 if the
operand Oi is always positive, and to 1 otherwise.
The Fractional Word Length FWLi is initialized
according to the selected maximization procedure to
be run in Step 8 below.
 4- Fixed-point simulation
 A fixed-point simulation is performed for each
test bench. Output results produced by the DSP
algorithm in fixed-point resolution are recorded.
 5- Error computation
 Floating-point and fixed-point simulation results
stored in Steps 2 and 4 respectively are used to
compute the dissimilarity between the floating- and
fixed-point models according to various error εe, for
e=0, 1, … E-1 where E is the number of error
computations. Error computations εe, such as the
maximum absolute error and mean square error
between each correspondent floating- and fixed-point
output, are provided to quantify the dissimilarities

between the floating- and fixed-point models.
However the user is also allowed to provide his error
computations εe by using predetermined C functions
to get the floating- and fixed-point output results and
return the resulting εe values.
 6- Implementation cost
 The implementation cost, denoted by H, is some
measure of the hardware cost, power dissipation, or
processing time for the word length
combination { }iWL , and is computed in the

range [1, ∞. By default the implementation cost H is
defined as follow:

1

0

I
i i

i
H WL

−

=
= ⋅∑ γ (5)

where WLi is the total length in bits of the ith operand.
Since Equation (5) is a simplification of reality and
for no loss of generality, the user is allowed to
provide his own computation of the implementation
cost H based on the word length WLi of each
operand Oi.
 7- Computation of the C metric

 Based on the error computations εe produced in
Step 5, the Implementation cost H produced in Step
6, and the user specifications Se, a pas/fail threshold

for each error computation εe, the following C metric
recently proposed in [20], is computed.

()

()

1 max

0

11

0 0

1 1
 1 1

E
e e

e
ee

EE
e e

e
ee e

S
C d H I WL

S

S
d

E S H

−

=

−−

= =

  − = ⋅ + ⋅      
  −

− − ⋅ −     

∑

∑ ∏

ε

ε

 (6)

where de=0 if Se ≥ εe, and de=1 if Se < εe. Note that
Equation (6) is composed of two terms that are
mutually exclusive as a function of whether the

specifications are met (left side) or not (right side).
The C metric grades all word length combination
towards the optimal solution with the term

()()1
0

E
e e ee S S−

= −∑ ε that could be found in both side

of the metric. User specifications are normalized to
provide and equal weight in the metric for each of
them. Thus, for two word length combinations
having the same implementation cost, the one that
minimizes dissimilarities between the floating-point
and fixed-point simulations yields a higher value of
the metric. For two word length combinations
producing the same output accuracy, the one that
minimizes the implementation costs yields a higher
value of the metric. This behavior comes from the
implementation cost term H that could be found in
both side of the metric. The maximum value of the
metric is obtained at the optimal solution.
 8- Maximization procedure

A maximization procedure tries to find the
combination of word lengths {WLi} that maximizes
the metric C as defined above. In the following
sub-section, 4 new procedures are proposed.

3.2 Maximization Procedures

In this work, four maximization procedures are
examined and compared.
a) A procedure called Min + B bit is an extension to
the procedure called sequential search [13]. It
proceeds in three phases. The first two phases remain
the same as these of the sequential search procedure.
In the third phase of the Min + B bit procedure, an
iterative competition takes place between the
operands to gain B bits. For some DSP algorithms, it
was found that increasing the bit resolution of a
single operand at a time by 1 bit could fail to
converge to an acceptable solution. This happens, for
instance, when the overall accuracy only increases if
two or more operands are simultaneously widened.
Therefore, when adding 1 bit fails to provide
significant accuracy improvements, 2, 3,... , B bits are
temporarily distributed on the I operands until the
error decreases. At all steps, the procedure explores
all L possible ways of assigning B bits to I operands,
where L corresponds to the Pascal triangle (see
Equation (7)). The value of B is kept as small as
possible, and is increased only as needed to reduce
the error. Once the error is reduced, B is reset to 1,
and the iterative competition is repeated until the user
specifications are met.

()
() ()

1 !
1 ! !

I B
L

I B
+ −

=
−

 (7)

b) A procedure called by Max – 1 bit starts with
the maximum bit resolution, WLmax − 1, allowed by
the fixed-point simulation tool for all operands. Then
the operands compete to loose their bits as follows.
One bit is temporarily removed from each operand
Oi, while all other operands Oj, j≠i, remain
unchanged. The operand Oi for which the C metric is
maximized wins the competition and looses its bit.
The process is repeated for another bit, and so on, as
long as the error specifications are met. The pseudo-
code of the Max−1 bit procedure is given below:
 With the Max-1 bit procedure, the final
solution is found when removing 1 bit of any single
operand at a time fails to meet the error specification.
However for some DSP algorithm, if two or more
operands are simultaneously shortened, a better
solution may be found. This could happen when the
quantization error of more than 2 operands
compensate. Therefore when 1 bit fails to find a
better solution, 2, 3, ..., B bits can be removed
simultaneously over the I operands. It is not clear
what limit should be used for B, and this issue was
left for future research, thus the Max-B bits procedure
was not explored further.
 c) An Evolutive procedure starts with all
operands having floating-point precision. The word
length of a first operand, say Oi, is set equal to
WLmax−1 and gradually decreased until the system
meets the error specifications. The value of WLi is
then increased by one additional bit, and a second
operand is analyzed in the same way. This is repeated
until all WLj are fixed. The user is allowed to
determine the order in which the operands are
processed. Because the Evolutive procedure tends to
minimize the first operands processed, it is
recommended to process first the operand having the
highest hardware cost and end with the operand
having the lowest hardware cost. Thus, it is up to the
user to define the order in which the operands are
analyzed by determining their declaration order in the
C language DSP program.
 d) A Hybrid procedure combines the Min + B
bit followed by a minimization of the word lengths as
performed in the Max – 1 bit procedure. For some
DSP algorithms, it was found that a higher value of
the metric C can be obtained by using both
procedures together than if either one is used
independently.

4. Comparison
The set of procedures implemented for comparison
includes the Heuristic, Exhaustive, Simulated
Annealing, Preplanned, Branch and Bound,
Min + B bit, Max – 1 bit, Evolutive and Hybrid
procedures. The Sequential Search [14] procedure
was not considered in the comparison because it
sometimes fails to converge to a solution, and
corresponds to the Min + B bit procedure with B=1.

In the Simulated Annealing procedure, the Ois
must be initialized to values that already meet the
system specifications. The Min + B procedure was
used to find this initial starting point. In the
Simulated Annealing procedure, the best solution
found after 10×I annealing phases where that I is the
number of operands, is kept as the final solution. In
the Preplanned procedure, only the required system
performances, and then the sensitivity performances
are computed instead of all system performances.
The upper bound solution of the Branch and Bound
procedure is computed using a dichotomic search
algorithm to reduce the number of iterations. For the
procedures that require the MWL combination, this
combination is found by using a dichotomic search
for each operand. For the heuristic procedure, the
Max-1 bit procedure was selected to reduce the word
length of operands whose have the highest cost per
bit. All the procedures were adjusted in order to use
the C metric, making them fully automatic
procedures able to handle simultaneously several
error models, user specifications and hardware costs.

We applied the nine-optimization procedures to
the determination of word lengths for 12 DSP
algorithms [21]. The algorithms include the four
elementary operations (+, −, ×, ÷), the fifth order
elliptic FIR filter [22], another FIR filter, an IIR
filter, an adaptive filter, the CORDIC algorithm [23],
the IDCT algorithm [24], a frequency estimation
algorithm [25], and a neural network algorithm [26]
and are denoted by DSP1 through DSP12,
respectively. For the filters, the word lengths of both
coefficients and data-paths were analyzed. The
hardware architecture and operands for the fifth order
elliptic filter were taken from [12], the IDCT
from [27], the frequency estimation algorithm from
[28] and the neural network algorithm from [29].

Relevant error models were selected for each
DSP algorithm. For the filters, the fast Fourier
transform was selected to compute the accuracy of
the output frequency responses. The errors models
for the IDCT were taken from the IEEE standards

specifications [5]. The Rand measurement [30] was
used as a quality metric for clustering produced by
the neural network. For the other DSP algorithms, the
maximum and mean square errors were used.

For the IDCT, the characteristics of the inputs
presented were specified in [5]. For the remaining
11 DSP algorithms, the test bench consisted of
applying 10000 pseudo-random inputs.

Word lengths were found for the 12 DSP
algorithms by the 9 maximization procedures with
using K=100 different user specifications. For each
procedure, two results are given in Table 1. The first

one, iWL∆ , is a sum of word length differences
averaged over K.

1001

WL WLkK k 1
∆ = ⋅ ∆∑

=
 (8)

where

11 opt

0

I
WL WL WLk ki ki

iI

−
∆ = ⋅ −∑

=
 (9)

and where opt
iWL is the word length of the operand Oi

resulted by the procedure that obtained the best word
length combination. iWL∆ is normalized by the
number of operands I. The second result reported in
Table 1, N∆ , is the difference between the number of
iterations, N, required to obtain a solution and Nopt,
the number of iterations required by the procedure
that obtained a solution with the lowest number of
iterations (generally, the procedure producing Nopt
does not correspond to the procedure that producing

opt
iWL). Note that N∆ is normalized by the number of

operands In that is,

1001

1
kN N

K k
∆ = ⋅ ∆

=
∑ (10)

where

 ()opt1
kk kN N N

I n
∆ = − (11)

If a procedure produces WL∆ = 0 and N∆ = 0,
then it compares favorably to all other procedures.
For DSP1 and DSP2, all the procedures found the
optimal word lengths. No procedure was able to find
the optimal word length for all DSPs. For some DSP
algorithms (DSP4, DSP7, DSP10, DSP11 and DSP12)
no procedure produced WL∆ = 0. This corresponds to
the situation where different procedures find the
optimal solution for different user specifications. By

analogy, this situation occurs for DSP1, DSP3, DSP4,
DSP5, DSP7, DSP8, DSP10 and DSP11 for N∆ . Note

that a difference that may appear small in iWL∆ , for
example 1.65 for the Min + b procedure applied to
DSP11, may correspond to a maximum difference as
large as 38 bits in total operand widths, when
comparing a solution to the optimal solution for some
system specification. Since the number of iterations
required finding a solution dominates the processing
time, a small difference on N∆ is not very significant
when a small number of operands are processed.

For instance, in some applications, up to 1000
operands are processed [2]. A difference of N∆ =10
for example would imply 10 × 1000 × 0.75s = 2.08
additional hours of processing time if 750ms were
required to performed one fixed-point simulation of
relevant test cases. N∆ significantly larger than 10
have been observed. This may translate in very long
additional processing time.

The Hybrid procedure always reaches a solution
equivalent or better than the Min + B bit procedure,
resulting in lower hardware cost. By analyzing the
details of the simulations, we found two
explanations: 1) An optimal solution can be reached
with less hardware cost than the MWL combination.
This counterintuitive result was observed several
times when the quantization errors contributed by
two operands or more compensate each other.
2) Finding a solution with the Min + B bit procedure
does not ensure that all operands have their minimum
word length. Therefore, for both situations, the
Hybrid procedure takes advantage of using the Max –
1 bit procedure. However since the Hybrid procedure

adds steps to the Min + B bit procedure, it obviously
requires additional iterations.

Procedures such as the Max – 1 bit and the
Evolutive start from a solution that already meets the
system error specifications, and then try to find a
better solution. They can be trapped in a local
optimum instead of finding the global optimum. The
Heuristic procedure produced optimal solutions with
a relatively small number of iterations. The
Simulated Annealing procedure always produced the
same solutions as the Min + B procedure, and
therefore it does not appear to bring any advantage,
at least for the DSP algorithms considered here.

Most of the time, the Preplanned procedure
required the smallest number of iterations to find a
solution. However, the solutions it produces are not
always the best in terms of hardware cost. Moreover,
the Preplanned procedure, as the Min + B bit and the
Branch and Bound procedures, do not consider
solutions that require less hardware than the MWL
combination that were found feasible in some cases.
The Branch and Bound, Exhaustive and Max − 1 bit
procedures a large number of iterations to find a
solution. They may become prohibitive when a
problem with a large number of operands is analyzed.

From these observations, it is found that the
Heuristic and the new Hybrid procedures are the
procedures very good solutions, albeit not always the
optimal one. The Hybrid procedure often produces
solutions with less hardware costs, at the expense of
additional iterations. This hybrid procedure, proposed
by the authors, appears to be a good alternative for
rapidly finding a combination of word lengths that
meets user specifications.

Table 1. Results of the comparative study

Heuristic Exhaustive Simulated
Annealing Preplanned Branch and

Bound Min + b bit Max – 1 bit Evolutive Hybrid Bench
-

marks
In

WL∆ N∆ WL∆ N∆ WL∆ N∆ WL∆ N∆ WL∆ N∆ WL∆ N∆ WL∆ N∆ WL∆ N∆ WL∆ N∆
DSP1 3 0.00 0.2 0.00 3.2 0.00 20.2 0.00 1.9 0.00 2.1 0.00 2.2 0.00 70.6 0.00 1.3 0.00 3.2
DSP2 3 0.00 0.0 0.00 1.0 0.00 20.0 0.00 0.0 0.00 2.7 0.00 0.0 0.00 72.5 0.00 4.0 0.00 1.0
DSP3 5 0.00 1.0 0.61 3.2 0.61 52.2 0.61 1.7 0.72 2.0 0.61 2.2 0.72 56.0 0.72 0.5 0.61 3.2
DSP4 7 0.04 1.6 0.41 2.1 0.19 98.2 0.23 0.2 0.34 52.1 0.19 0.2 0.68 37.2 0.11 3.4 0.04 1.6
DSP5 5 0.00 0.7 0.48 3.6 0.48 52.0 0.56 1.7 0.54 5.2 0.48 2.0 0.67 63.5 0.54 0.7 0.48 3.0
DSP6 4 0.39 0.0 0.00 2.3 0.39 40.0 0.34 0.0 0.00 3.6 0.39 0.0 0.00 97.5 0.00 5.0 0.00 2.3
DSP7 6 0.07 0.2 0.76 7.5 0.42 60.7 0.90 0.2 0.20 2.4 0.63 0.6 0.07 134.0 0.07 8.2 0.04 5.1
DSP8 4 0.03 2.3 0.31 2.5 0.06 98.8 0.18 0.2 0.18 4.8 0.12 0.2 0.06 84.0 0.05 4.5 0.00 1.6
DSP9 15 0.40 2.6 0.00 0.0 0.40 450.0 0.38 0.0 0.18 40.25 0.40 0.0 0.00 105.9 0.00 5.5 0.00 2.6
DSP10 3 0.22 2.2 1.01 4.1 0.98 18.4 1.30 0.1 0.83 4.2 1.01 0.4 0.52 75.6 0.25 5.5 0.22 3.7
DSP11 36 0.18 2.5 1.75 15.5 1.53 2593 3.07 1.2 1.99 2964 1.65 1.5 0.45 172.9 0.18 12.4 0.21 12.5
DSP12 3 0.23 1.72 0.11 0.7 0.02 18.2 0.05 0.0 0.03 7.6 0.02 0.2 0.42 67.3 0.04 2.3 0.01 1.3

With these procedures, the method finds rapid
and accurate solutions for several user specifications.
It reduces the design time, implementation costs, and
power dissipation, as well as allowing performance
increases. Furthermore, the method can be used by
procedures already proposed in the literature and it
makes them able to handle several error models, user
specifications and implementation costs. The method
enables a platform to compare various maximization
procedures, it enables a framework for architecture
exploration by hardware designers. Finally, as
presented in [31], the proposed method can be used
for the formal analysis of DSP algorithms.

5. Conclusion
For the purpose of pure performance, low power

operation and to reduce design time, an automatic
method for the determination of word lengths in
fixed-point implementations of DSP algorithms has
been proposed, implemented and tested. The method,
which uses a search-based simulation methodology,
computes a C metric for each word length
combination according to user error models, user
specifications and implementation cost. A set of
procedures that maximizes this metric and finds a
combination of word lengths in a minimum number
of iterations was proposed and implemented.
Representative procedures proposed in the literature
to optimize word lengths of DSP algorithms have
been reviewed, implemented and adapted to the
framework of our automatic tool. The hardware costs
and number of iterations required by these
procedures were compared with those obtained using
our 4 novel procedures through testing on a dozen
DSP algorithms.

The proposed method allows hardware designer
to find rapidly accurate solutions for several user
specifications, while reducing design time,
implementation costs, and power dissipation, as well
as allowing performance increases. Furthermore, the
method can be used by procedures already proposed
in the literature and it makes them able to handle
several error models, user specifications and
implementation costs in a common optimization
process. Finally the method enables a platform to
compare various maximization procedures, and a
framework for architecture exploration by hardware
designers.

References:
[1] D. Oseli, M. Mraz, and N. Zimic, Design

considerations of hardware based fuzzy
controllers, WSEAS Transaction on Electronics.
Iss.2, Vol.3, 2004, pp. 811-816.

[2] H. Keding, M. Willems, M. Coors, and H.
Meyr, FRIDGE: a fixed-point design and
simulation environment, Design, Automation
and Test in Europe, 1998, pp. 429-435.

[3] M.-A. Cantin, Y. Blaquière, Y. Savaria,
P. Lavoie, and E. Granger, Analysis of
quantization effects in a digital hardware
implementation of a fuzzy ART neural network
algorithm, IEEE Int. Symposium on Circuits
and Systems, Vol.3, 2000, pp. 141-144.

[4] J. Yli-Kaakinen, and T. Saramaki, An efficient
algorithm for the design of lattice wave digital
filters with short coefficient wordlength, Int.
Symposium on Circuits and Systems, Vol.3,
1999, pp. 443-448.

[5] CAS Standards Committee of the IEEE Circuits
and Systems Society, IEEE Standard
Specifications for the Implementations of 8x8
Inverse Discrete Cosine Transform, 1991.

[6] I.-T. Lim, and J. Bahn, Optimal wordlength
determination of AC-3 decoding hardware
based on fixed-point analysis and simulations of
AC-3 algorithm, IEEE Workshop on Signal
Processing, 1997, pp. 301-310.

[7] T. Aamodt, Floating-Point to Fixed-Point
Compilation and Embedded Architectural
Support, Masters Thesis, University of Toronto,
2001.

[8] H. Yamashita, H. Yasuura, F. N. Eko, and
C. Yun, Variable Size Analysis and Validation
of Computation Quality, Proc. of Workshop on
High-Level Design Validation and Test
(HLDVT'00), 2000, pp. 95-100.

[9] S.A. Wadekar, Accuracy Sensitive Word-
Length Selection for Algorithm Optimization,
Proc. of the Int. Conference on Computer
Design: VLSI in Computers and Processors,
1998, pp. 54-61.

[10] S. Kim, K. Kum, and W. Sung, Fixed-point
optimization utility for C and C++ based digital
signal processing programs, IEEE Trans. on
Circuits and Systems II: Analog and Digital
Signal Processing, Vol.45, No.11, 1998,
pp. 1455-1464.

[11] R. Cmar, L. Rijnders, P. Schaumont, S.
Vernalde, and I. Bolsens, A methodology and

design environment for DSP ASIC fixed point
refinement Design, Automation and Test in
Europe Conference and Exhibition, 1999,
pp. 271-276.

[12] Press Release: Synopsys Accelerates System-
Level C-Based DSP Design With CoCentric
Fixed-Point Designer Tool. Synopsys Inc.,
2000.

[13] W. Sung, and K. Kum, Simulation-based word-
length optimization method for fixed-point
digital signal processing systems, IEEE Trans.
on Signal Processing, Vol.43, No.12, 1995,
pp. 3087-3090.

[14] K. Han, I. Eo, K. Kim, and H. Cho, Numerical
word-length optimization for CDMA
demodulator, IEEE Int. Symposium on Circuits
and Systems, Vol.4, 2001, pp. 290-293.

[15] H. Choi, and W. P. Burleson, Search-based
wordlength optimization for VLSI/DSP
synthesis, VLSI Signal Processing VII, 1994,
pp. 198-207.

[16] P.D. Fiore, and Li Lee, Closed-form and real-
time wordlength adaptation, Proceedings of the
IEEE Int. Conference on Acoustics, Speech, and
Signal Processing, Vol.4, 1999, pp. 1897-1900.

[17] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi,
Optimization by simulated annealing, Science,
No.220, 1983, pp. 671-680.

[18] M. Speitel, and B. Niemann, SystemC design
language for development of ASICs and
systems, Elektronik, Vol.50, No.13, 2001, pp.
78-83.

[19] S. Kim, Ki-Il Kum, and W. Sung, Fixed-Point
Optimization Utility for C and C++ Based
Digital Signal Processing Programs, IEEE
Trans. on Circuits and Systems II, Iss.11,
Vol.45, 1998, pp. 1455-1464.

[20] M.-A. Cantin, Y. Savaria, D. Prodanos, and
P. Lavoie, A Metric for Automatic Word Length
Determination of Hardware Datapaths,
Submitted to IEEE Trans. on Computer-Aided
Design, 2003.

[21] M.-A. Cantin, Y. Savaria and P. Lavoie, A
comparison of automatic word length
optimization procedures, IEEE Int. Symposium
on Circuits and Systems, Vol.2, 2002,
pp. 612-615.

[22] L. Claesen, F. Catthoor, D. Lanneer, G.
Goossens, S. Note, J. Van Meerbergen, and H.
De Man, Automatic Synthesis of Signal
Processing Benchmark using the CATHEDRAL

Silicon Compilers, Proc. of IEEE Custom
Integrated Circuits Conference, 1988, pp.
14.7.1-14.7.4.

[23] J.E. Volder, The CORDIC Trigonometric
Computing Technique, IRE Trans. on
Electronic Computers, V. EC-8, No.3, 1959,
pp. 330-334.

[24] T. Miyazaki, T. Nishitani, M. Edahiro, and I.
Ono, DCT/IDCT processor for HDTV
developed with DSP silicon compiler, Journal
of VLSI Signal Processing, Vol.5, 1993,
pp. 39-47.

[25] S.N. Crozier, Performance and Complexity of
Discrete-Time Frequency Estimation
Algorithms, 17th Biennial Symposium on
Communications, Queen’s University, Ontario,
Canada, 1994.

[26] G.A. Carpenter, and S. Grossberg, A massively
parallel architecture for a self-organizing neural
pattern recognition machine, Computer Vision,
Graphics and Image Processing, Vol.37, 1987,
pp. 54-115.

[27] S. Kim, and W. Sung, Fixed-Point Error
Analysis and Word Length Optimization of 8 x
8 IDCT Architectures, IEEE Trans. on Circuits
and Systems for Video Technology, Vol.8, No.8,
1998, pp. 935-940.

[28] L.-P. Lafrance, M.-A. Cantin, Y. Savaria,
S.H. Sung, and P. Lavoie, Architecture and
performance characterization of hardware and
software implementations of the Crozier
frequency estimation algorithm, IEEE Int.
Symposium Circuits and Systems, Vol.4, 2002,
pp. 823-826.

[29] M.-A. Cantin, Y. Blaquière, Y. Savaria,
E. Granger, and P. Lavoie, Implementation of
the fuzzy ART neural network for fast
clustering of radar pulses, IEEE Int. Symposium
on Circuits and Systems, Vol.2, 1998,
pp. 458-461.

[30] W.M. Rand, Objective Criteria for the
Evaluation of Clustering Methods, Journal of
the American Statistical Association, Vol.66,
No.336, 1971, pp. 846-850.

[31] S. Catudal, M.-A. Cantin, and Y. Savaria,
Performance Driven Validation Applied to
Video Processing, WSEAS Transaction on
Electronics. Iss.3, Vol.1, 2004, pp. 568-575.

