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Abstract: This paper describes RAGA, a data mining system that combines evolutionary and symbolic machine learning 
methods, and discusses recent extensions required to extract comprehensible and strong rules from a very challenging 
dataset. RAGA relies on evolutionary search to highlight strong rules to which symbolic generalization techniques are 
applied between generations. We present some experimental results and a comparison of RAGA with other data mining 
systems. 
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1 Introduction 
 

RAGA [1, 2] is a data mining system that uses 
a Genetic Algorithm [4] (GA) / Genetic 
Programming [5] (GP) based engine to extract 
knowledge in the form of predictive rules.  The 
system was designed for the tasks of both 
supervised and certain types of unsupervised 
learning. Most rule induction algorithms perform a 
local search by selecting one attribute at a time. We 
prefer evolutionary algorithms because of their 
more global style of search. Also, many data 
mining systems applied in practice rely on a 
representation language restricted to 1-place 
predicates (for example, See-5 [6]). These systems 
cannot discover relationships between attributes 
and are, thus, incapable of finding strong rules in 
many domains. GP-based systems, on the other 
hand, are not subject to similar restrictions in 
expressive power. 

Section 1 introduces RAGA and section 2 
describes the Poker Hand Dataset and the 
challenges it poses to data mining systems. Section 
3 details how RAGA combines evolutionary and 
classical machine learning techniques to evolve 
better and more comprehensible rules. In section 4 
we present experimental results including 
comparisons with other data mining systems, and 
section 5 concludes. 

 
2 Description of RAGA 
 

RAGA is an evolutionary data mining 
system that uses a hybrid GA and GP engine. 

Although the system is fully described in [1] 
and [2], below is a brief description of several 
key points. 

The quality of a rule depends on several 
statistical and subjective factors. These include the 
confidence, the coverage, and how useful and how 
interesting the rule is within the given domain. 
Because the latter two features are subjective there 
is no widely accepted method for determining 
them, and no common scale to rate or compare 
them.  

Confidence (rule accuracy) is defined to be 
the percentage of times that the consequent is true 
given that the antecedent is true. If the consequent 
is false while the antecedent is true, the confidence 
for the given rule drops. If the antecedent is not 
matched by a data item, then this item does not 
contribute to the determination of the confidence of 
the rule. 

Support (rule coverage) is defined as the 
number of data elements that are correctly 
answered using the rule, divided by the total 
number of elements in the set.  

 
RAGA aims to find rules of the form:  
If X1 ∧ X2  ∧ … ∧ Xn Then Y1 ∧ Y2 ∧ … ∧ Ym. 

 
The symbols X1…Xn, and Y1…Ym each 

represent terms within the rule, where a term is a 
function that either indicates the existence of a 
value, or performs an operation on two or more 
attributes. In classification tasks the value for m is 
always 1, while the value for n is unbounded. 

The genetic engine used by RAGA is a 
hybrid of GA and GP, with several modifications 



and additions to the standard models. These 
additions include a set of contraints that define 
valid population members, a plug-in style fitness 
function, specialized crossover and mutation 
operations, and a non-evolutionary component 
called Intergenerational Processing. 

In order for a rule to belong to a population 
it must first pass tests that determine uniqueness 
and validity, according to the language specified by 
the user. Because it is possible that invalid rules 
will be generated and evolved throughout the life of 
the search, each rule is examined before being 
allowed into the population. 

The plug-in style fitness function starts by 
calculating a raw fitness, which is an objective 
measure of how close the confidence and support 
factors are to target values specified by the user. 
This result is used as the initial fitness for each rule 
before several penalty and bonus functions are 
applied. The functions and parameters that are 
selected are used to tune the fitness such that it is 
relative to other rules in the population. The 
inclusion of different fitness modifiers depends on 
the definition of the problem. For example, certain 
fitness plug-ins are designed to maximize data 
coverage in classification tasks, but would not 
contribute positively to the results of an 
unsupervised search. 

RAGA uses several fairly standard 
crossover and mutation operators whose results 
must conform to the population validity constraints. 
Crossover is used to extract and make wider use of 
important rule fragments, while the mutation 
operators are used to probe untested solutions and 
fine-tune existing rules. 

The intergeneration processing refers to 
several tasks that are run between generations. 
These tasks vary depending on user specifications, 
but can include operations such as trimming the 
dataset of rules that are logical tautologies or 
contradictions. Previously in RAGA, the 
intergenerational processing stage was primarily 
used to ensure rule validity and to omit rules based 
on the quality of their output, and to further fine-
tune rules to make them more general. Because of 
the benefits realized during this stage, it has been 
greatly expanded (see sections 3 and 4). 

 
2   Dataset: Poker Hand Scores 
 

One way to address the problem of 
evaluating results from a rule induction algorithm is 
to generate a set of random data that conforms to a 
pre-specified set of known rules. The data can 

optionally contain noise, incorrect and missing 
values, as well as non-essential attributes. The 
quality of the algorithm can be judged by the 
correlation between the original rules and the 
discovered rules. The drawback to this method 
stems from the fact that these datasets are purely 
abstract and have no real-world meaning. 

During the analysis phase it is trivial to 
look for rules that are an identical match, however 
in cases where the discovered rules are different it 
is sometimes difficult to determine their worth. For 
example, if a discovered rule is an optimized 
version of the original then it may be deemed 
incorrect because the human analyst cannot see the 
relationship. 

Another problem with synthetic datasets is 
that they can represent a search space that is 
unbounded and unfair to some learning algorithms. 
Similarly, some synthetic datasets cannot be 
correctly classified by algorithms that are not 
capable of relational learning. This is shown using 
the polygon dataset in [1]. 

The poker hand dataset, which is more 
completely described below, was generated with 
the intention that it be difficult1 to discover 
solutions yet easy to analyze them. Because of the 
way that the problem is represented it is difficult to 
discover rules that can correctly classify poker 
hands, however the simple nature of the game 
makes it trivial for the human analyst to validate 
potential rules objectively. The solution space is 
bounded because there are a finite number of valid 
poker hands. A valid hand is restricted to five 
unique cards in any position drawn from a standard 
deck of 52 cards. 

Further advantages of the poker hand dataset 
are that it can be readily mapped onto several other 
real-world problem domains such as resource 
allocation in a network, and that it facilitates rule 
evaluation even in unsupervised learning tasks. 

Although several different poker hand 
scoring systems exist we have chosen a model that is 
used to score the worth of hands in video poker. This 
system has more ranks (or different scores) than 
standard poker because certain hands score higher 
based on the possibility of a higher payout, rather 
than simply accounting for winning or losing 
combinations. In some cases a hand is considered 
good because it represents a solid stepping stone 

                                                           
1 The difficulty of the task can be estimated 
from the astonishingly poor performance of 
other data mining systems such as See-5 (see 
section 4). 



towards a winning hand. 
The scores are ordered such that they 

increase with the potential payout. For example, a 
Royal Flush has the greatest payout. Normally the 
hands that are guaranteed to pay out are at the top of 
the scale, with one exception: Score = 10. A hand 
that is a single card away from a Royal Flush is 
more important than some other winning hands 
simply because the payout is so large that it is worth 
giving up the guaranteed win for the chance. 

The example hands show all of the 
important cards in bold face and sorted, however the 
actual ordering of the cards within the hands does 
not matter. For example, a three-of-a-kind is 
obtained regardless of the positions the three like-
valued cards are in. 

 
The following table describes the 17 different ways 
that we score poker hands: 
 

Table 1: Video poker scores 

 
3 What is new in RAGA? 
 

The original system uses a purely 
evolutionary search, and is enhanced by performing 
several types of intergenerational processing (for 
example, rules deemed invalid are modified by 
systematically deleting terms from the antecedent, 
consequent, or both. If this does not render the rule 
valid because of the rule structure or an excess of 
similar members in the population, a complete 
substitution is made).  Because of the success 
realized with intergenerational processing (faster 
discovery of stronger rules), we decided to expand 
its role to include machine learning techniques, in 

particular, rule generalization techniques that can be 
used to abstract higher level rules from groups of 
related and more specific rules. 

The most recent work in RAGA was the 
design and implementation of a system to examine 
and generalize sets of rules based on functions 
contained within a library. These functions include 
operations such as combining commonly appearing 
sets of items together into new symbols, and the 
examination of rule groups with common themes 
(eg: identical consequent) for the purpose of 
introducing higher level functions. One benefit to 
this operation is that the results are more 
comprehensible. 

An example of how generalization can 
improve comprehensibility can be seen in the poker 
hand dataset. The example rules below classify some 
subset of the data as a three-of-a-kind. Notice that 
these rules are not 100% confident over all possible  

 
hands because they do not exclude the case of a Full  

 
House, however the addition of new terms to 
achieve perfect accuracy is not necessary to see the 
benefits of generalization.  

 
If (R3 = R5)∧(R5 = R4)∧(R5 != R1)∧(R2 
!= R4) then (SCORE = 9) 
If (R2 != R1)∧(R2 = R5)∧(R2 != R3)∧(R2 
= R4) then (SCORE = 9) 
 

A simple examination of these rules reveals 
that they are specific to the positions of certain 
cards, which means that a large number of rules are 
required to fully describe this particular score. 

When RAGA notices that all of these rules 
have the same consequent it will automatically 

Score Name Description Example 
16* Royal Flush Ace  Ten of same suit AH KH QH JH 10H 
15* Straight Flush Five sequential cards, same suit 4C 5C 6C 7C 8C 
14* Four of a kind Four of the same card 2H 2D 2S 2C 8S 
13* Full house Three of a kind plus one pair 3D 3C 7H 7S 7D 
12* Flush Five cards of the same suit 2C 3C 6C 9C AC 
11* Straight Five sequential cards 3C 4C 5D 6H 7D 
10 Four to RF Four cards towards Royal Flush AD KD QD JD 4S 
9*  Three of a kind Three equal cards 5H 5S 5D 3C 7H 
8* Two pairs Two pairs of equal cards 4H 4S 9D 9S 7C 
7* One high pair Two equal cards (Jacks or better) QH QD 2C KH 9S 
6 Four to Flush Four cards of the same suit 2C 5C 7C 9C 4H 
5 Four to Straight Four sequential cards ( 2 < c < A) 3H 4D 5D 6C AS 
4 Three to RF Three cards towards Royal Flush KD QD JD 9S 8H 
3 One low pair Two equal cards (Ten or less) 5H 5C 7D JS 2D 
2 Two high cards Two cards (Jacks or better) JD QC 2H 9C 5D 
1 One high card One card (Jack or better) AS 4H 8D 3S 10H 
0 Nothing No useful cards in the group 2S 3D 6H 9C 10H 



attempt to generalize them. This is not done for 
every rule because the operation is computationally 
very expensive, however in our case we rely on 
evolution to choose the subsets that warrant further 
examination. After testing a number of library 
functions (eg: transitivity of equality, search for 
linear relationships, etc) the entire group of rules 
might be replaced by a single rule as follows: 

 
If (NumEqualValues(class = rank) = 
3) then (SCORE = 9) 
 
Translation: “Within the subset of attributes that 
are specified to be of class ‘rank’ by the user, if 
there are exactly three values that are equivalents 
then the hand scores as a three-of-a-kind.” 

 
When this technique is applied then a subset 

of the rules will be compressed into a single, more 
general and more comprehensible rule. Apart from 
being more comprehensible, this extra layer of 
abstraction can also increase the overall rule 
coverage. The coverage will not change if the 
original set of rules was complete and contained all 
of the permutations required to satisfy the data, 
however this is not normally the case. In addition to 
the original rules being replaced there may be a 
number of undiscovered rules that are also 
incorporated automatically. Although there is a risk 
of over-generalizing, this result will be penalized 
during the evaluation stage. Similarly, if other rules 
in the population become redundant because of this 
new rule then the evolutionary component in RAGA 
will have them replaced during the next generation. 

Another type of abstraction is due to the 
creation of aggregate functions. An example of this 
can be seen in the following rules, which were 
selected as a candidate subset because they all have 
100% confidence: 

 
Original rules 
If (A=5)∧(B>D)∧(C=30) then (Type=2) 
If (A=5)∧(C<15)∧(B>D) then (Type=3) 
If (A=5)∧(B>D)∧(C>30) then (Type=1) 
 
After replacement 
If (#A)∧(C=30) then (Type=2) 
If (#A)∧(C<15) then (Type=3) 
If (#A)∧(C>30) then (Type=1) 

 
When RAGA examines these rules it finds 

that the most commonly occurring operations are: (A 
= 5) and (B > D). Because this configuration appears 
to be a key component to several rules, RAGA 
creates a function that represents the conjunction of 

these comparisons. (The new function is denoted as 
#A above). 

The technique is similar to chunking, which 
has been used in [3] as the primary mechanism for 
learning from experience. The aggregate functions 
become building blocks that extend the 
representation language. Since they are extensions of 
the vocabulary, they are protected from disruption 
by crossover, and only need to be discovered once. 
 
4. Experiments 

 
A number of experiments were performed to 

test the results generated by See-5 and RAGA. The 
first step was to generate a set of classifiers (a 
decision tree for See-5 and a rule hierarchy for 
RAGA) from a sample set of 10000 data. 
Afterwards, several tests sets of size 1000 were used 
to test the classifiers. 

When See-5 analyses this data it reports a 
training accuracy of 64.25%, however after testing 
the average correctness is only 36.16%. Post 
analysis of these results seem to indicate that much 
of the correctness comes from class default values, 
which are assumptions made based on the more 
popular scores within the data. The poor quality of 
the rules it found is further illustrated by the fact that 
the tree it produced had 3946 nodes of which 3430 
were leaves! 

When RAGA is run on the same dataset it 
achieves 90.39% correctness on the training set and 
an average accuracy of 57.6% over all test sets. 
Analysis of these results indicates that RAGA does 
not rely on the default hierarchy to boost the 
predictive accuracy. 

 
5. Conclusion 

 
We have described a hard dataset that the 

previous version of RAGA could not handle any 
more satisfactorily than See-5 (see above 
paragraph).  We now tackle this dataset by 
expanding the Intergenerational Processing 
component of RAGA to combine evolutionary and 
non-evolutionary machine learning methods. The 
system relies on evolution to generate plausible 
candidate rules, to point out the rules to which 
computationally expensive, non-evolutionary 
generalization techniques are applied, and to weed 
out the results of eventual over-generalizations. The 
non-evolutionary techniques, by extending the 
representation language, enhance rule 
comprehensibility and rule coverage. 
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