
Split and Merge - an algorithm to implement security on the Internet

JOÃO PAULO PIMENTÃO, PEDRO A. C. SOUSA, ADOLFO STEIGER GARÇÃO
UNINOVA — Centre for Intelligent Robotics

Universidade Nova de Lisboa
Quinta da Torre — 2825-114 Caparica

PORTUGAL

Abstract: - The advent of new technologies will enhance the power of computing beyond imaginable scenarios
(e.g. quantum computers), secure communication based on the present public key system is bound to be at risk
within a short period of time.
 In fact, in September 1999, RSA Laboratories reported that a team of researchers was able to determine the
two prime numbers used to generate a single 512-bit RSA key [1]. In sequence, RSA warned companies to use
768 bit keys as the minimum requirement for achieving reliable security. It was only in February of 1998 that
a 56-bit Data Encryption Standard (DES) key was cracked in 39 days [2].
In May of that 1999 Adi Shamir, one of the developers of the RSA algorithm introduced the project “Twinkle”
that will deliver a machine capable of performing prime number generation (the core of the RSA algorithm) in
speeds not yet achieved [3].
 In this scenario, relying strictly on the lack of computational power for protecting information seems to be a
battle that will be compromised. Nevertheless some people still argue that as the power of computing
increases, so does the power to create more complex algorithms (such as increasing the number of bits in an
RSA key) [4].
 In our view, the security of a message should not rely on the ability to get a key, and therefore be able to
decipher the message, but on the ability to get the message.
 The system presented combines some of the up to date techniques of ciphering, with a scheme of splitting
the message in parts and sending it to different destinations through different routes.
 The power of public key scheme is used on the ciphering of the message, but the message is then split into a
random number of parts and sent, via Internet to the destination.
 Each of the nodes that receive a message acts in a similar way, thus creating a web of message fragments
traveling the Internet through a myriad of routes which, in our opinion will make the process of getting hold of
the entire message, virtually impossible.
 This paper presents details the algorithms used in splitting, ciphering, deciphering and merging of the
message and it introduces the concepts of neighbor and trusted hosts.

Key-Words: - Cryptography, Communication, Security, RSA, Internet, Distributed system.

1 Introduction
The power of Public Key cipher is based on the fact
that the time to generate the equivalent keys needed
to decipher the message is too large with current
CPU speed, even when “super-computers” are
considered. This, combined with the life expectancy
of the messages would not allow enough time to
enable message deciphering.
 On the other end, in the near future, the power of
computing will continue to be enhanced by several
orders of magnitude, which will render today’s
“impossible” tasks into easily solved problems.
 Most of the new developments in cipher methods
are based on the use of more complex algorithms
that hopefully will render key cracking into difficult
tasks.

 Since there is no expectation in the creation of an
unbreakable algorithm the followed approach relies
on denying perpetrators the access to essential parts
of the message, which will prevent deciphering.
 The basic idea is to split the message in parts and
to be able to send the parts through a web of
connections, from sender to receiver that will
change with every new message.
 Given the RSA algorithm, the deciphering of the
message is based on the knowledge of the key, and
the possession of the message. With the proposed
process, even if the private key of the destination is
known, deciphering will not be possible, because,
the perpetrator will only have access to parts of the
message and, therefore, the message will not be
decipherable. In summary, having a set of parts of a

message with some holes in it will render
deciphering virtually impossible.
 The base idea proposed is to use RSA as an end-
to-end algorithm, split the message into parts and
send it through different ways. In fact, if enough
breaking of the message is achieved (e.g. splitting
until each letter is a fragment) the chance of being
able to get the whole message out of a set of
fragments is very slim.

2 The security neighborhood
One of the problems faced was on the sending and
receiving ends of the message transmitting process.
Even if, in the middle of the communication, one
was able to send different parts through different
routes, the sending and receiving ends would
generally have only one point of contact through
which the whole message would (sooner or later)
pass.
 To solve this problem, the concept of security
neighborhood was introduced. The security
neighborhood is represented by the set of neighbors,
inside a security border (e.g. the facilities at the
location of the sender) that are used at the first stage
(and the last stage at the receiving end) of the
message transmitting process.
 With this neighborhood, any message leaving a
facility will be seen (by someone looking at the
communication traffic) as messages coming from a
random set of sources (inside the border) to a
random set of destinations; at the receiving end,
messages will be seen as coming from a set of
machines, outside the border, to a set of machines
inside the border.
 When we consider the number of messages
flowing in the day-by-day traffic, the ability to select
the correct fragments of a given message is strongly
compromised.

3 Message Format and Parameters
The message security is achievable, with the
proposed algorithm, by the tuning of two
parameters: the number partitions and the number of
hops that each message fragment has to go through
before reaching the destination.
 Based on the principle that each fragment of the
message is sent to a different computer, the larger
the fragmentation, the lesser the probability that the
perpetrator can get hold of the whole message.
 When the number of hops increases, the process
will be more difficult to track, since fragments of the
message will probably follow more and more

distinct tracks, in order to create a web of tiny
fragments of the original message traveling around
the Internet.

2.1 Increasing security
It is usual that when one wants added security, the
time it takes from the instant the message is created
to the instant the message is read increases. It is so
with the RSA algorithm that when security is at
stake the solution is to raise the number of bits in the
key; this will increase the amount of time needed
both for ciphering and deciphering the message.
 The proposed algorithm is no exception,
increasing the message fragmentation or increasing
the number of hops the message has to go through
will necessarily lead to an increase of the time it
takes until the message is read by the destination.

2.1 Denying information
 The use of two types of parameter associated with
the message seems to put too much information on
the message itself. Although the number of hops is
needed to determine when to send the fragment of
message to the final destination, the number of times
a message is split does not need to travel with the
message.
 In fact, the decision was to let each node define,
via a random number, the number of times the
message is split at that node. The use of random
numbers at each node will render more complex the
process of determining the number of bits flowing
around. On the other end, the header of each
fragment of the message will only contain
information pertaining to that particular fragment of
message and will not supply information regarding
previous parts of the message.
 When a fragment of message leaves a node in the
system, going to another node, the format of the
packet containing the fragment of message is the
one presented in Fig. 1.
 Besides the standard IP header that is used in the
routing of the message and, therefore, sent in clear
text, the packet contains:

• the session key, randomly generated at the
node sending the packet, that is ciphered
with the public key of the node that this
packet is heading to,

• the message packet header, whose
contents will be presented in the following
paragraphs, ciphered with the session key,
and

• the fragment of the original message
ciphered both with the public key of the
final destination and with the session key.

Fig. 1 - Format of a packet containing a fragment of the
original message.

 The message packet is composed of an header
(message packet header) that is ciphered with the
session key created expressly for this transfer, and a
“Data” segment - message fragment - (which was
originally ciphered with the public key of the final
destination) ciphered with the session key.
 Fig. 2 below details the format of the message
packet header.
 The message packet header is composed by:

• · Header Size: one byte that defines
the size of the header block (up to 255
bytes);

• Message Id: the unique Id of the message as
generated by the sender;

• First byte: the order number of the first
byte of the data block that this packet
contains, in the original message;

• Last byte: A Boolean value indicating if
this block contains the last byte of the
message;

• Hops: the number of nodes that this
fragment of message still has to go through
before being delivered to the final
destination;

• Source IP and Destination IP: the IP
addresses of the original sender of the
message and of the final destination of the
message, respectively;

• D Size: the number of bytes in the data
fragment of the message.

Fig. 2 - Format of the message packet header of a packet
containing a fragment of the original message.

 Some concern with the information that is made
available at each node so, that even if a node is

compromised, the limited information contained in
(or passing through) a node will not (normally)
supply information about the size of the message.
An exception exists in the packet that contains the
last byte of the original message.

4 Message splitting and reassembling
The purpose of this section is to give an analysis of
what happens at the nodes regarding the
determination of the number of hops, splitting and,
later, at the destination, the reassembly of the
message.
 At each node, after validation of the number of
hops that the message still has to flow through (field
“Number of hops to go” in Fig. 3), the message is
split into a random number of parts of random
dimension.

Fig. 3 - Message splitting process: the whole message.

 In the resulting messages (Fig. 4), the field
specifying the number of hops is decreased by one
and the fields designating the number of the first
data byte, the end of message marker and the field
specifying the number of bytes in the data section of
the message are updated. The header size is then
update to reflect an eventual decrease in the number
of bytes used.

Fig. 4 - The result of splitting the message of Fig. 3 in
two parts.

34 0 101 3 172.16.1.23 172.16.45.26

A B C D E F G H I J

18

Message header

Message Data
Header size

Message Number

Number of the first byte

This piece contains the last byte

Number of hops to go

IP of the source
IP of the destination

Number of bytes of Data

34 0

5

0 2 172.16.1.23

172.16.45.26 A B C D E

18

34 5

5

1 2 172.16.1.23

172.16.45.26 F G H I J

18

Message
fragment 1

Message
fragment 2

DataMsg. fragmentMsg. Pkt. headerSession keyIP header

- Ciphered with session key
- Ciphered with public key of final destination
and ciphered with the session key

- Clear text
- Ciphered with public key of the node that the

message is heading to

HopsMsg IdHeader
Size

Last
byte

First
byte

Data
Size

Message
ID

2 bytes 4 bytes 1 byte1 byte 4 bytes1 byte

Source
IP

4 bytes

Destination
IP

 The use of the “Number of the first byte” field
and of the “This fragment contains the last byte”
field provides an added security since only when in
possession of the last fragment of the message can
one determine its full size. Since no coding is used
to determine the degree of fragmentation of the
message, the information about the number of
fragments flowing around is scattered all over the
nodes.
 In Fig. 5 an example is presented of the re-
fragmentation of the fragment 1 of the message, as it
goes through another node in the system.

Fig. 5 - Example of second level of fragmentation.

 The process of message reassembling only takes
place at the destination node.
 The destination node maintains a list of incoming
messages fragments that is indexed by the sender’s
IP and sender’s unique message ID (Fig. 6).

Fig. 6 - Reassembly of messages at the destination.

 Every time a message fragment arrives at the final
destination, the source IP address is looked up and,
if it does not exist in the list of “Source IPs”, it is
added to it. Once the correct IP is found on the
“Source IPs” list, the message number of the
fragment is located in the list of messages already
present.
 If the message ID exists the pertinent information
of the received message packet (Start byte, Last

Byte, Size of Data, and Data) are added to the list of
message fragments of that message, while
preserving the list ordered by the “First Byte” field.
 Only when all the fragments of the message are
reassembled, can the message be deciphered by
using the destination node’s private key and
delivered to the application it is destined to.

5 Hops, certificates and neighbors
As explained before in the document, the process of
adding security to the message transfer is based on
the number of nodes that the message has to pass
through (hops) until it is delivered to the destination
address. Increasing this number of nodes increases
the fragmentation of the message, but it also
increases the delay on the message transmission
process.
 At each node, the message, after being split is sent
to a group of trusted nodes. The definition of the set
of trusted nodes is the responsibility of each
participating node.
 The process will continue until the number of
hops reaches one. When this happens, the message
needs to be delivered to the destination.
 In order to avoid the already stated problem of
having the whole message seen passing through a
given host, it was decided to establish a
neighborhood of security around each node (namely
at the facilities where the destination node is
located) so that, when crossing the security border,
the message fragments are seen as a set of messages
coming from a group of computers on the Internet,
to another group of computers inside the security
border (Figure 7).

Figure 7 - Fragments, number of hops, trusted list and
security neighborhood.

 In Figure 7, consider that node A (source) intends
to send a message to node O (destination). At this
point the message is split into a random number of

34 0

2

0 1 172.16.1.23

172.16.45.26 A B

C D

18

34 2

2

0 1 172.16.1.23

172.16.45.26

18

Message
fragment 1.1

Message
fragment 1.2

34 4

1

0 1 172.16.1.23

172.16.45.26 E

18

Message
fragment 1.3

IP address 1

IP address 2

IP address 3

IP address n

Msg. ID: 34 Msg. ID: 478 Msg. ID: 983

9 11 J

5 40 F G H I
•••

•••

5 40 F G H I5 40 F G H I

9 11 J9 11 J

5 40 F G H I5 40 F G H I

5 40 F G H I5 40 F G H I

5 40 F G H I5 40 F G H I

Messages from a given sourceSource IPs

Message
fragments

IP address 1

IP address 2

IP address 3

IP address n

Msg. ID: 34 Msg. ID: 478 Msg. ID: 983

9 11 J

5 40 F G H I5 40 F G H I
•••

•••

5 40 F G H I5 40 F G H I

9 11 J9 11 J

5 40 F G H I5 40 F G H I

5 40 F G H I5 40 F G H I

5 40 F G H I5 40 F G H I

Messages from a given sourceSource IPs

Message
fragments

source

Members of trusted list of the source node

Members of the security neighbourhood of the destination node

destination

2 2

2

A

1 1

1

1

1

0

0

0

0
0

0

0

0

B

C

DD

E

F

G

HH

I

J

KK

L

M

N

O

n
Message fragment with number of hops = n

Security
Border

parts, the list of trusted nodes of A is scanned and
each fragment of the message is sent to a node on
this trusted list.
 Each of these receiving nodes looks at the number
of hops and, until it reaches one, the message is sent
to the trusted neighbors of the current node. When a
node (e.g. I) receives a message fragment with the
number of hops equal to one, it forwards the
message to a set of nodes inside the border of
security of the destination node O.
 When the message fragment reaches a node with
the number of hops equal to zero, it means that this
node is inside the security border of the destination
node. The message is not re-split at this time; it is
just sent to the final destination.
 The public keys of each node are kept in a PKI
(Public Key Infrastructure). This PKI has been
redesigned so that when requested, it would be able
to supply a certificate containing the public keys of
the nodes involved in the process, and also a list of
the security neighbors of each node.

6 Security mechanisms
It has been said that in end-to-end communication
RSA is used to cipher the message; nevertheless, the
information that accompanies each part of the
message (primary source, primary destination and
part number) is too valuable to be sent in clear. In
the beginning RSA was used in ciphering each part
of the message, since it is one of the most secure
methods available; however the process of ciphering
and deciphering is too slow and it would create very
large delays in the message transmission [5].
 The solution encountered is the use of mixed key
algorithms. In these algorithms a session key is
randomly generated at the source; the message
fragment is ciphered with this key and the key itself
is ciphered with the public key of the destination;
the ciphered key and the message fragment are then
sent to the destination that will use its private key to
reverse the process.
 It should be therefore clear that each fragment of
the message traveling around the network is
ciphered with two keys; the public key of the
destination and the session key randomly created for
that fragment.

7 Conclusions and further work
This paper presents a method for the secure transfer
of messages between computers using the Internet.
 The chosen strategy is based on denying the
access of the perpetrators to the message, in contrast

with the traditional approaches of ciphering the
message.
 The work is still in progress and some further
refinements will have to be made.
 So far a prototype has been implemented as a
proof of concept [6]. In this prototype the
communication between nodes is based on the
TCP/IP protocol [7]. The overhead presented by
TCP, which guarantees safety on node-to-node
communication, does not increase the guarantee of
delivery of the total message, which will be
compromised if a node breaks down.
 It seems more adequate to use the UDP protocol
and to implement an overall method of guaranteeing
delivery that encompasses the whole message flow.
 The results achieved in our lab tests are very
promising and steps are being followed in order to
develop the UDP implementation and to include
new security mechanisms related with message
partitioning and distribution.

References:
[1] Martyn Williams. E-Commerce Encryption

Cracked; Newsbytes, Daily News,
http://www.computeruser.com/newstoday/99/09/
28/news3.html; September 28, 1999.

[2] Jim Kerstetter. RSA's encryption challenge
solved in 39 days; PC Week Online,
http://www.zdnet.com/zdnn/content/pcwo/0226/
288730.html; February 28 1998.

[3] RSA Labs. Questions and Answers: Shamir's
Factoring Device and RSA,
http://www.rsasecurity.com/rsalabs/bulletins/twi
nkle_qa.html; 1999.

[4] Tanenbaum, A. Computer Networks, Prentice-
Hall, 1996.

[5] Garfinkel and Simmson. Web Security &
Commerce, O’Reilly, 1997

[6] Pimentão, J. Sistema Split and Merge - Relatório
de implementação, UNINOVA, CRI-TR-03-00,
2000. (in Portuguese)

[7] Comer, D.; Stevens, D.. Internetworking with
TCP/IP Volume III: Client-Server Programming
and Applications, Prentice-Hall, 1993

