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Abstact: - Time-hopping TH) communicatiortechnique$ave gatheredncreasingattentionsincetheintro-
ductionof ultra-wide-bandmpulse-radioby Scholtz,in 1993.1n thesesystemsthedesignof TH sequences
is a critical point, sincethey constitutethe only sourceof diversity that protectsthe transmittedsignalfrom
theinterferencecausedoy multipathandby the presencef otherusers.Moreover, they represeng reliable
sourcefor synchronizatiorand channelestimation. In this paperthe authoraddresseshe issueof build-
ing TH patternswith very good correlationpropertiesby useof a constructionbasedupon the theory of
permutation-sequens€P Ss)that was recently proposedn the contet of frequeng-hopping by Moreno.
The paperdevotesmuchcarein the analyticalevaluationof correlationpropertieqcorrectingsomemistales
of theliterature)andin theidentificationof the widestpossibleclassof TH patternsdaseduponPSs.
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Time-hopping(TH) multi-userdiversity techniques  ~ 8 ‘
have gatheredincreasingattentionsince the intro- 10000000100010001000
duction, in 1993, of ultra-wide-bandimpulse-adio l_l \ R l
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(UWB-IR) [1]. UWB-IR is a multi-usermodulation OTT Tf T 2T T 3Ty ‘[ 4Ty
techniquethat emplays ultra narrav pulsesw(t) of

temporalextensionof lessthana nanoseconghence =0
of ultra-wide-bandwidthin excessof a few GHz).
The way to encodeinformationis an hybrid mod- G)
ulation that usesTH code division multiple access CiatedtotheTH sequencey, with N = 5.
and binary PPM modulation. The signalassociated
to user; is thus[3], [4]

cgi) =3 cgi):Q c:(;):l

Figurel: Exemplificationof the TH signalsgf) asso-

The designof TH sequencess a critical point for

+00 ary communicatiortechniqueemplging TH, andso

sW(t)y= (t —mTf— )T — bt ) (1) for UWB-IR, sincethey constitutethe mainsourceof
m=—00 diversityfor the system By inspectionof (1), we see
thattheTH sequence{a(n } with elementdelonging

where T} is the frame duration and we have one
pulseper userper frame, {c } is the TH sequence

associateavith useri, and{bm } isabinaryencoded
sequencearryingtheinformationto betransmitted.

to the alphabet{0, 1,..., N — 1}, is in practicede-
terminingthe sub-frameof durationT” in which data-
transmissiomccurs(andwe assumehatT; = N T').
Thus,the situationis thatdepictedn Fig. 1, whereit

YIn the standardUWB-IR format, the encodedsequence

{bﬁ,?} is derivedfrom asourcebinarysequence{aff)} by asim- countthat more efficient methodscould be usedto encodethe
ple bit-repetitionapproach1], [4]. Equation(1) takesinto ac- source-sequence.




is alsoshavn that, for our purposesit canbe corve-
nientto associateéo every TH sequenca binary sig-
nal whereonesindicatethe slotsavailablefor trans-
mission. Accordingto the above notation,sucha bi-
narysignalis
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Sn’ = Z 6n , mN+cffz)

m=—0o0
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whereé, ,,, is the Kronecler deltafunction. In each
frameinternal Nk + [0, N — 1], of duration N, it

carriesaoneand N — 1 zeros. In otherwords,sgf)
exhibits a one-pulse-peframestructure.

It is intuitive to seethat,in orderto besuccessfully
emplosed in TH applications,the signaISSS) must
have verygoodself-corelationandcross-corelation
properties thatis, the signal s$f'> associatedo user
1 and the delayedsignal sﬁflu associatedo userj
(wherei = j for self-correlationmusthave in com-
mon as few positionswheretransmissioroccursas
possible.In particular therequesbn self-correlation
is two-fold. On oneside, it guaranteesobust syn-
chronizationand robust channel estimation, espe-
cially with UWB-IR where multipath components
canbe modeledasdistinct arrivals [5], [6]. On the
otherside,it guaranteeto attenuateheintersymbol-
interferencedueto the propagatiordelayspread.In-
stead,the requeston cross-correlatiortlearly guar
anteesa minimization of the multi-userinterferene
which, in the presencef multipath, is true both for
synchronousndasynchronougransmission.

Accordingto theliterature the constructiorof TH
sequenceould be addressedn two ways. The

recentlyproposedoy Moreno[12]. The paperis or-
ganizedasfollows. Sectionll reviews the construc-
tion of hoppingpatternsbaseduponPSs.Sectionlll
proceedsvith theanalyticalevaluationof correlation
propertiesin the contet of TH, and underlinesthe
relationto FH. We notethat,theanalyticalevaluation
of correlationpropertiess a centralresultof this pa-
per, sincein theliteraturethis topic wasnot correctly
addressedFor this reasoncorrelationpropertiesof
thehoppingsequencegraseduponPSs)proposedn
the literature are reviewed in an example. Finally,
SectionlV identifiesthe widest possibleclassesof
hoppingpatternsbaseduponPSsthatguarante@on-
catastrophicorrelationproperties.

2 Hopping Patterns basedupon PSs
2.1 Mathematical preliminaries

A Galois field (GF) is a finite field F|,
{0,1,...,¢g — 1} of ¢ = p™ elementswherep is a
prime(se€g13] for anoverview on GFs).A projective
line (PL), P,, is angeneralizatiorof a GF extended
to includethe elementxo, thatis

P,=F,U {0}

In PLs the elementoc has the usual properties,
namelyz 4+ co = o0, - 00 = o0, /oo = 0 and
z/0 = oo, andalsotheusualindeterminateso — oo,
0/0, co/oo and0 - oco.

A permutationsequenceas a sequence{a,,} of
periodgq + 1 suchthatthe valuesin a periodrepre-
senta permutationof the elementsof P, andwith

first approachis to make useof frequency-hopping the further property that eachvalue is determined

(FH) results,that is to directly employ knovn FH
sequencessincethe similarity betweenTH and FH
is evident. Incidentally this is the approachof the
only explicit referencedound by the authoron TH
sequencesonstructiondor UWB-IR, [7], [8]. An
alternatve approachwould be to make use of opti-
cal orthagonal codes(OOC), typically emplgred in
fiber-optics[9], [10], [11], which have optimalcorre-
lation propertiesbut do not guaranteg¢he one-pulse-
perframestructureof Fig. 1.

In this paperwe follow the FH approachguaran-
teeingthe one-pulse-peframe structure,and inves-
tigatethe possibility to use,for TH applicationsthe
FH patterndbaseduponpermutatiorsequencefSs)

from the previous by applicationof a function, that
IS am+1 = f(am) [12]. Moreover, it is customaryto
setag = 0. Theexistenceof functionsf(-) thatgen-
eratea PSis assuredy thefollowing theorem([13].

Theorem1 For every field F', there alwaysexist a
primitive elementx sud thatz? + z + a is anirre-
duciblepolynomialover thefield and thefunction

—

.’L'—-l—l ) (3)

flz)= z € P,
geneates a PS of the elementsof P,. A pe-
riod of the resulting sequenceds thus of the form

0,—a,...,—1,00.0



In this contet, we definethe mappingfunction
A Zmodg+1 — Pg (WhereZpoq ¢+1 is thering
of integersmodulog + 1) thatmapsm into a,,, and
itsinverseA™! : Py — Zmod g+1-

A further conceptthat needsto be introducedis,
accordingto the languageof [12], that of fractional
linear transformation{FLTs) in P,. We thusrecall
thefollowing results[13].

Theorem 2 A fractionallinear transformation

ar + b

g(m):cw +d’

z€ Py a,bc,deFy

4)
whee a d # bc (sothatnumeator anddenominator
do not simplify), providesa permutationof the ele-
mentsof P,. TwodifferentFLTsg(z) andh(z) have
at mosttwo coincidenceshatis valuesof = for which
g(z) = h(z), wherastwo FLTswith threeor more
coincidencesre equal. Thecombinationof FLTsis
anFLT. O

2.2 Definition and problem formulation

According to the above notation, the most general
formulationof a classof hoppingpatterngeitherTH
or FH) baseduponPSsis

ng) = A <9i(am)) )

wherewe requirethateachg;(z) is a FLT. Notethat,
eachof the sequence# (5) hasperiodlength . =
q+1 andalphabelledth N = g+ 1. Moreover, it
is easHyseerthat{c0 . cq)} is apermutatiorof
theelementd0, ..., ¢}.

The definition of patternsof the form of (5) that
are suitablefor TH (or FH) applications,requires
to properly define the FLT family {g;(-), 7 =

., N, }. To correctlyaddresshe problemof op-
timally choosingsucha FLT family, we first needto
investigatemethodsfor the analytical evaluation of
correlationproperties.

Ny (5)

i=1,...

3 Correlation Properties
3.1 Preliminaries

As we have seen,hoppingpatternshasedupon PSs
have the characteristido be periodicof period L =

acertaineasein synchronizationandwhich implies
thatthe TH signal(1) canbewritten as

S’SZZ) Z (Sn mN—l—c(l) (6)

whereén(ffnL) is theKronecler deltafunctionperiodic
of period N L.
The correlationbetweenuser: anduserj, thatis

C;j(u) = S NE-L s ,(IJ)FU aftersubstututiorof (6)
becomes
L-1 (VL)
Ci’j (u) - m;:() 5u+mN+c£fb) nN—I—c(J) (7)
andis a periodicfunctionin « of period NL. In a

period,(7) consistsof L? Kronecler deltasandopti-
malcorrelatiornpropertiesarethusobtainedvheneer
these'deltas” arescatteredhll-over the period. Note
alsothat, for 7 = j equation(7) forcesC; ;(0), that
is thesignalenengy, to L. By furtherexpressingu as
kN + ¢ where0 < k < Land0 < Z < N, wehave
(recallthat0 < c%) < N)

C,J (kN+2) = Z 4 Dy e (') +4 Dag Nt

m+k+1

(8)

wherethemodulooperationdisappeared.

3.2 Quality measures

We now introducetwo quantitiesasquality measues
for classesof TH sequenceswhich will turn very
usefulfor comparisonTheseare

Smax = Imax Ciﬂ'(k),

i kA0 Cmax =  max Cz,j(k)

i,j7#0,k
9)

where Chax IS the maximum value for cross—
correlationandS;,.x is themaximumvaluefor self—
correlation(C;;(0) = L excluded). Evidently the
lower thevaluesSmax andCnax the bettertheclass.
In this contet, classef TH sequenceare said
having ideal self—corelation propertiesif Syax = 1
andideal cross—corelation propertiesif Cihax = 1.
Theseevidently requirethatthe Kronecler deltasin
(7) aredistinctandalsothat N > L. We notethat,
classeof ideal TH sequencewith a one-pulse-per

g + 1. Thisis awelcomeproperty which guarantees framestructure(e.g.thosederivedfrom FH patterns)



are, to the authors knowledge, not known?. Sowe
will talk of hoppingclassesuitablefor TH whenever
bothvaluesSmax andCrax are< L andascloseas
possibleto 1. Instead,we will talk of catastophic
classeqi.e. uselesdor TH applications)whenaer
Smax OF Cmax approachl, thatis assoonassome
peakoccursin the correlationfunctions.

3.3 Analytical evaluation

Theanalyticalevaluationof correlationpropertiesor
aclassof TH sequencesanbe performedby direct
useof (8). Thisrequiresto identify, for ary k£ and/,
the maximummumberof solutionsin m to

and c$f3+£ = N-I-c%)JrkJrl

RORWE c%)ﬂc (10)
Althoughfindingasolutionto (10)is averyhardtask,
the evaluationof the maximumnumberof solutions
in m to

cg,? +4= cg)

x (mod N)

(11)
is a muchfeasibleoperation. In addition, by com-
parisonbetween(10) and (11), we note that twice
the maximumnumberof solutionsto (11) is an up-
per boundto the maximumnumberof solutionsto

thenobtainthat f*(z) canbewritten explicitly as’

aa, + z (a+ ag)
a—zag

i) =

(13)

This guaranteeghat both termsof (12) are FLTs,
sincethe combinationof FLTs is an FLT. By appli-
cationof Theorem3 we further obtainthat (12) has
up to 2 solutionsonce we provide that (12) is not
an equivalence. As a direct consequencea class
of hoppingsequencegeneratedy the FLT family
{gi(-), i = 1,...,N,} is suitablefor TH when-
ever thegenerating-LTs do not make (12) anequv-
alencefor ary valueof i, 7, k, £ otherthani = j and
k = £ = 0 (thatrefersto theenegy of the TH signal).
In this casewe will talk of a noncatastophicclass
for whichwe have Siax = Cnax = 4.

To shav how the analyticalevaluationworks we
now give someexamples. This is of someinterest
sincetheliteraturedid notaddresshistopiccorrectly

Example 1 We derive correlationpropertiesfor the
linear classgeneratedby the FLTs

gi(z) =1z -¢ 1, 1=1,2,...,qg—1 (14)

thatwasproposedn [12]. To thisend,we mustcheck
whether(12) givesanequialencefor somes, j, k, £.

(10), sowe follow this approach.For TH sequences This is simply doneby substitutionof (14) and(13)

baseduponPSs,our boundturnsoutto bevery strict
and,in almostall casesupperboundandmaximum
coincide.

The particularizationof (11) to hopping patterns

generatedrom PSs(5) furthergives

9:@) = g; (), (12)

T =am

with f*(-) the the k—fold applicationof f(-) and
wherewe usedthe propertyA(A~" (z) + £) = f%(z)
whosestraightforvard deriationis left to thereader
The possibility to evaluatethe maximumnumber
of solutionsof (12)in z (or equialentlya,,, orm) is
a centralresultof this papey andis given by thefact
that f*(x) isaFLT in z. Accordingto Theoren®, by
imposingthreevaluesto the genericfunction (4), we

21t is perhapsworth recallingthatthereexist OOC construc-
tionswith idealcorrelationproperties However, theserequireto
relaxthe one-pulse-peframeconstraint.

into (12), thatgives

ajap+zj(a+ag)
o — Tag

aa+zilatay)
a—zxiay N

whereoperationsare definedon P,. Fromthis we
derive the equivalentequationsystem

aag=mnajag
i(a+ag) =nj(a+ag)
a=1na«a

iagp =mnag

wheren # 0. After somestraightforvardalgebrawe
obtainthatsolutionsto thesystemarefoundfor some

k andf wheneer (see[14])
iy =1 (15)

with the exception,whengq is not a power of 2, of
1=7=—1

3As acheck,notethat(13) gives f*(0) = ay, andis valid for
k = 0 aswell giving f°(z) = .



Equation(15) indicatesthat the sequence = 1
hascatastrophiself-correlatiorpropertieswhile se-
guencesi and j 1/i have catastrophiccross-
correlationproperties So, by limiting the choiceof i
in (14)to

..,aN“

No=la—1)/2] (16)
whereq is primitive in F',, we obtainaclassof | (g —

1)/2| TH sequencewith Spax = Cmax = 4. Note
thatthisis thewidestsubsebf thelinearconstruction

thatguaranteeto be noncatastrophic.

Example 2 Following the sameprocedurejt canbe
easilyfoundthat,thecorrelationpropertieof the hy-
perbolic classgeneratedrom the FLT setg;(z) =
ai/z leadsto (15) andto the choiceof i asin (16).
Note that, this is a slightly modified, but equivalent,
versionof the hyperboliccodeproposedn [12].

Example 3 The possibility of co-existencebetween
the linear and the hyperbolic class can be instead
testedby assumingthat, in (12), g;(z) = iz and
gij(z) = aj/z. In this case the referencesquation
turnsoutto beanequivalencewhenaer

z’+1.+j+1_:l i=a*, j=0adf (17)
) i o}
where,accordingto (16),k;,k; = 1,..., Ny.
Equation(17) constitutesa quick checkto indi-
viduate whethera sequencef the hyperbolicclass
can coexist with the linear class. For instance with
q = 2*, generatingpolynomialz* + z +1 anda = 9,
equation(17) is soledfor k; = 1, k; = 2 andfor
ki = 2, k; = 1 (accordingto this result,the exam-
ple above in Fig. 2 shavs a catastrophicollision be-
tweenuseri = o! = 9 anduserj = o = 13). So,
the joint classallows for up to 2V, — 2 = 12 non
catastrophicsequencesthatis k; = 1,2 excluded.
For ¢ = 2° the maximumnumberof usersis instead
2N, — 8 = 22. None of the examplesreacheghe
g — 2 noncatastrophicequenceslaimedin [12].

3.4 Relationto FH results

Equation(8) is closelyrelatedto thecorrelationmea-
surein FH applicationswhichreadsas

-1
Cijlk, )= 8.0, o (18)
m=0

J
m+k

15 T T Tt

Crmax=4 Co,13(u)

A

L

10 Cmax=4 Cia,7(u)

15

120

—-120 —-80 —40 0 40

juu‘uu‘

S

Figure 2. Co-«istencebetweenlinear and hyper

bolic TH sequence®r ¢ = 2* (we usedz?* + z + 1

asgeneratingpolynomialanda. = 9). Recallingthat
C; j(u) > 0, thefigure shavs an exampleof catas-
trophic collision (top half) and one of perfectco—
existence(bottomhalf in upside—dan fashion).

wherek representshe framedisplacemenand/ the
presenceof a frequeny shift. So, (11) is the refer
enceequationfor correlationpropertiesn FH appli-
cationsaswell. However, in FH the maximumnum-
berof solutionsto (11) shouldbeconsidereance(as
opposedo the TH twice), asclarified by inspection
of (18). This suggestshatuseof FH patterndor TH
applicationgyive slightly degradedperformancesin
particular in the FH context, hoppingpatternshased
uponPSsguarantees,,x =

max — 2.

4 Wider Classedasedupon PSs
4.1 Generalresults

The problemto derive the widest possibleclassof
hopping patternsbasedupon PSs (valid both for
TH and FH) can be addressedxhaustiely using
the tools developedin this paper The problemcan
be reformulatedin the following terms. We need
to identify an appropriateFLT family {g;(-), ¢ =
1,...,N,} for which (12), or equialently

gi(z) # (9, (")) (19)
is satisfiedfor every choiceof i, j, k, £ otherthan
i=j,k=0=0.

We notethat,(19) inducesa naturalpartitionof the

setd of all FLTs. In fact, let g;(x) be a FLT, and
definethe FLT set

Ji::{f_ecn(fkﬁﬁ))‘k,f::m..wq} cTF
(20)



whichis closewith respecto the operationthatgen-
eratest,

hz) €T = f—f(h(f’“(m)))eji (21)

Thisassureshattheremustexist a partitionof & into

setsof the form (20), and this partition is unique.
In particular given ary two elementsbelongingto

differentsets,g; € J; andg; € J; with ¢ # j,

thesealways satisfy (19), that is, the hopping se-
guenceghey generatehave non-catastrophicross-
correlationproperties Furthermore(19) assureshat
setsI; with cardinality(q + 1)? (thatwe call full car-

dinality sets)generaténoppingsequencewvith non-
catastrophicself-correlationproperties. In conclu-
sion, the widest possibleclassof hopping patterns
baseduponPSscanbe obtainedby choosingonerep-
resentativédrom eachof the full-cardinality-sés.

We note that setswith restrictedcardinality exist
andthesearethe two setsgeneratedy the FLTs z
and—z — 1, thatis*

\ k=0,... ,q}

5o = {f(x)

T 1 ={ff(-=- 1)‘1: =0,...,q}
bothwith cardinality(¢ + 1), while all theremaining
setshave full cardinality Sincethe numberof differ-

entFLTsis (g + 1) ¢ (¢ — 1), thenumberof setswith
full cardinalityis

(g+1)g(g—1)—2(q+1)
(¢+1)?
and,with the additionof (23), the classof FLTS can

bethuspartitionedin ¢ sets. So, the following theo-
remholds.

(23)

Theorem 3 Thee exist at mostN, = ¢ — 2 non-
catastophichoppingpatternsderivedfrom PSswith
correlation propertieSCrax = Smax = 2 for FH
applicationsand Cax = Smax = 4 for TH applica-
tions.O

“The proof canbe obtainedby first proving that eachsetof
the form (20) containsat leastone linear function of the form
ax + b. It is thenrequiredto investigatewhich linear functions
belongto setswith restrictedcardinality To do so,we mustlook
for solutionsto (12) whereg;(z) = g;(z) = ax + b, thatis

fflaz+b) =aff(z)+b

After somestraightforvardalgebrave getthetwo resultsg(z) =
z andg(z) = —z — 1.

(22)
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Figure3: Correlationpropertiedor the TH class(24)
with ¢ = 2* (we usedz? + = + 1 asgeneratingoly-
nomialanda = 9).

4.2 The caseof ¢ apower of 2

The identificationof a representate for eachsetis
particularlyeasywhengq is apower of 2. In this case,
asuitableFLT classof representatesis
i=0,1,...,2™

gi(z) = +@m) 1, -1 (24)

Restrictedcardinality setsare generatedy go(z) =
zandgi(z) =x+1= —z —1(sincein Fg,qg =2"
we havetheequivalencer = —z) so,for TH applica-
tions,we needto restricttheclasstoi = 2,...,q— 1.
The proof that (24) with ¢ # 0,1 constitutesa class
of 2™ — 2 noncatastrophicequencesanbederived
asin Examplel (but theinterestedeadercanfind a
detailedproofin [14]), while anillustrative example
of correlationpropertieds givenin Fig. 3 for ¢ = 2*.

4.3 The caseof ¢ not a power of 2

For ¢ nota powerof 2, all expressiondike (24) seem
to generatarestrictechumberof representates. We
thus proceedby inspectionand presentan efficient
methodto obtainexactresults.

As can be easily proved, eachsetJ; containsat
leastonelinear function, say g;(z) = ax + b. By
applicationof definition (20) we further derive that
eachfull-cardinality-setcontainsexactly g + 1 linear
functionsof theform g; » (z) = ayz + by, with

k2 [L 4 DDy k2(a - b) — 1] 4+ aa

a . a ax

k= E+k+a

) K2 (a—b— 1)+ & [Hettl g o]y g
k= E+k+a

(25)
wherek € P, andwhereoperationsaredefinedon
P,. Notethat,for k& = 0 weobtaing; o(x) = ax + b.



Equation (25) allows to partition the set of lin-
earfunctionsinto subsetdelongingto differentfull-
cardinality-setgwhich is much more efficient than
partitioningthe FLTs set¥), andthusto identify rep-
resentaties. As a referenceexample,for ¢ = 33,
generatingoolynomialz? + 2z + 1 anda = 10, we
foundthe 25 full-cardinality-sé representates

+1 +3 T+4 z+5 z+9 z+10 z411
z+12  z+13  z+14 z+15  z+16 z+17 2z+3
2x+4 2z4+9 2z+4+10 2z+12 2z+16 3z+2  3z+49
3z+10 3x+11 4z+14 Sx+1

5 Conclusion

In this paperthe authoraddressetheissueof build-
ing TH patternswith very good correlationproper
ties, by useof a constructionbaseduponthe theory
of PSsrecentlyproposedy Moreno[12]. Thesehave
periodL = ¢ + 1 andframewidth N = ¢ + 1 where
q is a power of a prime. The paperdevoted much
carein the analyticalevaluationof correlationprop-
erties,leadingto theidentificationof the widestpos-
sible classof TH patternsbhaseduponPSsthat con-
sistsof ¢ — 2 sequencesThe expressiorfor thehop-
ping classis straightforvard whengq is a power of 2,
which suggestsiseof this classfor practicaluse(also
becausenodulo2 arithmeticsaaremuchmoresuitable
for hardwareapplications)In conclusionthepresent
contritution can constitutea valid referencefor the
upcominginterestin UWB-IR andTH applications.
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