
Evolutionary Data Mining With Automatic Rule Generalization

ROBERT CATTRAL, FRANZ OPPACHER, DWIGHT DEUGO
Intelligent Systems Research Unit

School of Computer Science
Carleton University

Ottawa, On K1S 5B6
Canada

Abstract: This paper describes RAGA, a data mining system that combines evolutionary and symbolic machine learning
methods, and discusses recent extensions required to extract comprehensible and strong rules from a very challenging
dataset. RAGA relies on evolutionary search to highlight strong rules to which symbolic generalization techniques are
applied between generations. We present some experimental results and a comparison of RAGA with other data mining
systems.

Key-Words: Data mining, genetic algorithms, rule hierarchies, classification, machine learning, data set

1 Introduction

RAGA [1, 2] is a data mining system that uses
a Genetic Algorithm [4] (GA) / Genetic
Programming [5] (GP) based engine to extract
knowledge in the form of predictive rules. The
system was designed for the tasks of both
supervised and certain types of unsupervised
learning. Most rule induction algorithms perform a
local search by selecting one attribute at a time. We
prefer evolutionary algorithms because of their
more global style of search. Also, many data
mining systems applied in practice rely on a
representation language restricted to 1-place
predicates (for example, See-5 [6]). These systems
cannot discover relationships between attributes
and are, thus, incapable of finding strong rules in
many domains. GP-based systems, on the other
hand, are not subject to similar restrictions in
expressive power.

Section 1 introduces RAGA and section 2
describes the Poker Hand Dataset and the
challenges it poses to data mining systems. Section
3 details how RAGA combines evolutionary and
classical machine learning techniques to evolve
better and more comprehensible rules. In section 4
we present experimental results including
comparisons with other data mining systems, and
section 5 concludes.

2 Description of RAGA

RAGA is an evolutionary data mining
system that uses a hybrid GA and GP engine.

Although the system is fully described in [1]
and [2], below is a brief description of several
key points.

The quality of a rule depends on several
statistical and subjective factors. These include the
confidence, the coverage, and how useful and how
interesting the rule is within the given domain.
Because the latter two features are subjective there
is no widely accepted method for determining
them, and no common scale to rate or compare
them.

Confidence (rule accuracy) is defined to be
the percentage of times that the consequent is true
given that the antecedent is true. If the consequent
is false while the antecedent is true, the confidence
for the given rule drops. If the antecedent is not
matched by a data item, then this item does not
contribute to the determination of the confidence of
the rule.

Support (rule coverage) is defined as the
number of data elements that are correctly
answered using the rule, divided by the total
number of elements in the set.

RAGA aims to find rules of the form:
If X1 ∧ X2 ∧ … ∧ Xn Then Y1 ∧ Y2 ∧ … ∧ Ym.

The symbols X1…Xn, and Y1…Ym each

represent terms within the rule, where a term is a
function that either indicates the existence of a
value, or performs an operation on two or more
attributes. In classification tasks the value for m is
always 1, while the value for n is unbounded.

The genetic engine used by RAGA is a
hybrid of GA and GP, with several modifications

and additions to the standard models. These
additions include a set of contraints that define
valid population members, a plug-in style fitness
function, specialized crossover and mutation
operations, and a non-evolutionary component
called Intergenerational Processing.

In order for a rule to belong to a population
it must first pass tests that determine uniqueness
and validity, according to the language specified by
the user. Because it is possible that invalid rules
will be generated and evolved throughout the life of
the search, each rule is examined before being
allowed into the population.

The plug-in style fitness function starts by
calculating a raw fitness, which is an objective
measure of how close the confidence and support
factors are to target values specified by the user.
This result is used as the initial fitness for each rule
before several penalty and bonus functions are
applied. The functions and parameters that are
selected are used to tune the fitness such that it is
relative to other rules in the population. The
inclusion of different fitness modifiers depends on
the definition of the problem. For example, certain
fitness plug-ins are designed to maximize data
coverage in classification tasks, but would not
contribute positively to the results of an
unsupervised search.

RAGA uses several fairly standard
crossover and mutation operators whose results
must conform to the population validity constraints.
Crossover is used to extract and make wider use of
important rule fragments, while the mutation
operators are used to probe untested solutions and
fine-tune existing rules.

The intergeneration processing refers to
several tasks that are run between generations.
These tasks vary depending on user specifications,
but can include operations such as trimming the
dataset of rules that are logical tautologies or
contradictions. Previously in RAGA, the
intergenerational processing stage was primarily
used to ensure rule validity and to omit rules based
on the quality of their output, and to further fine-
tune rules to make them more general. Because of
the benefits realized during this stage, it has been
greatly expanded (see sections 3 and 4).

2 Dataset: Poker Hand Scores

One way to address the problem of
evaluating results from a rule induction algorithm is
to generate a set of random data that conforms to a
pre-specified set of known rules. The data can

optionally contain noise, incorrect and missing
values, as well as non-essential attributes. The
quality of the algorithm can be judged by the
correlation between the original rules and the
discovered rules. The drawback to this method
stems from the fact that these datasets are purely
abstract and have no real-world meaning.

During the analysis phase it is trivial to
look for rules that are an identical match, however
in cases where the discovered rules are different it
is sometimes difficult to determine their worth. For
example, if a discovered rule is an optimized
version of the original then it may be deemed
incorrect because the human analyst cannot see the
relationship.

Another problem with synthetic datasets is
that they can represent a search space that is
unbounded and unfair to some learning algorithms.
Similarly, some synthetic datasets cannot be
correctly classified by algorithms that are not
capable of relational learning. This is shown using
the polygon dataset in [1].

The poker hand dataset, which is more
completely described below, was generated with
the intention that it be difficult1 to discover
solutions yet easy to analyze them. Because of the
way that the problem is represented it is difficult to
discover rules that can correctly classify poker
hands, however the simple nature of the game
makes it trivial for the human analyst to validate
potential rules objectively. The solution space is
bounded because there are a finite number of valid
poker hands. A valid hand is restricted to five
unique cards in any position drawn from a standard
deck of 52 cards.

Further advantages of the poker hand dataset
are that it can be readily mapped onto several other
real-world problem domains such as resource
allocation in a network, and that it facilitates rule
evaluation even in unsupervised learning tasks.

Although several different poker hand
scoring systems exist we have chosen a model that is
used to score the worth of hands in video poker. This
system has more ranks (or different scores) than
standard poker because certain hands score higher
based on the possibility of a higher payout, rather
than simply accounting for winning or losing
combinations. In some cases a hand is considered
good because it represents a solid stepping stone

1 The difficulty of the task can be estimated
from the astonishingly poor performance of
other data mining systems such as See-5 (see
section 4).

towards a winning hand.
The scores are ordered such that they

increase with the potential payout. For example, a
Royal Flush has the greatest payout. Normally the
hands that are guaranteed to pay out are at the top of
the scale, with one exception: Score = 10. A hand
that is a single card away from a Royal Flush is
more important than some other winning hands
simply because the payout is so large that it is worth
giving up the guaranteed win for the chance.

The example hands show all of the
important cards in bold face and sorted, however the
actual ordering of the cards within the hands does
not matter. For example, a three-of-a-kind is
obtained regardless of the positions the three like-
valued cards are in.

The following table describes the 17 different ways
that we score poker hands:

Table 1: Video poker scores

3 What is new in RAGA?

The original system uses a purely
evolutionary search, and is enhanced by performing
several types of intergenerational processing (for
example, rules deemed invalid are modified by
systematically deleting terms from the antecedent,
consequent, or both. If this does not render the rule
valid because of the rule structure or an excess of
similar members in the population, a complete
substitution is made). Because of the success
realized with intergenerational processing (faster
discovery of stronger rules), we decided to expand
its role to include machine learning techniques, in

particular, rule generalization techniques that can be
used to abstract higher level rules from groups of
related and more specific rules.

The most recent work in RAGA was the
design and implementation of a system to examine
and generalize sets of rules based on functions
contained within a library. These functions include
operations such as combining commonly appearing
sets of items together into new symbols, and the
examination of rule groups with common themes
(eg: identical consequent) for the purpose of
introducing higher level functions. One benefit to
this operation is that the results are more
comprehensible.

An example of how generalization can
improve comprehensibility can be seen in the poker
hand dataset. The example rules below classify some
subset of the data as a three-of-a-kind. Notice that
these rules are not 100% confident over all possible

hands because they do not exclude the case of a Full

House, however the addition of new terms to
achieve perfect accuracy is not necessary to see the
benefits of generalization.

If (R3 = R5)∧(R5 = R4)∧(R5 != R1)∧(R2
!= R4) then (SCORE = 9)
If (R2 != R1)∧(R2 = R5)∧(R2 != R3)∧(R2
= R4) then (SCORE = 9)

A simple examination of these rules reveals
that they are specific to the positions of certain
cards, which means that a large number of rules are
required to fully describe this particular score.

When RAGA notices that all of these rules
have the same consequent it will automatically

Score Name Description Example
16* Royal Flush Ace Ten of same suit AH KH QH JH 10H
15* Straight Flush Five sequential cards, same suit 4C 5C 6C 7C 8C
14* Four of a kind Four of the same card 2H 2D 2S 2C 8S
13* Full house Three of a kind plus one pair 3D 3C 7H 7S 7D
12* Flush Five cards of the same suit 2C 3C 6C 9C AC
11* Straight Five sequential cards 3C 4C 5D 6H 7D
10 Four to RF Four cards towards Royal Flush AD KD QD JD 4S
9* Three of a kind Three equal cards 5H 5S 5D 3C 7H
8* Two pairs Two pairs of equal cards 4H 4S 9D 9S 7C
7* One high pair Two equal cards (Jacks or better) QH QD 2C KH 9S
6 Four to Flush Four cards of the same suit 2C 5C 7C 9C 4H
5 Four to Straight Four sequential cards (2 < c < A) 3H 4D 5D 6C AS
4 Three to RF Three cards towards Royal Flush KD QD JD 9S 8H
3 One low pair Two equal cards (Ten or less) 5H 5C 7D JS 2D
2 Two high cards Two cards (Jacks or better) JD QC 2H 9C 5D
1 One high card One card (Jack or better) AS 4H 8D 3S 10H
0 Nothing No useful cards in the group 2S 3D 6H 9C 10H

attempt to generalize them. This is not done for
every rule because the operation is computationally
very expensive, however in our case we rely on
evolution to choose the subsets that warrant further
examination. After testing a number of library
functions (eg: transitivity of equality, search for
linear relationships, etc) the entire group of rules
might be replaced by a single rule as follows:

If (NumEqualValues(class = rank) =
3) then (SCORE = 9)

Translation: “Within the subset of attributes that
are specified to be of class ‘rank’ by the user, if
there are exactly three values that are equivalents
then the hand scores as a three-of-a-kind.”

When this technique is applied then a subset

of the rules will be compressed into a single, more
general and more comprehensible rule. Apart from
being more comprehensible, this extra layer of
abstraction can also increase the overall rule
coverage. The coverage will not change if the
original set of rules was complete and contained all
of the permutations required to satisfy the data,
however this is not normally the case. In addition to
the original rules being replaced there may be a
number of undiscovered rules that are also
incorporated automatically. Although there is a risk
of over-generalizing, this result will be penalized
during the evaluation stage. Similarly, if other rules
in the population become redundant because of this
new rule then the evolutionary component in RAGA
will have them replaced during the next generation.

Another type of abstraction is due to the
creation of aggregate functions. An example of this
can be seen in the following rules, which were
selected as a candidate subset because they all have
100% confidence:

Original rules
If (A=5)∧(B>D)∧(C=30) then (Type=2)
If (A=5)∧(C<15)∧(B>D) then (Type=3)
If (A=5)∧(B>D)∧(C>30) then (Type=1)

After replacement
If (#A)∧(C=30) then (Type=2)
If (#A)∧(C<15) then (Type=3)
If (#A)∧(C>30) then (Type=1)

When RAGA examines these rules it finds

that the most commonly occurring operations are: (A
= 5) and (B > D). Because this configuration appears
to be a key component to several rules, RAGA
creates a function that represents the conjunction of

these comparisons. (The new function is denoted as
#A above).

The technique is similar to chunking, which
has been used in [3] as the primary mechanism for
learning from experience. The aggregate functions
become building blocks that extend the
representation language. Since they are extensions of
the vocabulary, they are protected from disruption
by crossover, and only need to be discovered once.

4. Experiments

A number of experiments were performed to

test the results generated by See-5 and RAGA. The
first step was to generate a set of classifiers (a
decision tree for See-5 and a rule hierarchy for
RAGA) from a sample set of 10000 data.
Afterwards, several tests sets of size 1000 were used
to test the classifiers.

When See-5 analyses this data it reports a
training accuracy of 64.25%, however after testing
the average correctness is only 36.16%. Post
analysis of these results seem to indicate that much
of the correctness comes from class default values,
which are assumptions made based on the more
popular scores within the data. The poor quality of
the rules it found is further illustrated by the fact that
the tree it produced had 3946 nodes of which 3430
were leaves!

When RAGA is run on the same dataset it
achieves 90.39% correctness on the training set and
an average accuracy of 57.6% over all test sets.
Analysis of these results indicates that RAGA does
not rely on the default hierarchy to boost the
predictive accuracy.

5. Conclusion

We have described a hard dataset that the

previous version of RAGA could not handle any
more satisfactorily than See-5 (see above
paragraph). We now tackle this dataset by
expanding the Intergenerational Processing
component of RAGA to combine evolutionary and
non-evolutionary machine learning methods. The
system relies on evolution to generate plausible
candidate rules, to point out the rules to which
computationally expensive, non-evolutionary
generalization techniques are applied, and to weed
out the results of eventual over-generalizations. The
non-evolutionary techniques, by extending the
representation language, enhance rule
comprehensibility and rule coverage.

6. References

[1] Cattral, Oppacher, Deugo, A Modified Genetic
Algorithm for Supervised and Unsupervised Data
Mining, Proceedings of the IASTED International
Symposia APPLIED INFORMATICS. (ACTA Press,
Calgary, AB, Canada, 2001).
[2] Cattral, Oppacher, Deugo, Rule Acquisition with
a Genetic Algorithm, Proceedings of the Congress
on Evolutionary Computation, 1999 Vol. 1, p. 125-
129
[3] Allen Newell, Unified Theories of Cognition,
(Harvard University Press, 1990).
[4] John Holland, Adaptation in Natural and
Artificial Systems, (Michigan: University of
Michigan Press, 1975).
[5] John R. Koza, Genetic Programming: On the
programming of computers by means of natural
selection, (MIT Press, Cambridge, Mass, 1992).

 [6] R.J. Quinlan, (1993). C4.5 and See-5 are licensed
products that can be acquired from Morgan
Kaufmann Publishers, Ann Arbor, Michigan.

