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Abstract: - Automatic word length determination of hardware data paths may require considering several error 
models, user specifications and hardware costs. A new automatic method for determining the word length of 
hardware data paths that consider these requirements is proposed and analyzed. The search-based method uses a 
C/C++ fixed-point simulation tool to model the impact of finite word lengths on overall accuracy. By computing 
dissimilarities between fixed-point and floating-point simulation results, a procedure searches for a combination 
of word lengths that meets accuracy criteria specified by the designer. This method is presented with four novel 
maximization procedures. These four automatic procedures are compared with other procedures given in the 
literature and adapted into the method. The comparison helps to select a procedure that finds a combination of 
word lengths that meet user specifications, in a small number of iterations. The procedures are characterized and 
compared using a dozen DSP algorithms.  
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1. Introduction 

Digital Signal Processing (DSP) algorithms are 
often expressed in 32- or 64-bit fixed- or floating-point 
data formats since these are available in most 
commercial off-the-shelf processors. Yet, in spite of 
very significant improvements in processor 
performance and the power efficiency, the 
requirements of many real-time applications in terms 
of pure performance or low power operation command 
the use of specialized hardware [1].  Since cost, power 
dissipation, and performance are highly dependent on 
the number of bits used to represent data, and on the 
use of floating-point operators, the problem of precise 
word length determination is important. In some 
complex designs, half of the design time can be spent 
determining word lengths [2]. Moreover, many 
algorithms require a careful selection of word lengths 
to preserve their stability [3]. Therefore, powerful 
automatic word-length determination methods are 
required.  

For some specific applications, the resulting word 
length combination found by these methods, must 
meet various error specifications [4][5]. Furthermore, 
depending on the application, the resulting word length 
combination must minimize the hardware costs, 
latency, area, or power consumption, as well as 
increases the pure performance. Especially, for search-

based maximization procedures, it is important to 
grade all word length combination toward the optimal 
solution to guide the search. However, none of 
methods found in the literature propose a way to 
handle several error models, user specifications, and 
implementation cost models in a common optimization 
process. Thus a new automatic word length 
determination method, which is based on a recent 
metric, is proposed. 

This paper is structured as follow. Methods found 
in the literature and previous works on word length 
determination are reviewed in Section 2. A new 
automatic word length determination method that 
considers these requirements is presented and 
described in Section 3 as well as four novel search 
procedures. In Section 4, these four novel procedures 
are compared with procedures given in the literature. 
The methodology and results obtained in this 
comparative study are presented in the same section. 
The main conclusions are summarized in Section 5. 

 
 

2. Related Work 
In the last 10 years, several techniques have been 

proposed to translate floating-point formulations into 
fixed-point formulations, especially for specific DSP 
applications [3][4][6]. Heuristic techniques and 



 

analytical methods dedicated to specific applications 
have been employed. For general DSP applications, 
the translation of floating-point formulations into 
fixed-point formulations consists of evaluating the 
dynamic range and the minimum accuracy, by 
determining the Integer Word Length (IWL) and the 
Fractional Word Length (FWL), of each operand Oi, 
i=0, 1,…, (I−1), where I is the number of operands to 
be translated. The Word Length (WL) of each 
translated fixed-point operand may then be obtained as 
follows: 

 WLi = IWLi + FWLi + si (1) 

where si=0 for unsigned and si=1 for two’s 
complement representations of Oi. In Equation (1), the 
IWL and FWL can be either positive or negative. For 
example, a 4-bit binary data 1010 with si = 0 and 
IWLi=−2 should be interpreted as 0.001010, which 
corresponds to a real value of 0.15625. The same 4-bit 
binary data with si = 0 and FWLi = −2 will be 
interpreted this time as 101000, which corresponds to a 
real value of 40. To ensure that the WL is greater than, 
or equal to 0, the sum of IWL and FWL must be greater 
than, or equal to 0; IWL+FWL ≥ 0. 

The required Integer Word Length can be 
estimated using 3 methods. The first method computes 
the IWLi as follows:  

 ( )max
2logi iIWL O =   

 (2) 

where ⋅ is the “ceiling” function, and where |Oi|max is 
the maximum absolute value of the operand Oi 
extracted during simulations of the DSP algorithm 
[7][8]. The second method computes each IWLi like 
the first method, except that the maximum and 
minimum values of the operand Oi are replaced by the 
values of Oi obtained by propagation of the maximum 
and minimum input values through a Data Flow Graph 
(DFG) of the DSP algorithm [9]. The third method, 
introduced by Sung et al. [10], extracts the mean µi 
and the standard deviation σi of the operand Oi during 
a simulation of the DSP algorithm, and then computes 
the IWLi as follows: 

( )( )max
2log max ,i i i iIWL k O = µ + ×σ  

 (3) 

where k is set equal to 4 in [10]. The first method does 
not guarantee that overflow will not occur in the data 
path. On the other hand, the second method is very 
fast, but it is also known to be a conservative approach 
that tends to overestimates IWLi [11], even though it 
can also underestimate it if partial results cancel out.  

Finally, the third method minimizes the probability of 
overflow in the data path when k is set to a high value.  

After the Integer Word Length, it is, the minimum 
accuracy, or minimum Fractional Word Length (FWL) 
of each operand Oi that is determined. Like the IWL, 
the FWL can be estimated by DFG analysis. 
FRIDGE [2] and CoCentric [12] propagate the FWLs 
through the DFG, while ensuring that no information is 
lost. This technique is called interpolation, and may be 
illustrated by a simple example: for a = b + c, no 
information is lost if FWL(a) = max(FWL(b), FWL(c)).  

Alternatively, Yasuura et al. [8] and Wadekar [9] 
perform numerical analysis on the DFG of the DSP 
algorithm.  

Determining the FWL using a DFG is fast, but the 
method overestimates the FWL like it does for the 
IWL. Furthermore, the DFG analysis requires a fixed-
point specification of the input signals, and becomes 
complex to manage when the algorithm contains data 
dependencies. 

Cmar et al. [11] recently proposed a method that 
combines analytical rules and simulations. The method 
determines FWLi by measurement of the mean µi and 
standard deviation σi of the dissimilarities between 
fixed-point and floating-point simulations.  
The C language description of the DSP algorithm 
requires major modifications for the method proposed 
by Cmar et al., and the bit resolution analysis is 
performed only on one operand at a time, instead of on 
combinations of operands. 

Finally, the FWL can be determined by simulation 
only. Sung & Kum [13], Han & al. [14], Choi and 
Burleson[15] and Fiore and Lee [16] proposed manual 
procedures and guidelines to optimize the FWL. These 
procedures and guidelines that use a search-based 
methodology are now examined.  

A procedure called Sequential Search [14] 
proceeds in three phases. In the first phase, for each 
operand Oi, i=0, 1,…, (I−1), a minimum bit resolution 
is found such that the user specification is met, when 
all other operands Oj, j=0, 1,..., (I−1), j≠i, are in 
floating-point format. In the second phase of this 
procedure, the resolution of each operand is set equal 
to the value found in the first phase. This combination 
of word lengths is called the Minimum Word Length 
(MWL) combination. In the third phase, an iterative 
competition takes place between the operands to gain 
one bit. A bit is temporarily assigned to each operand, 
and the configuration that produces the least 
dissimilarities with a floating point simulation is the 
one that wins the right to keep the bit.  Subsequent 



 

competitions take place until the user specifications are 
met. 

The Heuristic procedure [13] iteratively increases 
all word lengths by one bit from the MWL 
combination until the user specifications of the system 
are met. At that point, the operand that generates the 
largest cost savings wins the right to loose a bit as long 
as the error specifications continue to be met. 

The Exhaustive procedure [13], as its name 
suggest, carries out an exhaustive search, starting from 
the MWL combination. The exhaustive search 
temporarily assigns B additional bits over the 
operands. Every possible assignment combination is 
tried. If the system specifications are not met, then B is 
increased, that is B=1, 2, 3, … bits, until one 
assignment combination meets the system 
specifications. 

A complex procedure for word length 
determination is proposed in [16]. It uses an approach 
similar to the classical simulated annealing 
algorithm [17]. The Simulated Annealing procedure 
only considers solutions that meet the error 
specifications, but may temporarily explore some 
solutions that increase the total system hardware cost. 
The procedure starts with a word length combination 
such that the overall solution meets the system 
specifications. Then some WLis are increased in order 
to allow reducing other WLjs, j≠i, in an attempt to 
minimize the total system hardware cost. The user 
determines how many times this step is repeated.  

The Preplanned procedure [14] proceeds in four 
execution phases. The first phase computes the system 
performance for each operand Oi, i=0, 1,…, (I−1), 
when WLi is set equal to every possible bit resolution, 
WLi = 0, 1, ..., (WLmax −1), where (WLmax −1) is the 
maximum accuracy supported by the fixed point 
simulation tool. During this first phase, all other 
operands Oj, j≠i, are in floating-point format, and a 
sensitivity parameter, ξi, is computed for each operand: 

 ξ i = f (WLi +1) – f (WLi) (4) 

where f(.) is an objective function. The second phase 
constructs a global priority list in decreasing order of 
sensitivity. The third phase computes and sets all the 
Oi to the MWL bit resolution. The last phase is an 
iterative process. The width of the operand Oi that has 
the largest sensitivity is increased by one bit. As long 
as the error specifications of the system are not met, 
this iterative process is repeated. 

The Branch and Bound procedure [15] proceeds 
in 3 execution phases. The first phase finds a minimum 
uniform word length combination, called the upper 
bound solution. The second phase computes the MWL 
combination. The third phase tries all word length 
combinations exhaustively in the search space between 
the upper bound and the MWL combination and keeps 
the best solution found. Limiting the search space to 
this range tends to drastically prune the search space as 
compared to a brute force exhaustive search. 

 
 

3. An Automatic Optimization Method 
Modeling dissimilarities between floating-point and 
fixed-point simulation results of a DSP algorithm may 
require computing several error models. For example, 
the CAS standards Committee of the IEEE Circuits 
and Systems Society proposes in [5] five error models 
for the Inverse Discrete Cosine Transform (IDCT) 
algorithm: the pixel peak error, the pixel mean square 
error, the pixel mean error, the overall mean square 
error and the overall mean error. However, for all the 
simulation-based procedures cited in Section 2, there is 
no method in the literature that explain how to handle 
several error models, user specifications and hardware 
cost models, in a single unified word length 
optimization process. Thus, an automatic word length 
determination method is proposed, and the metric on 
which it is based is presented in this section. Four 
novel procedures adapted to the method are also 
introduced. 

 
 

3.1 Description of the Automatic Method 
The proposed method is built upon a fixed-point 
simulation tool. Two fixed-point simulation tools were 
successfully used: SystemC [18] and a fixed-point 
utility developed by W. Sung et al. [19]. These fixed-
point simulation tools convert a floating-point DSP 
program written in C or C++ into a fixed-point 
equivalent description. Fixed-point arithmetic 
operations, instead of floating-point arithmetic, are 
conducted automatically due to the operator 
overloading capability of the C++ language. Except for 
declaring which operands belong to a fixed-point class 
type, renaming the main function and adding a fixed-
point header file, no other part of the original C 
program needs to be changed to use the proposed 
method. 

The proposed method is composed of six steps, as 
shown in Figure 1.   
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Fig. 1.  Proposed method for the automatic determination of word lengths 

 

1- Test bench generation 
 The user generates test benches representative of 
the application. They must stimulate all 
operands, {Oi}, in the DSP algorithm, and all data 
paths of interest. The method considers I user-
specified operands, and outputs a word length for 
each one. Each test bench is a file containing inputs 
to stimulate the DSP algorithm. 
 2- Floating-point simulation 

A floating-point simulation of the DSP algorithm 
is performed for each test bench. Several parameters 
for each operand Oi are extracted and computed from 
the simulation: the maximum absolute value |Oi|max, 
the sign flag, si (see Equation (1)), the mean µi, and 
the variance σi. These parameters and output results 
produced by the DSP algorithm in floating-point 
resolution are recorded for future reference. 
 3- Determination of the fixed-point formats. 
 For each operand Oi, the integer word length 
IWLi is set equal to Equation (3), and si to 0 if the 
operand Oi is always positive, and to 1 otherwise. 
The Fractional Word Length FWLi is initialized 
according to the selected maximization procedure to 
be run in Step 8 below. 
 4-  Fixed-point simulation 
 A fixed-point simulation is performed for each 
test bench. Output results produced by the DSP 
algorithm in fixed-point resolution are recorded. 
 5- Error computation 
 Floating-point and fixed-point simulation results 
stored in Steps 2 and 4 respectively are used to 
compute the dissimilarity between the floating- and 
fixed-point models according to various error εe, for 
e=0, 1, … E-1 where E is the number of error 
computations. Error computations εe, such as the 
maximum absolute error and mean square error 
between each correspondent floating- and fixed-point 
output, are provided to quantify the dissimilarities 

between the floating- and fixed-point models. 
However the user is also allowed to provide his error 
computations εe by using predetermined C functions 
to get the floating- and fixed-point output results and 
return the resulting εe values. 
 6- Implementation cost 
 The implementation cost, denoted by H, is some 
measure of the hardware cost, power dissipation, or 
processing time for the word length 
combination { }iWL , and is computed in the 

range [1, ∞. By default the implementation cost H is 
defined as follow: 
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where WLi is the total length in bits of the ith operand. 
Since Equation (5) is a simplification of reality and 
for no loss of generality, the user is allowed to 
provide his own computation of the implementation 
cost H based on the word length WLi of each 
operand Oi. 
 7- Computation of the C metric 

 Based on the error computations εe produced in 
Step 5, the Implementation cost H produced in Step 
6, and the user specifications Se, a pas/fail threshold 

for each error computation εe, the following C metric 
recently proposed in [20], is computed. 
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where de=0 if Se ≥ εe, and de=1 if Se < εe. Note that 
Equation (6) is composed of two terms that are 
mutually exclusive as a function of whether the 



 

specifications are met (left side) or not (right side). 
The C metric grades all word length combination 
towards the optimal solution with the term 

( )( )1
0

E
e e ee S S−

= −∑ ε  that could be found in both side 

of the metric. User specifications are normalized to 
provide and equal weight in the metric for each of 
them. Thus, for two word length combinations 
having the same implementation cost, the one that 
minimizes dissimilarities between the floating-point 
and fixed-point simulations yields a higher value of 
the metric. For two word length combinations 
producing the same output accuracy, the one that 
minimizes the implementation costs yields a higher 
value of the metric. This behavior comes from the 
implementation cost term H that could be found in 
both side of the metric. The maximum value of the 
metric is obtained at the optimal solution.  
 8- Maximization procedure 

A maximization procedure tries to find the 
combination of word lengths {WLi} that maximizes 
the metric C as defined above. In the following 
sub-section, 4 new procedures are proposed. 
 
 
3.2 Maximization Procedures 

In this work, four maximization procedures are 
examined and compared.  
a) A procedure called Min + B bit is an extension to 
the procedure called sequential search [13]. It 
proceeds in three phases. The first two phases remain 
the same as these of the sequential search procedure. 
In the third phase of the Min + B bit procedure, an 
iterative competition takes place between the 
operands to gain B bits. For some DSP algorithms, it 
was found that increasing the bit resolution of a 
single operand at a time by 1 bit could fail to 
converge to an acceptable solution. This happens, for 
instance, when the overall accuracy only increases if 
two or more operands are simultaneously widened. 
Therefore, when adding 1 bit fails to provide 
significant accuracy improvements, 2, 3,... , B bits are 
temporarily distributed on the I operands until the 
error decreases. At all steps, the procedure explores 
all L possible ways of assigning B bits to I operands, 
where L corresponds to the Pascal triangle (see 
Equation (7)). The value of B is kept as small as 
possible, and is increased only as needed to reduce 
the error. Once the error is reduced, B is reset to 1, 
and the iterative competition is repeated until the user 
specifications are met. 
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b) A procedure called by Max – 1 bit starts with 
the maximum bit resolution, WLmax − 1, allowed by 
the fixed-point simulation tool for all operands. Then 
the operands compete to loose their bits as follows.  
One bit is temporarily removed from each operand 
Oi, while all other operands Oj, j≠i, remain 
unchanged.  The operand Oi for which the C metric is 
maximized wins the competition and looses its bit. 
The process is repeated for another bit, and so on, as 
long as the error specifications are met. The pseudo-
code of the Max−1 bit procedure is given below: 
 With the Max-1 bit procedure, the final 
solution is found when removing 1 bit of any single 
operand at a time fails to meet the error specification. 
However for some DSP algorithm, if two or more 
operands are simultaneously shortened, a better 
solution may be found. This could happen when the 
quantization error of more than 2 operands 
compensate. Therefore when 1 bit fails to find a 
better solution, 2, 3, ..., B bits can be removed 
simultaneously over the I operands. It is not clear 
what limit should be used for B, and this issue was 
left for future research, thus the Max-B bits procedure 
was not explored further. 
 c) An Evolutive procedure starts with all 
operands having floating-point precision. The word 
length of a first operand, say Oi, is set equal to 
WLmax−1 and gradually decreased until the system 
meets the error specifications. The value of WLi is 
then increased by one additional bit, and a second 
operand is analyzed in the same way. This is repeated 
until all WLj are fixed. The user is allowed to 
determine the order in which the operands are 
processed. Because the Evolutive procedure tends to 
minimize the first operands processed, it is 
recommended to process first the operand having the 
highest hardware cost and end with the operand 
having the lowest hardware cost. Thus, it is up to the 
user to define the order in which the operands are 
analyzed by determining their declaration order in the 
C language DSP program.  
 d) A Hybrid procedure combines the Min + B 
bit followed by a minimization of the word lengths as 
performed in the Max – 1 bit procedure. For some 
DSP algorithms, it was found that a higher value of 
the metric C can be obtained by using both 
procedures together than if either one is used 
independently.  



 

4. Comparison 
The set of procedures implemented for comparison 
includes the Heuristic, Exhaustive, Simulated 
Annealing, Preplanned, Branch and Bound, 
Min + B bit, Max – 1 bit, Evolutive and Hybrid 
procedures. The Sequential Search [14] procedure 
was not considered in the comparison because it 
sometimes fails to converge to a solution, and 
corresponds to the Min + B bit procedure with B=1. 

In the Simulated Annealing procedure, the Ois 
must be initialized to values that already meet the 
system specifications. The Min + B procedure was 
used to find this initial starting point. In the 
Simulated Annealing procedure, the best solution 
found after 10×I annealing phases where that I is the 
number of operands, is kept as the final solution. In 
the Preplanned procedure, only the required system 
performances, and then the sensitivity performances 
are computed instead of all system performances. 
The upper bound solution of the Branch and Bound 
procedure is computed using a dichotomic search 
algorithm to reduce the number of iterations. For the 
procedures that require the MWL combination, this 
combination is found by using a dichotomic search 
for each operand. For the heuristic procedure, the 
Max-1 bit procedure was selected to reduce the word 
length of operands whose have the highest cost per 
bit. All the procedures were adjusted in order to use 
the C metric, making them fully automatic 
procedures able to handle simultaneously several 
error models, user specifications and hardware costs. 

We applied the nine-optimization procedures to 
the determination of word lengths for 12 DSP 
algorithms [21]. The algorithms include the four 
elementary operations (+, −, ×, ÷), the fifth order 
elliptic FIR filter [22], another FIR filter, an IIR 
filter, an adaptive filter, the CORDIC algorithm [23], 
the IDCT algorithm [24], a frequency estimation 
algorithm [25], and a neural network algorithm [26] 
and are denoted by DSP1 through DSP12, 
respectively. For the filters, the word lengths of both 
coefficients and data-paths were analyzed. The 
hardware architecture and operands for the fifth order 
elliptic filter were taken from [12], the IDCT 
from [27], the frequency estimation algorithm from 
[28] and the neural network algorithm from [29]. 

Relevant error models were selected for each 
DSP algorithm. For the filters, the fast Fourier 
transform was selected to compute the accuracy of 
the output frequency responses. The errors models 
for the IDCT were taken from the IEEE standards 

specifications [5]. The Rand measurement [30] was 
used as a quality metric for clustering produced by 
the neural network. For the other DSP algorithms, the 
maximum and mean square errors were used. 

For the IDCT, the characteristics of the inputs 
presented were specified in [5]. For the remaining 
11 DSP algorithms, the test bench consisted of 
applying 10000 pseudo-random inputs.  

Word lengths were found for the 12 DSP 
algorithms by the 9 maximization procedures with 
using K=100 different user specifications. For each 
procedure, two results are given in Table 1. The first 

one, iWL∆ , is a sum of word length differences 
averaged over K. 
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and where opt
iWL  is the word length of the operand Oi 

resulted by the procedure that obtained the best word 
length combination.  iWL∆ is normalized by the 
number of operands I. The second result reported in 
Table 1, N∆ , is the difference between the number of 
iterations, N, required to obtain a solution and Nopt, 
the number of iterations required by the procedure 
that obtained a solution with the lowest number of 
iterations (generally, the procedure producing Nopt 
does not correspond to the procedure that producing 

opt
iWL ). Note that N∆ is normalized by the number of 

operands In that is, 

 
1001

1
kN N

K k
∆ = ⋅ ∆

=
∑  (10) 

where 

 ( )opt1
kk kN N N

I n
∆ = −  (11) 

If a procedure produces WL∆ = 0 and N∆ = 0, 
then it compares favorably to all other procedures. 
For DSP1 and DSP2, all the procedures found the 
optimal word lengths. No procedure was able to find 
the optimal word length for all DSPs. For some DSP 
algorithms (DSP4, DSP7, DSP10, DSP11 and DSP12) 
no procedure produced WL∆ = 0. This corresponds to 
the situation where different procedures find the 
optimal solution for different user specifications. By 



 

analogy, this situation occurs for DSP1, DSP3, DSP4, 
DSP5, DSP7, DSP8, DSP10 and DSP11 for N∆ . Note 

that a difference that may appear small in iWL∆ , for 
example 1.65 for the Min + b procedure applied to 
DSP11, may correspond to a maximum difference as 
large as 38 bits in total operand widths, when 
comparing a solution to the optimal solution for some 
system specification. Since the number of iterations 
required finding a solution dominates the processing 
time, a small difference on N∆  is not very significant 
when a small number of operands are processed.  

For instance, in some applications, up to 1000 
operands are processed [2]. A difference of N∆ =10 
for example would imply 10 × 1000 × 0.75s = 2.08 
additional hours of processing time if 750ms were 
required to performed one fixed-point simulation of 
relevant test cases. N∆  significantly larger than 10 
have been observed. This may translate in very long 
additional processing time. 

The Hybrid procedure always reaches a solution 
equivalent or better than the Min + B bit procedure, 
resulting in lower hardware cost. By analyzing the 
details of the simulations, we found two 
explanations: 1) An optimal solution can be reached 
with less hardware cost than the MWL combination. 
This counterintuitive result was observed several 
times when the quantization errors contributed by 
two operands or more compensate each other. 
2) Finding a solution with the Min + B bit procedure 
does not ensure that all operands have their minimum 
word length. Therefore, for both situations, the 
Hybrid procedure takes advantage of using the Max – 
1 bit procedure. However since the Hybrid procedure 

adds steps to the Min + B bit procedure, it obviously 
requires additional iterations. 

Procedures such as the Max – 1 bit and the 
Evolutive start from a solution that already meets the 
system error specifications, and then try to find a 
better solution. They can be trapped in a local 
optimum instead of finding the global optimum. The 
Heuristic procedure produced optimal solutions with 
a relatively small number of iterations. The 
Simulated Annealing procedure always produced the 
same solutions as the Min + B procedure, and 
therefore it does not appear to bring any advantage, 
at least for the DSP algorithms considered here. 

Most of the time, the Preplanned procedure 
required the smallest number of iterations to find a 
solution. However, the solutions it produces are not 
always the best in terms of hardware cost. Moreover, 
the Preplanned procedure, as the Min + B bit and the 
Branch and Bound procedures, do not consider 
solutions that require less hardware than the MWL 
combination that were found feasible in some cases. 
The Branch and Bound, Exhaustive and Max − 1 bit 
procedures a large number of iterations to find a 
solution. They may become prohibitive when a 
problem with a large number of operands is analyzed. 

From these observations, it is found that the 
Heuristic and the new Hybrid procedures are the 
procedures very good solutions, albeit not always the 
optimal one. The Hybrid procedure often produces 
solutions with less hardware costs, at the expense of 
additional iterations. This hybrid procedure, proposed 
by the authors, appears to be a good alternative for 
rapidly finding a combination of word lengths that 
meets user specifications. 

                   
Table 1. Results of the comparative study 

Heuristic Exhaustive Simulated 
Annealing Preplanned Branch and 

Bound Min + b bit Max – 1 bit Evolutive Hybrid Bench
-

marks 
In 

WL∆  N∆  WL∆  N∆  WL∆  N∆  WL∆  N∆  WL∆  N∆  WL∆  N∆  WL∆  N∆  WL∆  N∆  WL∆  N∆  
DSP1 3 0.00 0.2 0.00 3.2 0.00 20.2 0.00 1.9 0.00 2.1 0.00 2.2 0.00 70.6 0.00 1.3 0.00 3.2 
DSP2 3 0.00 0.0 0.00 1.0 0.00 20.0 0.00 0.0 0.00 2.7 0.00 0.0 0.00 72.5 0.00 4.0 0.00 1.0 
DSP3 5 0.00 1.0 0.61 3.2 0.61 52.2 0.61 1.7 0.72 2.0 0.61 2.2 0.72 56.0 0.72 0.5 0.61 3.2 
DSP4 7 0.04 1.6 0.41 2.1 0.19 98.2 0.23 0.2 0.34 52.1 0.19 0.2 0.68 37.2 0.11 3.4 0.04 1.6 
DSP5 5 0.00 0.7 0.48 3.6 0.48 52.0 0.56 1.7 0.54 5.2 0.48 2.0 0.67 63.5 0.54 0.7 0.48 3.0 
DSP6 4 0.39 0.0 0.00 2.3 0.39 40.0 0.34 0.0 0.00 3.6 0.39 0.0 0.00 97.5 0.00 5.0 0.00 2.3 
DSP7 6 0.07 0.2 0.76 7.5 0.42 60.7 0.90 0.2 0.20 2.4 0.63 0.6 0.07 134.0 0.07 8.2 0.04 5.1 
DSP8 4 0.03 2.3 0.31 2.5 0.06 98.8 0.18 0.2 0.18 4.8 0.12 0.2 0.06 84.0 0.05 4.5 0.00 1.6 
DSP9 15 0.40 2.6 0.00 0.0 0.40 450.0 0.38 0.0 0.18 40.25 0.40 0.0 0.00 105.9 0.00 5.5 0.00 2.6 
DSP10 3 0.22 2.2 1.01 4.1 0.98 18.4 1.30 0.1 0.83 4.2 1.01 0.4 0.52 75.6 0.25 5.5 0.22 3.7 
DSP11 36 0.18 2.5 1.75 15.5 1.53 2593 3.07 1.2 1.99 2964 1.65 1.5 0.45 172.9 0.18 12.4 0.21 12.5 
DSP12 3 0.23 1.72 0.11 0.7 0.02 18.2 0.05 0.0 0.03 7.6 0.02 0.2 0.42 67.3 0.04 2.3 0.01 1.3 



 

With these procedures, the method finds rapid 
and accurate solutions for several user specifications. 
It reduces the design time, implementation costs, and 
power dissipation, as well as allowing performance 
increases. Furthermore, the method can be used by 
procedures already proposed in the literature and it 
makes them able to handle several error models, user 
specifications and implementation costs. The method 
enables a platform to compare various maximization 
procedures, it enables a framework for architecture 
exploration by hardware designers. Finally, as 
presented in [31], the proposed method can be used 
for the formal analysis of DSP algorithms. 
 

5. Conclusion 
For the purpose of pure performance, low power 

operation and to reduce design time, an automatic 
method for the determination of word lengths in 
fixed-point implementations of DSP algorithms has 
been proposed, implemented and tested. The method, 
which uses a search-based simulation methodology, 
computes a C metric for each word length 
combination according to user error models, user 
specifications and implementation cost. A set of 
procedures that maximizes this metric and finds a 
combination of word lengths in a minimum number 
of iterations was proposed and implemented. 
Representative procedures proposed in the literature 
to optimize word lengths of DSP algorithms have 
been reviewed, implemented and adapted to the 
framework of our automatic tool. The hardware costs 
and number of iterations required by these 
procedures were compared with those obtained using 
our 4 novel procedures through testing on a dozen 
DSP algorithms. 

The proposed method allows hardware designer 
to find rapidly accurate solutions for several user 
specifications, while reducing design time, 
implementation costs, and power dissipation, as well 
as allowing performance increases. Furthermore, the 
method can be used by procedures already proposed 
in the literature and it makes them able to handle 
several error models, user specifications and 
implementation costs in a common optimization 
process. Finally the method enables a platform to 
compare various maximization procedures, and a 
framework for architecture exploration by hardware 
designers. 
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