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Abstract: - In this paper the  wavelet packet transform is used for processing of rolling element bearing fault
signals. The effectiveness of the envelope analysis technique is combined with the flexibility of the wavelet
packet transform, helping in the minimization of interventions by the end user. According to the proposed
method, a   time-frequency decomposition of a vibration  signal is provided and the components  carrying the
important diagnostic information are selected for further processing. The parameter selection criteria are
discussed. The method  is evaluated using a simulated signal and actual vibration signals measured from
bearings with defects at different locations.
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1   Introduction
Bearings are  among the most important and

frequently encountered components in the vast
majority of rotating machines, their carrying
capacity and reliability being prominent for the
overall machine performance. Therefore, quite
naturally, fault identification of rolling element
bearings has been the subject of extensive research
[1].

Vibration analysis has been established as the
most common and reliable analysis method. Defects
or wear cause impacts at frequencies governed by
the operating speed of the unit and the geometry of
the bearings, which in turn are modulated by
machine natural frequencies. The signature of a
damaged bearing consists of exponentially decaying
ringing that occurs periodically at the characteristic
defect frequency. A corresponding well-established
physical model has been proposed in [2]. The
location dependent characteristic defect frequencies
make it possible to detect the presence of a defect
and to diagnose on what part of the bearing the
defect is. The difficulty of  defect detection lies in
the fact that the signature of a defective bearing is
spread across a wide frequency band and hence can
be easily masked by noise. Its spectrum consists of
of a  series of harmonics of the characteristic defect
frequency, with the highest amplitude around the
resonance frequency. Typically the amplitude at the
characteristic defect frequency is small and not
easily  noticed. For the solution of this problem
several methods have been proposed, based either
directly on the shape of the time domain form of the

signal, or on its spectral content. Of all those
methods, the most widely accepted is the envelope
analysis [3-4]. The simplest method to perform
envelope analysis is to pass the signal through an
analogue high-pass filter to remove the low-
frequency noise and then by rectifying and
frequency analysing the signal, the defect frequency
components can be determined in the envelope
spectrum. Envelope analysis can be made more
efficient by digitising the signal and band-pass
filtering it in a   region where there is a high signal-
to-noise ratio,  typically around a resonance.

 The  ringing modes of a bearing and its
supporting structure cannot easily be predicted,
because they depend on factors such as operating
condition and development of the defect. Thus, in
frequency domain methods, an intelligent selection
of the frequency band is required.

In order to overcome this problem a number of
time-frequency domain methods have been
proposed, such as the Short Time Fourier
Transform, the Wigner-Ville Distribution and the
Wavelet Transform. Wavelets have been established
as the most widespread tool in many areas of signal
processing, due to their flexibility and to their
efficient computational implementation [5]. They
have  been introduced in vibrations [6] and there are
specific case studies for bearing fault detection [7-8]
and for other machine components [9]. In many
cases the application of wavelets has been combined
and enriched by using additional features, such as
Gaussian/exponential-enveloped functions [10], or
de-noising methods [11].
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The  Wavelet Packet Transform  is a
generalization of the wavelet transform and has been
used in signal processing  for denoising or
compression of   signals  [12-13]. Applications in
machining process have also been proposed [14-15].
In this paper a method is proposed, which uses the
wavelet packet transform  as a systematic tool for
the analysis of vibration signals resulting from
bearings with localized defects. Prediction of the
resonant frequencies is not required, minimizing the
interventions by the end user.  In chapter 2 a brief
review of the basics of the Wavelet transform and
the wavelet packet transform are presented. In
section 3 the implementation of the proposed
method is described and the major parameters
affecting its performance are analyzed. Results of
the implementation  on a simulated signal as well as
on experimental and industrial measurements for
two different types of bearing faults are provided in
section 4, verifying the effectiveness of the method.

2  Brief Review of the Wavelet Theory

 2.1 The Wavelet Transform
The continuous  wavelet transform (CWT) of a

finite energy signal x(t) with the analyzing wavelet
%(t) is the convolution of x(t) with a scaled and
conjugated wavelet:
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 The wavelet coefficient W(.,b) measures the
similarity between the signal s(t) and the analyzing
wavelet %(t) at different scales as defined by the
parameter a, and different time positions as defined
by the parameter b. The factor .–1/2 is used for
energy preservation. Equation (1)  indicates that the
wavelet analysis is a time-frequency analysis, or,
more properly termed, a time-scale analysis. The
wavelet transform can be also considered as a
special filtering operation. The frequency
segmentation is obtained by translation  and dilation
of the analyzing wavelet. At successively larger
scales the frequency  resolution improves and the
time resolution decreases.

The discrete wavelet transform is performed
by choosing fixed values .=2m and b=n2m,
where m,n are integers. Thus, discrete wavelets
%m,n(t)=2-m/2

%(2-mt-n) are constructed constituting an
orthonormal  basis. The discrete wavelet analysis
can be implemented by the scaling filter h(n), which
is a lowpass filter related to the scaling function 3(t),
and the  wavelet filter g(n), which is a highpass filter
related to the wavelet function %(t).
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The computation of these filters and their properties
has been widely analyzed in [5,16].

The basic step of a fast wavelet algorithm  is

Figure1. Basic step of decomposition and
reconstruction of the wavelet transform.

illustrated in Fig.1 and can be implemented  in    two
opposite directions,   decomposition   and
reconstruction. In the decomposition step in
Fig. 1(a), the discrete signal s is convolved with a
low pass filter L  and a high pass filter H, resulting
in two vectors cA1 and cD1.
The elements of the vector cA1  are called
approximation coefficients and the elements of the
vector cD1  are called detail  coefficients. The
symbol ;� GHQRWHV downsampling i.e. omitting  the
odd indexed elements of the filtered signal,  so  the
number of the coefficients produced by the basic
step is approximately the same as the number of
elements of the discrete signal s.  In the
reconstruction step in Fig 1(b) a pair of filters LR
and HR are convolved with  the vectors cA1 and cD1  
respectively. Two signals are produced  resulting in
a reconstruction signal A1 called Approximation, and
a  reconstruction signal D1  called Detail. The
symbol 9� GHQRWHV upsampling e.g. inserting zeros
between the elements of the vectors cA1 and cD1. An
important property of this step is

1 1= +s A D                                                               (3)
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The procedure of the basic step is repeated on the
approximation vector cA1 and successively on every
new approximation vector cAj. This idea is presented
by means of a wavelet tree with J levels, where J is
the number of iterations of the basic step.  In Fig. 2
the wavelet tree of  a wavelet decomposition for J=3
is illustrated. Each vector Aj  includes  approximately
Nt/2

j coefficients, where Nt  is the length of the
signal s, and provides information about a frequency
band   [0, FS/2

j+1], where FS  is the sampling rate. The
reconstruction signals A1, D1 satisfy the equations:
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where i,j are positive integers.

  s 
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Figure 2. An example of a three  level wavelet tree

2.2 The Wavelet Packet Transform (WPT)
The wavelet packet transform is a generalization

of the wavelet transform. Let us define two
functions W0(t)=3(t), W1(t)=%(t) where 3(t) and %(t)
are the scaling and wavelet functions respectively.
Then in an orthogonal case we can write functions
Wm(t), m=0,1,2,…, as
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where j is a scale parameter and n is a time
localization parameter. The analyzing functions
Wj,m,n are called wavelet packet atoms.

In practice a fast algorithm is applied by using
the basic step  of Fig.1. The difference is that both
details and approximations are split into finer
components, resulting in a wavelet packet tree.  In
Fig.3 an example of a wavelet packet decomposition
tree of three levels is illustrated. It is observed that
the wavelet tree (dashed line) is part of the wavelet
packet tree.  Each node of the WP tree is indexed
with a pair of integers (j,k), where j is the
corresponding level of decomposition and k is the
order of its position  in the specific level. In each
level j there are 2j nodes and their order is
k=0,1,…,2j-1. A vector of wavelet packet
coefficients cj,k   corresponds to each node (j,k),
according to the basic step procedure. The length of
a  vector cj,k is approximately  Nt/2

j. From each
vector cj,k,  a reconstruction signal Rj,k of length Nt

can be produced, by setting to zero the coefficients
of all the other vectors in level j,  and by

implementing the wavelet packet tree inversely. The
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width of the frequency range corresponding to each
reconstruction signal  Rj,k is Fj ≈FS/2

j+1. In Fig.3 the
frequency range corresponding to each node of the
wavelet packet tree is shown.  The sampling rate FS

of the signal is assumed 16 kHz. It is observed that
the natural order of the  reconstruction signals Rj,k in
a level j, is not the same as the increasing frequency
order. This is explained by the fact that lowpass
filters may carry information about high frequency
content of the signal, due to  frequency folding,
caused by downsampling. For example in the third
level of the WP tree of Fig.3, the natural order is
k=0,1,2,…,7, but the  frequency order is
k=0,1,3,2,6,7,5,4. The frequency order is denoted by
the index p e.g. the vectors  cj,p p=0,1,…, 2j-1 are
ordered in frequency order in the level j.

3  The Diagnosis Procedure
The objective of this method is to locate the impact
generated transient components of the signal. The
successive impacts produce a series of impulse
responses, which may be amplitude modulated as a
result of the passage of the fault through the load
zone or of the varying transmission path between the
impact point and the vibration measurement point.
The spectrum of such a signal would consist of a
harmonic series of frequency components spaced at
the bearing defect frequency with the highest
amplitude around the resonance frequency. These
frequency components are flanked by sidebands if
there is an amplitude modulation
 The characteristic defect frequencies of a bearing
depend on the rotor frequency FR. For example the
BPFI (Ball Pass Frequency Outer Race) of a bearing
is  rFR, where r is a constant, which depends on the
geometrical characteristics of the bearing. The
values of  r are  known  for each   type of bearing
and in a general case   r=10 is proposed as an
approximation.
Let us assume that the acceleration signal, measured
on a bearing with a defect, is decomposed at J
levels. In the Jth level, 2J vectors cJ,k(i) are produced,
where k=0,1,…, 2J–1 and i=1,…,I. Each vector
contains approximately I=�t/2

3 coefficients,  and
conveys information about a specific frequency
band of the signal. The width FJ of each band is
approximately FJ =FS/2

J+1.  In order to diagnose the
modulation effects the width of each band should be
FJ >3BPFI. Thus, the final level  Jf should satisfy:

  2log 1
3

−≤ S
f

R

F
J

rF
                 ( 5)

Practically values of Jf=3,4 are appropriate for a
great number of signals.
In order to estimate the useful information carried
by each vector, several criteria exist, based usually
on cost functions, such as  the number above a
threshold, concentration, entropy, logarithm of
energy.
For the purpose of fault diagnosis, the energy of the
coefficients above a threshold is used, as a criterion
for the selection of the best vector. This idea is
based on the fact that the impact components of the
signal generate large coefficients in the vectors
which correspond to  resonance frequency ranges.
Besides the coefficients generated by random noise
are mainly below a threshold. The selection of a
proper threshold  is not easy, but in this case it does
not affect  the resulting  signal directly, because this
criterion is used only for the selection of the best
vector (and consequently frequency band) and no
thresholding is applied on the coefficients for the
final reconstruction. The procedure of the method is
described as follows.

Step 1. The signal  s is decomposed at a level J,
2J vectors cJ,k(i) of wavelet packet coefficients are
produced. The value of J must be lower than the
value of Jf computed by relation (5). Generally J=3
is proposed. The basic idea is that wavelet analysis
at deeper levels reduces the time resolution, and the
energy of the signal is condensed in fewer
coefficients. This is an advantage if the purpose of
wavelet analysis is signal compression. For impact
generated transient signal feature extraction,
proceeding to very deep levels and reducing time
resolution might not be effective. Besides,
developing the wavelet packet tree up to lower
values of J, results in less computational effort.
Because of these facts, after level J=3, continuation
of decomposition is restricted according to a
criterion described in step 5.

Step 2. The mean m and the standard deviation 1

of the set of the absolute values of all the
coefficients of the vectors cJ,p(i) are computed
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The coefficients of the first vector cJ,0(i) are omitted
because they carry information about low
frequencies where discrete harmonics are usually
observed due to factors such as unbalance,
misalignment etc.

Step 3. In each vector of level J, the coefficients
below a threshold thr  are set to zero.
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The thresholded vectors are denoted by CJ,p(i ).
Step 4. An energy vector EJ(p) is  computed

2

1
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i= ,...,I
E p = C i                                               (9)

Step 5. Let w be the  value of p for which

1max( ( )) 1 −J
J JE (w)= E p , p = ,...,2                      (10)

The analysis is continued only for vectors  satisfying
the relation:

( )
( ) > J

J
dif

E w
E p

K
                                                   (11 )

The parameter Kdif is chosen between 1.5 and 2 and
adjusts the difficulty of continuation of the
decomposition process. If w is the only value of p
which satisfies relation (11), the wavelet packet
analysis stops and the step 6 is implemented.
Otherwise   the vectors cJ,p corresponding to values
of p satisfying relation (11), are further analyzed,
implementing the procedure of the basic step of the
wavelet packet analysis. In the next level J+1, the
steps 2 to 5 are repeated.

Step 6. At the final level Jf   the vector cJf,w

corresponding to w as defined in equation (10) is
selected as the best. The corresponding
reconstruction signal RJf,w is computed. For the
computation of the reconstruction signal RJf,w, only
the path from the corresponding node to the starting
point of the wavelet packet tree, is necessary to be
implemented.

Step 7. The spectrum of the envelope of the
reconstructed signal RJf,w is inspected. A defect is
identified by the presence of a characteristic
defect frequency  and    its harmonics.  The envelope
is estimated based on the Hilbert transform.
Alternatively the signal RJf,w may be rectified by
squaring, and FFT-transformed.   The rectification
generates  sum and difference frequencies  as well as
double frequencies. The difference frequencies
dominate the low frequency region of the spectrum
of the rectified signal.  If modulation exists, the
modulating frequencies will be observed.  Masking
effects will not appear normally, due to the fact that
the low frequency region of the signal has been
eliminated by omitting the first vector  cJ,0(i) in the
steps 2-5 of the procedure. A problem might occur if
the signal   RJf,w  corresponds to a vector cJf,w, which
is last in the frequency order p of the hypothetically
fully decomposed level Jf. Then the frequency
content of the signal RJf,w  is  near the Nyquist rate
and its sum and double-frequency components

might fold back to the low frequency range of the
rectified signal.

The wavelet db12 of the Daubechies family dbN,
is used for wavelet packet analysis [16]. The support
length of the functions % and 3 of these wavelets is
2N-1. Wavelets corresponding to greater values of
N, result in better localized frequency ranges
corresponding to each node of the wavelet packet
tree, but also result  in greater computational effort.
The wavelet db12 is used as a compromise between
accuracy and computational cost. Figure 4 illustrates
the automatic diagnosis procedure.

Figure 4. The  automatic diagnosis procedure

4 Experiments
The method is first tested on a simulated impulse
train. Each impulse is assumed to be modulated by a
single harmonic frequency with an exponential
decay. This signal can be considered as a simulation
of a signal resulting from a rolling element bearing
with a fault on the outer race. The impact repetition
frequency (BPFO) is assumed to be 120 Hz and the
natural frequency excited is assumed to be 3 kHz
The sampling rate is assumed 16384 Hz.   The
resulting simulated waveform, is shown in   Fig.
5(a). Figure 5(b) presents the signal after adding a
significant level of white Gaussian noise, and two
discrete frequencies 20 Hz and 130 Hz  in order to
simulate low frequency effects. In Fig.6, a) the
spectrum of the simulated noisy signal and b) the
spectrum of its envelope are illustrated. The
impulse sequence information is masked by the low
frequency difference (110 Hz) and by the noise. The
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proposed procedure is applied up to the third level.
In Fig.7 (a) the variation of the energy E3(p)   with
respect to the frequency order p=1,…,7 of the
vectors c3,p of the third level  of the wavelet packet
tree is illustrated. The maximum value of E3(p)  is
observed  for p=2, which corresponds to a frequency
band containing the assumed resonant frequency 3
kHz. The vector c3,2 is selected as the best vector
and the corresponding reconstruction signal R3,2 is
computed. In Fig.7 (b) the spectrum of the rectified
signal is shown.  It is dominated by the assumed
repetition frequency of the impacts (=120 Hz) and
its harmonics. The interesting diagnostic
information  has been detected.

Two characteristic experimental cases are also
presented, each one been typical of a vibration
response, corresponding to a different type of
bearing fault. In all cases, the measuring device was

based on a Pentium II/266MHz portable computer,
equipped with a PCMCIA DAQCard-1200 data
acquisition card from National Instruments. This is
an 8-channel software-configurable 12-bit data
acquisition card, with a total sampling rate capacity
of 100KHz. A B&K type 8325 accelerometer was
used, with a sensitivity of 97.3 mV/g and a dynamic
range of 1 Hz to 10 kHz. The code of the algorithm
that was used in the data  acquisition procedure has
been developed under the LabVIEW programming
environment of National Instruments. Case A
presents an outer race fault and case B an inner race
fault. The measurement in case A was conducted on
an industrial   motor bearing and in case B the
measurement was conducted on a machinery fault
simulator.
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Figure 5. a) A simulated fault pulse sequence.
b) The pulse sequence after adding noise and
discrete low frequencies.
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Fig. 5(b).  b)The spectrum of the envelope of
the signal of Fig.5(b).
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The bearing examined in Case A is of type
6324MC3 manufactured by SKF. The rotor speed is
about 1,500 rpm and the characteristic Ball Passing
Frequency Outer race (BPFO ) is approximately 78
Hz. The sampling frequency of the measurment was
20 kHz.   Figure8 presents (a)  the measured
acceleration signal and (b)   the spectrum of the
measured signal. The proposed procedure is applied
up to the third level. In Fig.9 (a) the variation of the
energy E3(p)   with respect to the frequency order
p=1,…,7 of the vectors c3,p of the third level  of the
wavelet packet tree is illustrated. A clear maximum
value of E3(p) for p=2 is observed. The vector c3,2 is
selected as the best vector and the corresponding
reconstruction signal R3,2 is computed. The signal
R3,2 is rectified and its spectrum  is shown in
Fig.9(b).  The BPFO and its first harmonic are
observed. The interesting diagnostic information
again has been detected.
  The bearing examined in Case B consists of 8
balls, has a ball diameter equal to 0.2813 inches, a
pitch diameter equal to 1.1228 inches and a contact
angle equal to 0 deg. A fault on the inner race was
produced. The shaft rotation frequency was about 36
Hz. The sampling frequency of the measurement
was 16394 Hz. Figure 10 presents a part of the
measured signal. Although a “spiky” behavior is
observable in the signal, the nature of the fault
cannot be identified without further processing. The
proposed method is applied and proceeds up to the
fourth level, due to the existence of three resonances
as it is observed in the spectrum in Fig10(b). The
resulting wavelet packet tree is shown in Fig.11. The
vector corresponding to the node (4,10) is selected
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Figure 9. a) Energy of the thresholded
vectors  in level 3 of the WP tree of the  outer
race fault signal, with respect to the
frequency order p (step 4). b) The spectrum
of the rectified signal obtained in steps 6-7.
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spectrum, of a vibration signal measured
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as the best vector  after application of the criterion
of step 5.  Reconstruction and rectification is
implemented according to step 7. In Fig.12, the
spectrum of the resulting signal  is illustrated. The
shaft rotation frequency, its harmonics, and the
characteristic defect frequency (BPFI=181Hz) are
dominating the spectrum.  In this case, a strong
modulation effect by the shaft rotation  frequency is
observed, indicating a severe  inner race defect.

5 Conclusion
The exploitation of the underlying physical concepts
of the modulation mechanism and of the time-
frequency localization capabilities of the  wavelet
packet transform, can lead to an effective method
being able to effectively identify the nature of
rolling element bearing faults. In all cases, the
reconstruction signal obtained, contained the
corresponding necessary diagnostic information.
Compared to other methods using filters or
continuous wavelet transform, it has the advantage
of flexibility and  efficient computational
implementation. A disadvantage is the reduced  time
resolution in deeper levels of the wavelet packet
tree.
 The criteria proposed for the selection of the critical
parameters of the method perform  well and in
accordance to the physical parameters of the signals
tested. This fact indicates that the implementation of
the method can be conducted in an almost automatic
way, with the minimal possible degree of user
intervention.
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