

Figure 1: SMT 1 x (4, 8) (one CPU, four-threaded,

eight-issue).

Chip Multiprocessors – A Cost-effective Alternative to
Simultaneous Multithreading

BORUT ROBIČ JURIJ ŠILC THEO UNGERER
Faculty of Computer and Information Sc. Computer Systems Department Dept. of Computer Design and Fault Tolerance
University of Ljubljana Jožef Stefan Institute University of Karlsruhe
Tržaška 25, 1000 Ljubljana Jamova 39, 1000 Ljubljana 76128 Karlsruhe
SLOVENIA SLOVENIA GERMANY

Abstract: - In this paper we describe the principles of the chip multiprocessor architecture, overview design alternatives
and present some example processors of this type. We discuss the results of several simulations where chip
multiprocessor was compared to other advanced processor architectures including superscalars and simultaneous
multithreading processors. Although simultaneous multithreading seems to be most efficient when compared
architectures have equal total issue bandwidth, chip multiprocessor may outperform simultaneous multithreading when
implemented with equal number of transistors.

Key-Words: - chip multiprocessor, instruction-level parallelism, simultaneous multithreading, thread-level parallelism.

1 Introduction
Memory access latency is the interval between the
processor’s sending of the request for memory access
until the return of the result. There are additional
latencies that can arise in a processor’s pipeline and are
due to long operations and branch interlocking. Clearly,
the latency becomes a problem if the processor spends a
large fraction of its time sitting idle and waiting for
memory accesses to complete [13].
 A way to look at latencies that arise in a pipelined
execution is the opportunity cost in terms of the
instructions that might be processed while the pipeline is
interlocked. The opportunity cost of single-issue
processors is the number of cycles lost by latencies.
Multiple-issue processors (e.g., superscalar [1], VLIW
[9], etc.) potentially execute more than one instruction
per cycle, so the opportunity cost also depends on the
issue bandwidth. Unfortunately, due to missing
instruction-level parallelism rarely all the issue slots are
fully filled.
 The opportunity cost can be reduced by the additional
utilization of more coarse-grained parallelism. The main
coarse-grained parallelism approaches are represented by
the chip multiprocessor (CMP) [2, 6, 12, 15] and the
simultaneous multithreading (SMT) [3, 15, 16].
 In this paper we survey the chip multiprocessor
approach and compare it with the simultaneous
multithreading approach.

2 Coarse-Grained Parallelism
The first main approach to coarse-grained parallelism is
SMT. This approach combines the multithreading

technique with a wide-issue superscalar processor. The
second approach is CMP. This approach integrates two
or more complete processors on a single chip.
 In the following we will denote by p x (t, i) approach
with p CPUs per chip, each CPU equipped with t threads
and i issue slots.

2.1 SMT
Figure 1 demonstrates a four-threaded eight-issue SMT
processor. The processor exploits instruction-level

Figure 2: CMP 4 x (1, 2) (four CPUs, four-threaded,

two-issue).

parallelism by selecting instructions from any thread that
can potentially issue. If one thread has high instruction-
level parallelism, it may fill all horizontal slots
depending on the issue strategy of the SMT processor. If
multiple threads each have low instruction-level
parallelism, instructions of several threads can be issued
and executed simultaneously.

2.1 CMP
Figure 2 shows a CMP with four two-issue CPUs on a
single chip. Each CPU is assigned a thread from which it
can issue up to two instructions each cycle. Thus, each
CPU has the same opportunity cost as in a two-issue
superscalar model. The CMP is not able to hide latencies
by issuing instructions of other threads. However,
because horizontal losses will be smaller for two-issue
than for high-bandwidth superscalars, a CMP of four
two-issue processors will reach a higher utilization than
an eight-issue superscalar processor.

3 CMP Design Alternatives
Today the most common organizational principles for
multiprocessors are the symmetric multiprocessor
(SMP), the distributed shared memory multiprocessor
(DSM), and the message-passing shared-nothing
multiprocessor.
 The SMP and the DSM multiprocessors feature a
common address space, which is implemented in the
SMP as a single global memory where each memory
word can be accessed in uniform access time by all
processors (uniform memory access). In the DSM

multiprocessor a common address space is maintained
despite physically distributed memory modules. A
processor in a DSM may access data in its local memory
faster than in the remote memory (the memory module
local to another processor). DSM multiprocessors are
therefore nonuniform memory access systems. Shared-
nothing multiprocessors feature physically distributed
memory modules and no common address space.
Therefore, communication can only be performed by
passing messages between processors. Shared-nothing
multiprocessors are highly scalable but harder to
program than shared-memory multiprocessors. They are
beyond the scope of today's reasoning about CMPs,
which, by their tight physical coupling on a single chip,
may also feature a very tight coupling of instruction
streams, usually expressed by a common memory
organization.
 The principal organizational forms of multiprocessors
do not regard cache organization. Commodity
microprocessors, which are usually used today as
building blocks for multiprocessors, contain on-chip
caches, often coupled with off-chip secondary cache
memories. Shared-memory multiprocessors maintain
cache coherence by a cache coherence protocol. SMPs
consist of a moderate number of commodity
microprocessors with cache memories coupled by a fast
memory bus with the global memory. In the latest SMPs
the memory bus is replaced by an address bus and a data
crossbar switch for faster transfer of cache lines. SMPs
are the starting point for CMPs.
 From the applications perspective, whether a CMP
works best depends on the amount and the
characteristics of the parallelism in the applications.
These fall into three broad classes depending on the
degree of interprocessor communication, which can be
low, moderate, or high. From the architectural
perspective, the performance of a CMP will depend on
the level of the memory hierarchy at which the CPUs of
the CMP are interconnected.
 In order to develop insight about the most appropriate
memory hierarchy level for connecting the CPUs in a
CMP, three alternatives were compared in [8]: a shared-
main memory multiprocessor (i.e., the typical SMP
today), a shared-secondary cache multiprocessor, and a
shared-primary cache multiprocessor. They found that,
when applications have a high or moderate degree of
interprocessor communication, both shared-primary
cache and shared-secondary cache architectures perform
similarly and outperform the shared-main memory
architecture substantially. There are two reasons for this.
First, the shared cache was assumed large enough to
accommodate most of the working sets of independent
threads running on different CPUs, so that the cache
miss rate is low. Second, when there is interprocessor
communication, it is handled very efficiently in the

shared (primary or secondary) cache. Even for
applications with little or no interprocessor
communication, the performance of the shared-primary
cache architecture is still slightly better than shared-main
memory architecture.
 To maintain the performance growth of
microprocessors, the details of implementing a CMP
were discussed in [10].

4 CMP Examples
In the following we itemize some realized CMP
examples:
• The Texas Instruments TMS320C8x (or 'C8x) family
of processors are CMPs suitable for system-level and
embedded implementations [15]. Such a CMP is a
multimedia video processor which replaces several
system components by integrating multiple processors,
memory control logic, instruction cache and internal
memory, an advanced DMA controller, and video timing
generation logic ('C80 only) onto a single chip. They
provided an order of magnitude increase in
computational power over existing digital signal
processors (DSPs) and general-purpose processors in
1994. Two types of processors are combined in the chip:
a single RISC master processor (MP) and a number of
VLIW DSP-like parallel processors (PP). Moreover, the
chip contains a programmable DMA transfer controller
(to handle all off-chip data transfer operations required
by the MP and PPs), a video controller, and a boundary-
scan test access port. All processors are interconnected
by a crossbar with instruction caches, and data RAM

and parameter RAM areas. The 'C8x family consists of
two members, the 'C80 [15], which features four PPs,
and the 'C82 [4] with only two on-chip PPs.
• The Hydra proposal [6] is composed of four 2-issue
superscalar CPUs on a single chip. Each of the CPUs is
similar to a small MIPS R10000 processor and is
attached to its own on-chip primary instruction and data
caches. In addition, a single, unified secondary cache is
included on the chip.
• Sun's microprocessor architecture for Java computing
(MAJC) based on a VLIW approach and embraces Java
technology [12]. The MAJC-5200 is the first
implementation of the MAJC architecture. Exploiting a
thread-level parallelism, the MAJC-5200 processor has
two CPUs on the same chip. Each CPU is 4-threaded
block interleaving VLIW processor.
• IBM Power 4 has two 5-issue superscalar CPUs on
the same chip [2].

5 CMP versus SMT
In this section, we compare the CMP and SMT
approach.
 In [11, 16] the results of simulations comparing SMT
with CMP are given (see Table 1). The two simulations
produced slightly different results. The difference
follows from the high number of execution units in [16]
(for example, up to eight load/store units are used in this
simulation ignoring hardware cost and design problems,
whereas the performance of SMT model in [11] is
restricted by the assumption of a single load/store unit).
In [16] the SMT performs better than the CMP, whereas

Table 1. Simulation results in IPC.

Approach p x (t, i) [16] [11]
1 x (4, 8) 4.15 3.37 SMT 1 x (8, 8) 6.64 4.19

CMP scalar 8 x (1, 1) 5.13 6.07
2 x (1, 4) 1.94 2.56 CMP superscalar 4 x (1, 2) 3.44 4.32

CMP + SMT 2 x (4, 4) 6.80 6.80

Table 2. Architectures simulated in [3]: SS (1 x (1, 8) superscalar), TSS (1 x (8, 8) cycle-by-cycle multi-
threaded superscalar), CMP2 (2 x (1, 4) chip multiprocessor), CMP4 (4 x (1, 2) hip multiprocessor),
and SMT (1 x (8,8) simultaneous multithreading processor).

Features SS TSS CMP2 CMP4 SMT
of CPUs 1 1 2 4 1
CPU issue bandwidth 8 8 4 2 8
of threads 1 8 1/CPU 1/CPU 8

of arch. registers 32 32/thread 32/CPU 32/CPU 32/thread

in [11] the CMP reaches a higher throughput than the
SMT, when using the same issue bandwidth and number
of threads (see 1 x (8,8) and 8 x (1,1) in Table 1).
However, if chip costs were taken into consideration, a
4-threaded 4-issue superscalar processor showed the best
performance/cost relation.
 Further simulations were described in [3]. They
compared two CMPs (one with 2 CPUs and one with 4
CPUs) with a superscalar, cycle-by-cycle interleaving
multithreaded superscalar, and SMT (Table 2). The
simulation results (see Table 3) were obtained on a
workload which consisted of a group of coarse-grained
(parallel threads) and medium-grained (parallel loop
iterations) parallel programs.

 The average instruction throughput of an 8-issue
superscalar was 3.3 IPC, which is already high compared
to other measured superscalar IPCs, but rather low
compared to the eight instructions possibly issued per
cycle. The superscalar's inability to exploit more ILP or
any thread-level parallelism contributed to its lower
performance. By exploiting thread-level parallelism, a
cycle-by-cycle interleaving multithreaded superscalar
technique provided an average instruction throughput of

4.2 IPC. This IPC occurred with only four threads while
performance fell with additional threads. One of the
reasons is that a cycle-by-cycle interleaving
multithreaded superscalar can issue instructions from
only one thread each cycle and therefore cannot hide
conflicts from interthread competition for shared
resources. SMT obtained better speedups than CMP2
and CMP4, the latter being CMPs with respectively, two

four-issue, and four two-issue CPUs. Speedups on the
CMPs were hindered by the fixed partitioning of their
hardware resources across the CPUs. Bridging of
latencies is only possible in the multithreaded processor
approaches, and not in CMP. CPUs in CMPs were idle
when thread-level parallelism was insufficient.
Exploiting large amounts of ILP in the unrolled loops of
individual threads was not possible due to the CPU's
smaller issue bandwidth in CMP. On the other hand, an
SMT processor dynamically partitions its resources
among threads, and therefore can respond well to
variations in both types of parallelism, exploiting them
interchangeably.
 In contrast to the previous simulation (which

compared architectures having constant total issue
bandwidth), the simulation in [5] first fixed a standard
chip area as well as integration density, and then
determined the parameters for three architectures:
superscalar, CMP, and SMT (Table 4). They argued that
design complexity for a 16-issue CMP was similar to
that of a 12-issue superscalar or a 12-issue SMT
processor.
 In this case, 8 x (1, 2) CMP outperforms a 12-issue

superscalar and a 1 x (8, 12) SMT on four SPEC95
benchmark programs. Table 5 shows the performance of
the three processors relative to a single 2-issue
superscalar.
 The CMP achieved higher performance than the SMT
due to a total of 16 issue slots instead of 12 issue slots
for the SMT.

Table 3. Simualtion results in IPC: SS (1 x (1, 8) superscalar), TSS (1 x (8, 8) cycle-by-cycle multithreaded
superscalar), CMP2 (2 x (1, 4) chip multiprocessor), CMP4 (4 x (1, 2) chip multiprocessor), and
SMT (1 x (8,8) simultaneous multithreading processor).

Threads SS CPM2 CMP4 TSS SMT
1 3.3 2.4 1.5 3.3 3.3
2 4.3 2.6 4.1 4.7
3 4.2 4.2 5.6
4 3.5 6.1

Table 4. Architectures simulated in [5]: SS (1 x (1, 12) superscalar), CMP (8 x (1, 2) chip multiprocessor), and
SMT (1 x (8,12) simultaneous multithreading processor).

Features SS CMP SMT
of CPUs 1 8 1
CPU issue bandwidth 12 2 12
of threads 1 1/CPU 8
of arch. registers 32 32/CPU 32/thread

6 Conclusions
The performance race between SMT and CMP has yet to
be decided. CMP and SMT each have advantages and
disadvantages, and it will be interesting to see which
approach offers better performance. CMP will be easier
to implement, but only SMT has the ability to hide
latencies. A functional partitioning as required by the on-
chip wire-delay of future microprocessors is not easily
reached within a SMT processor due to the centralized
instruction issue. A separation of the thread queues is a
possible solution, although it does not remove the central
instruction issue.
 A combination of SMT with the CMP was proposed
in [7, 11] and shows the path towards a CMP consisting
of moderately equipped SMTs.
 Usually, a CMP will feature separate primary
instruction and data caches per on-chip CPU and an
optional unified secondary cache. If the CPUs always
execute threads of the same process, the secondary cache
organization will be simplified, because different
processes do not have to be distinguished.
 Moreover, the multiprocessor which is formed by the
CMPs will be a symmetric multiprocessor (SMP) or
even a distributed shared-memory multiprocessor
(DSM).
 Similarly, if all (hardware-supported) threads of a
SMT processor always execute threads of the same
process, preferably in SPMD fashion, a unified (primary)
instruction cache may prove useful since the code can be
shared between the threads. Primary data cache may be
unified or separated between the threads depending on
the access mechanism used.
 If CMP or SMT are the design choice of the future,
the impact on multiprocessor development will favor
shared-memory multiprocessors (either SMPs or DSMs)
over message-passing machines. Since multithreading
and message passing do not mix well even in state-of-
the-art multiprocessor programs, there is an indication
that message-passing programs using PVM or MPI will
soon be outdated and produce a legacy problem.
 In future, we will observe merging of SMT and CMP
with today's multiple-issue processor techniques.

References:
[1] Tilak Agarwala, John Cocke, High performance

reduced instruction set processor, Technical Report
#55845, IBM Thomas J. Watson Research Center,
1987.

[2] Keith Diefendorff, Power4 focuses on memory
bandwidth, Microprocessor Report, Vol. 13, No. 13,
Oct. 1999.

[3] Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack
L. Lo, Rebecca M. Stamm, Dean M. Tullsen,
Simultaneous multithreading: a platform for next-
generation processors, IEEE Micro, Vol. 17,
Sep./Oct. 1997, pp.12-19.

[4] Jeremiah Golston, Single-chip H.324 video-
conferencing, IEEE Micro, Vol. 16, No. 4, 1996,
pp.21-33.

[5] Lance Hammond, Basem A. Nayfeh, Kunle
Olukotun, A single-chip multiprocessor, Computer,
Vol. 30, No. 9, Sep. 1997, pp.79-85.

[6] Lance Hammond, Kunle Olukotun, Considerations
in the design of Hydra: a multiprocessor-on-chip
microarchitecture, Technical Report CSL-TR-98-749,
Computer Systems Laboratory, Stanford University,
1998.

 [7] Venkata Krishnan, Joseph Torellas, A clustered
approach to multithreaded processors, Proc. 1998
IPPS/SPDP Conf., Orlando, FL, Mar./Apr. 1998,
pp.627-634.

[8] Basem A. Nayfeh, Lance Hammond, Kunle
Olukotun, Evaluation of design alternatives for a
multiprocessor microprocessor, Proc. 23rd Ann. Int.
Symp. Comp. Arch., Philadelphia, PA, May 1996,
pp.67-77.

[9] Alexandru Nicolau, Joseph A. Fisher, Measuring the
parallelism available for very long instruction word
architecture, IEEE Transaction on Computers, Vol.
C-33, No. 11, 1984, pp.968-976.

[10] Kunle Olukotun, Basem A. Nayfeh, Lance
Hammond, Ken Wilson, Kunyung Chang, The case
for a single-chip multiprocessor, Proc. 7th Int. Conf.
ASPLOS, Cambridge, MA, Oct. 1996, pp.2-11.

Table 5. Performance of SS (1 x (1, 12) superscalar), CMP (8 x (1, 2) chip multiprocessor), and SMT (1 x
(8,12) simultaneous multithreading processor) relative to 2-issue superscalar.

Benchmark program SS CMP SMT
compress 1.5 1.25 1.5
mpeg 3.25 7.75 6.75
tomcatv 1.5 7.5 5.75
multiprogram 1.5 8 7

[11] Ulrich Sigmund, Theo Ungerer, Evaluating a
multithreaded superscalar microprocessor versus a
multiprocessor chip, Proc. 4th PASA Workshop
Parall. Sys. and Algorithms, Jülich, Germany, Apr.
1996, pp.147-159.

[12] Subramania Sudharsanan, MAJC-5200: a high
performance microprocessor for multimedia
computing, Proc. Workshop on Parallel and
Distributed Computing in Image Processing, Video
Processing, and Multi-media, Cancun, Mexico, May
2000.

[13] Jurij Šilc, Borut Robič, Theo Ungerer, Processor
Architecture: From Dataflow to Superscalar and
Beyond, Springer-Verlag, Berlin, New York, 1999.

[14] Jurij Šilc, Borut Robič, Theo Ungerer,
Simultaneous multithreading – blending thread-level
and instruction-level parallelism in advanced
microprocessors, Proc. 5th Word Multiconf. on
Circuits, Systems, Comm. & Computers, Rethymnon,
Greece, July 2001. (submitted)

[15] Texas Instruments, TMS320C80 Technical Brief,
Texas Instruments, Houston, TX, 1994.

[16] Dean M. Tullsen, Susan J. Eggers, Henry M. Levy,
Simultaneous multithreading: maximizing on-chip
parallelism, Proc. 22nd Ann. Int. Symp. Comp. Arch.,
Santa Margherita Ligure, Italy, June 1995, pp.392-
403.

