
 
 
Figure 1: SMT 1 x (4, 8) (one CPU, four-threaded, 

eight-issue). 
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Abstract: - In this paper we describe the principles of the chip multiprocessor architecture, overview design alternatives 
and present some example processors of this type. We discuss the results of several simulations where chip 
multiprocessor was compared to other advanced processor architectures including superscalars and simultaneous 
multithreading processors. Although simultaneous multithreading seems to be most efficient when compared 
architectures have equal total issue bandwidth, chip multiprocessor may outperform simultaneous multithreading when 
implemented with equal number of transistors.  
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1   Introduction 
Memory access latency is the interval between the 
processor’s sending of the request for memory access 
until the return of the result. There are additional 
latencies that can arise in a processor’s pipeline and are 
due to long operations and branch interlocking. Clearly, 
the latency becomes a problem if the processor spends a 
large fraction of its time sitting idle and waiting for 
memory accesses to complete [13]. 
     A way to look at latencies that arise in a pipelined 
execution is the opportunity cost in terms of the 
instructions that might be processed while the pipeline is 
interlocked. The opportunity cost of single-issue 
processors is the number of cycles lost by latencies. 
Multiple-issue processors (e.g., superscalar [1], VLIW 
[9], etc.) potentially execute more than one instruction 
per cycle, so the opportunity cost also depends on the 
issue bandwidth. Unfortunately, due to missing 
instruction-level parallelism rarely all the issue slots are 
fully filled.  
     The opportunity cost can be reduced by the additional 
utilization of more coarse-grained parallelism. The main 
coarse-grained parallelism approaches are represented by 
the chip multiprocessor (CMP) [2, 6, 12, 15] and the 
simultaneous multithreading (SMT) [3, 15, 16].      
     In this paper we survey the chip multiprocessor 
approach and compare it with the simultaneous 
multithreading approach. 
 
2   Coarse-Grained Parallelism 
The first main approach to coarse-grained parallelism is 
SMT. This approach combines the multithreading 

technique with a wide-issue superscalar processor. The 
second approach is CMP. This approach  integrates two 
or more complete processors on a single chip.  
     In the following we will denote by p x (t, i) approach 
with p CPUs per chip, each CPU equipped with t threads 
and i issue slots. 
 
2.1 SMT 
Figure 1 demonstrates a four-threaded eight-issue SMT 
processor. The processor exploits instruction-level 



 
Figure 2: CMP 4 x (1, 2) (four CPUs, four-threaded, 

two-issue). 

parallelism by selecting instructions from any thread that 
can potentially issue. If one thread has high instruction-
level parallelism, it may fill all horizontal slots 
depending on the issue strategy of the SMT processor. If 
multiple threads each have low instruction-level 
parallelism, instructions of several threads can be issued 
and executed simultaneously. 
 
2.1 CMP 
Figure 2 shows a CMP with four two-issue CPUs on a 
single chip. Each CPU is assigned a thread from which it 
can issue up to two instructions each cycle. Thus, each 
CPU has the same opportunity cost as in a two-issue 
superscalar model. The CMP is not able to hide latencies 
by issuing instructions of other threads. However, 
because horizontal losses will be smaller for two-issue 
than for high-bandwidth superscalars, a CMP of four 
two-issue processors will reach a higher utilization than 
an eight-issue superscalar processor. 

 
3   CMP Design Alternatives 
Today the most common organizational principles for 
multiprocessors are the symmetric multiprocessor 
(SMP), the distributed shared memory multiprocessor 
(DSM), and the message-passing shared-nothing 
multiprocessor. 
     The SMP and the DSM multiprocessors feature a 
common address space, which is implemented in the 
SMP as a single global memory where each memory 
word can be accessed in uniform access time by all 
processors (uniform memory access). In the DSM 

multiprocessor a common address space is maintained 
despite physically distributed memory modules. A 
processor in a DSM may access data in its local memory 
faster than in the remote memory (the memory module 
local to another processor). DSM multiprocessors are 
therefore nonuniform memory access systems. Shared-
nothing multiprocessors feature physically distributed 
memory modules and no common address space. 
Therefore, communication can only be performed by 
passing messages between processors. Shared-nothing 
multiprocessors are highly scalable but harder to 
program than shared-memory multiprocessors. They are 
beyond the scope of today's reasoning about CMPs, 
which, by their tight physical coupling on a single chip, 
may also feature a very tight coupling of instruction 
streams, usually expressed by a common memory 
organization. 
     The principal organizational forms of multiprocessors 
do not regard cache organization. Commodity 
microprocessors, which are usually used today as 
building blocks for multiprocessors, contain on-chip 
caches, often coupled with off-chip secondary cache 
memories. Shared-memory multiprocessors maintain 
cache coherence by a cache coherence protocol. SMPs 
consist of a moderate number of commodity 
microprocessors with cache memories coupled by a fast 
memory bus with the global memory. In the latest SMPs 
the memory bus is replaced by an address bus and a data 
crossbar switch for faster transfer of cache lines. SMPs 
are the starting point for CMPs. 
     From the applications perspective, whether a CMP 
works best depends on the amount and the 
characteristics of the parallelism in the applications. 
These fall into three broad classes depending on the 
degree of interprocessor communication, which can be 
low, moderate, or high. From the architectural 
perspective, the performance of a CMP will depend on 
the level of the memory hierarchy at which the CPUs of 
the CMP are interconnected. 
     In order to develop insight about the most appropriate 
memory hierarchy level for connecting the CPUs in a 
CMP, three alternatives were compared in [8]: a shared-
main memory multiprocessor (i.e., the typical SMP 
today), a shared-secondary cache multiprocessor, and a 
shared-primary cache multiprocessor. They found that, 
when applications have a high or moderate degree of 
interprocessor communication, both shared-primary 
cache and shared-secondary cache architectures perform 
similarly and outperform the shared-main memory 
architecture substantially. There are two reasons for this. 
First, the shared cache was assumed large enough to 
accommodate  most of the working sets of independent 
threads running on different CPUs, so that the cache 
miss rate is low. Second, when there is interprocessor 
communication, it is handled very efficiently in the 



shared (primary or secondary) cache. Even for 
applications with little or no interprocessor 
communication, the performance of the shared-primary 
cache architecture is still slightly better than shared-main 
memory architecture. 
     To maintain the performance growth of 
microprocessors, the details of implementing a CMP 
were discussed in [10].  
 
4   CMP Examples 
In the following we itemize some realized CMP 
examples:  
•  The Texas Instruments TMS320C8x (or 'C8x) family 
of processors are CMPs suitable for system-level and 
embedded implementations [15]. Such a CMP is a 
multimedia video processor which replaces several 
system components by integrating multiple processors, 
memory control logic, instruction cache and internal 
memory, an advanced DMA controller, and video timing 
generation logic ('C80 only) onto a single chip. They 
provided an order of magnitude increase in 
computational power over existing digital signal 
processors (DSPs) and general-purpose processors in 
1994. Two types of processors are combined in the chip: 
a single RISC master processor (MP) and a number of 
VLIW DSP-like parallel processors (PP). Moreover, the 
chip contains a programmable DMA transfer controller 
(to handle all off-chip data transfer operations required 
by the MP and PPs), a video controller, and a boundary-
scan test access port. All processors are interconnected 
by a crossbar with instruction caches, and data RAM 

and parameter RAM areas. The 'C8x family consists of 
two members, the 'C80 [15], which features four PPs, 
and the 'C82 [4] with only two on-chip PPs. 
•  The Hydra proposal [6] is composed of four 2-issue 
superscalar CPUs on a single chip. Each of the CPUs is 
similar to a small MIPS R10000 processor and is 
attached to its own on-chip primary instruction and data 
caches. In addition, a single, unified secondary cache is 
included on the chip. 
•  Sun's microprocessor architecture for Java computing 
(MAJC) based on a VLIW approach and embraces Java 
technology [12]. The MAJC-5200 is the first 
implementation of the MAJC architecture. Exploiting a 
thread-level parallelism, the MAJC-5200 processor has 
two CPUs on the same chip. Each CPU is 4-threaded 
block interleaving VLIW processor. 
•  IBM Power 4 has two 5-issue superscalar CPUs on 
the same chip [2].  
 
5   CMP versus SMT 
In this section, we compare the CMP and SMT 
approach. 
     In [11, 16] the results of simulations comparing SMT 
with CMP are given (see Table 1). The two simulations 
produced slightly different results. The difference 
follows from the high number of execution units in [16] 
(for example, up to eight load/store units are used in this 
simulation ignoring hardware cost and design problems, 
whereas the performance of SMT model in [11] is 
restricted by the assumption of a single load/store unit). 
In [16] the SMT performs better than the CMP, whereas 

Table 1.   Simulation results in IPC.  

Approach p x (t, i) [16] [11] 
1 x (4, 8) 4.15 3.37 SMT 1 x (8, 8) 6.64 4.19 

CMP scalar 8 x (1, 1) 5.13 6.07 
2 x (1, 4) 1.94 2.56 CMP superscalar 4 x (1, 2) 3.44 4.32 

CMP + SMT 2 x (4, 4) 6.80 6.80 
 

Table 2.   Architectures simulated in [3]: SS (1 x (1, 8) superscalar), TSS (1 x (8, 8) cycle-by-cycle multi-
threaded superscalar), CMP2 (2 x (1, 4) chip multiprocessor), CMP4 (4 x (1, 2) hip multiprocessor), 
and SMT (1 x (8,8) simultaneous multithreading processor). 

Features SS TSS CMP2 CMP4 SMT 
# of CPUs 1 1 2 4 1 
CPU issue bandwidth 8 8 4 2 8 
# of threads 1 8 1/CPU 1/CPU 8 

# of arch. registers 32 32/thread 32/CPU 32/CPU 32/thread 

 



in [11] the CMP reaches a higher throughput than the 
SMT, when using the same issue bandwidth and number 
of threads (see 1 x (8,8) and 8 x (1,1) in Table 1). 
However, if chip costs were taken into consideration, a 
4-threaded 4-issue superscalar processor showed the best 
performance/cost relation. 
     Further simulations were described in [3]. They 
compared two CMPs (one with 2 CPUs and one with 4 
CPUs) with a superscalar, cycle-by-cycle interleaving 
multithreaded superscalar, and SMT (Table 2). The 
simulation results (see Table 3) were obtained on a 
workload which consisted of a group of coarse-grained 
(parallel threads) and medium-grained (parallel loop 
iterations) parallel programs. 

     The average instruction throughput of an 8-issue 
superscalar was 3.3 IPC, which is already high compared 
to other measured superscalar IPCs, but rather low 
compared to the eight instructions possibly issued per 
cycle. The superscalar's inability to exploit more ILP or 
any thread-level parallelism contributed to its lower 
performance. By exploiting thread-level parallelism, a 
cycle-by-cycle interleaving multithreaded superscalar 
technique provided an average instruction throughput of 

4.2 IPC. This IPC occurred with only four threads while 
performance fell with additional threads. One of the 
reasons is that a cycle-by-cycle interleaving 
multithreaded superscalar can issue instructions from 
only one thread each cycle and therefore cannot hide 
conflicts from interthread competition for shared 
resources. SMT obtained better speedups than CMP2 
and CMP4, the latter being CMPs with respectively, two 

four-issue, and four two-issue CPUs. Speedups on the 
CMPs were hindered by the fixed partitioning of their 
hardware resources across the CPUs. Bridging of 
latencies is only possible in the multithreaded processor 
approaches, and not in CMP. CPUs in CMPs were idle 
when thread-level parallelism was insufficient. 
Exploiting large amounts of ILP in the unrolled loops of 
individual threads was not possible due to the CPU's 
smaller issue bandwidth in CMP. On the other hand, an 
SMT processor dynamically partitions its resources 
among threads, and therefore can respond well to 
variations in both types of parallelism, exploiting them 
interchangeably. 
     In contrast to the previous simulation (which 

compared architectures having constant total issue 
bandwidth), the simulation in [5] first fixed a standard 
chip area as well as integration density, and then 
determined the parameters for three architectures: 
superscalar, CMP, and SMT (Table 4). They argued that 
design complexity for a 16-issue CMP was similar to 
that of a 12-issue superscalar or a 12-issue SMT 
processor.  
     In this case, 8 x (1, 2) CMP outperforms a 12-issue 

superscalar and a 1 x (8, 12) SMT on four SPEC95 
benchmark programs. Table 5 shows the performance of 
the three processors relative to a single 2-issue 
superscalar. 
     The CMP achieved higher performance than the SMT 
due to a total of 16 issue slots instead of 12 issue slots 
for the SMT. 
 

Table 3.   Simualtion results in IPC: SS (1 x (1, 8) superscalar), TSS (1 x (8, 8) cycle-by-cycle multithreaded 
superscalar), CMP2 (2 x (1, 4) chip multiprocessor), CMP4 (4 x (1, 2) chip multiprocessor), and 
SMT (1 x (8,8) simultaneous multithreading processor). 

Threads SS CPM2 CMP4 TSS SMT 
1 3.3 2.4 1.5 3.3 3.3 
2  4.3 2.6 4.1 4.7 
3   4.2 4.2 5.6 
4    3.5 6.1 

 
 

Table 4.   Architectures simulated in [5]: SS (1 x (1, 12) superscalar), CMP (8 x (1, 2) chip multiprocessor), and 
SMT (1 x (8,12) simultaneous multithreading processor). 

Features SS CMP SMT 
# of CPUs 1 8 1 
CPU issue bandwidth 12 2 12 
# of threads 1 1/CPU 8 
# of arch. registers 32 32/CPU 32/thread 

 



6   Conclusions 
The performance race between SMT and CMP has yet to 
be decided. CMP and SMT each have advantages and 
disadvantages, and it will be interesting to see which 
approach offers better performance. CMP will be easier 
to implement, but only SMT has the ability to hide 
latencies. A functional partitioning as required by the on-
chip wire-delay of future microprocessors is not easily 
reached within a SMT processor due to the centralized 
instruction issue. A separation of the thread queues is a 
possible solution, although it does not remove the central 
instruction issue. 
     A combination of SMT with the CMP was proposed 
in [7, 11] and  shows the path towards a CMP consisting 
of moderately equipped  SMTs. 
     Usually, a CMP will feature separate primary 
instruction and data caches per on-chip CPU and an 
optional unified secondary cache. If the CPUs always 
execute threads of the same process, the secondary cache 
organization will be simplified, because different 
processes do not have to be distinguished. 
     Moreover, the multiprocessor which is formed by the 
CMPs will be a symmetric multiprocessor (SMP) or 
even a distributed shared-memory multiprocessor 
(DSM).  
     Similarly, if all (hardware-supported) threads of a 
SMT processor always execute threads of the same 
process, preferably in SPMD fashion, a unified (primary) 
instruction cache may prove useful since the code can be 
shared between the threads. Primary data cache may be 
unified or separated between the threads depending on 
the access mechanism used. 
     If CMP or SMT are the design choice of the future, 
the impact on multiprocessor development will favor 
shared-memory multiprocessors (either SMPs or DSMs) 
over message-passing machines. Since multithreading 
and message passing do not mix well even in state-of-
the-art multiprocessor programs, there is an indication 
that message-passing programs using PVM or MPI will 
soon be outdated and produce a legacy problem. 
     In future, we will observe merging of SMT and CMP 
with today's multiple-issue processor techniques.  
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