
OO Based Development of a Multi Media Application Server Prototype

E. GUL, G. WILLEKENS(team leader), F.HOSTE, T. BATSELE, R. SELDERSLAGHS, N.
QUARTIER

Alcatel Bell (A7)
Francis Wellesplein 1

2018 Antwerpen, BELGIUM

Abstract:- This paper presents how a complex communication application server and its clients have been
developed using OO techniques and programming environment. Multi Media Application server (MMAS)
provides voice, video and data services for IP clients. The programming language Java was chosen to
implement the overall system, because it is platform independent, supports object serialization, network
programming, multi threading and provides an AWT for graphical user interface design. The clients and the
server communicate using sockets, there is a CORBA interface between MMAS and its repository (database).
The client can be run as a Java application or with slight modifications as a Java Applet.

Key-Words: - Object oriented design and programming, Multimedia, Communication systems, Java

1. Introduction

OO Design and programming addresses the issues
of designing complex programs. Even though OO
Design has been used in many successful projects,
designers are usually not comfortable in applying
these concepts on different domains, i.e.
communications. The aim of this study is twofold,
the first one is to design a Multi Media Application
Server prototype using pure OO Programming
Environment, and the second one is to show how a
communication system can be designed and
implemented in this environment.

In MMAS there are many modules ranging from
communication protocol implementation to GUI
design. The only language, which can be used for
all of these modules, is Java. Besides its platform

independence, it supports multi-threading, object
serialization, socket programming, and has an
AWT for GUI design.

MMAS can be thought as a controller who sits on
signaling layer. Signaling layer is for making
connections. It does not deal with actual voice or
video communication. In signaling layer SIP stack
was used. [1]. To transport voice and Video Real
Time Protocol provided with Java Media
Framework was used [2]. The block diagram of
MMAS, SIP stack, JMF (RTP streams) and WEB
Server is shown in Figure 1. Web Server hosts web
pages of MMAS, registration applet and servlets to
configure supplementary services. the next section
server side of MMAS is explained. In section 3
MMAS clients are described. Finally discussions
and conclusions are in section 4.

Figure 1. The Block Diagram of MMAS, WEB Server, SIP Stack and Media Streams

2. Server Architecture

The architecture of Multi Media Application Server
(MMAS) is shown in Figure 2. The telecom service
factory is the main component of the system. It
creates Telecom Service Managers (TSM) which
do the actual processing, creates service factories
objects, which are responsible for supplementary
services, and initializes ORB. It also keeps track of
all created TSM instances. TSM Factory is
singleton object. There can be only one instance of
TSM factory in MMAS.

The telecom service factory has server socket
which listens incoming connections in an infinite
loop. Whenever a connection is received from a
client, a TSM object is created and socket is passed
to TSM. TSM is a thread object, when it completes
its task, it dies.

When TSM deals with a service request, it retrieves
the appropriate service factory from the service
factories table. For example, we assume that this
service is “park and pick service”. There may be
many users who are using this service. Park and
Pick Service Factory returns the instance of the
park pick service for this user. If the service is used
for the first time, then new service object is created.

MM Application
Server

SIP++ Server

L1: TSM
Interface

L3: SIP

Serv
ice

Sip
Proxy

&Registr

TS
M

L2: Service

HTTP

L3: SIP

MM Web Server

S S S

RTP Streams (JMF)

Once created service objects are kept alive forever,
i.e. until MMAS is terminated. Service objects
depending on the type of service may communicate
with clients and SIP stack.

The users need to register to MMAS to use the
clients. Registration information is collected by an
applet which will be explained in the next section.
The applet send a request to TSM Factory and a
TSM instance is created for registration. For
registration, the user database should be
interrogated first to know if the user is already in
the database. TSM invokes a method of Repository
object. The repository object interrogates the
database and returns the result. If the user is not in
database, then the user information received from
the applet is sent to the database by calling the
methods of repository object. The information
received from applet is a serialised object, which
contains the user attributes such as username,
password, name, picture and logo. The repository
object is located on another machine (database
server). The communication between TSM and
Repository is via ORB provided with JDK. This
ORB does not support Object by value method
calls; therefore the user and picture are converted
into byte arrays before transferring them to the
database server.

In MMAS both TSM and Repository were
implemented in Java. In this case, it is possible to
use Java RMI between TSM’s and Repository. This
was also implemented. However in actual product,
database server and its interfaces could be in
another language, therefore CORBA middleware is
more appropriate.

On the user terminal GUI, the picture of the user
and called user are displayed. The terminals request
these pictures from TSW Factory. TSW Factory
creates a TSM. This TSM passes the get picture
requests to the Repository. The repository retrieves
the pictures and sent them back to the TSM as byte
arrays via ORB. These byte arrays are converted
into serialised objects and passed to clients to
display them on GUI.

When the user logs on, the username and password
are sent to TSW Factory. TSW Factory creates a
TSM to authenticate the user. TSM calls a method
of Repository. This method finds the username in
the repository and checks if the password is correct.
It returns authenticated or not authenticated to the
TSM. TSM sends this result back to the client.

As mentioned above users register to MMAS using
an applet. This applet and related web pages were
placed on a web server. This web server may run
the same machine where MMAS running.
However, taking into account of the performance
issues the web server should be installed on a
different machine. When the user goes to MMAS
web page, he can click a link to download register
applet to his local machine. Once the browser on
the local machine is running the applet, he can enter
the required fields.

It also possible to configure some supplementary
services using servlets. In this case user clicks
configure services link and enters his username and
password. A servlet gets this information and
initiates a session for this user. The username and
password are sent to MMAS for authentication
using the socket connection. TSW factory creates a
TSM. This TSM invokes authentication method of
the repository. After the authentication, another
servlet displays a configuration page to configure
services. The user selects a service and configures
it. Configuration data is handled by servlets again
and passed to TSM via socket connections.

Configuration of some services such as call
forwarding can also be done by MMAS terminal.
TSM does not know whether the configuration
requests coming from servlets or MMAS terminal.
TSM analysis the command and returns the
necessary information. If the servlets make the
requests, the information received from TSM is
used to prepare an HTML page. This HTML page
is sent to the browser. On the other hand if MMAS
terminal makes the request, the information
received will be displayed in a pop up window.

Figure 2. The Architecture of MMAS

2. Clients

The client of MMAS is Multi Media Terminal. The
Multi Media Terminal is a Java application. It has a
GUI to select applications such as Internet Phone,
Mail, and Video. For the moment, only the
application “Internet Phone” has been
implemented. Internet phone is based on SIP stack
and supports audio, video and data
communications.

The top layer is called Telecom Service Wizard
(TSW). It acts as a portal that allows access to the
underlying applications. It is foreseen that several
(possibly all) applications may have to make use of
SIP for their remote communication. This is exactly

the purpose of the third layer, represented by the
“SIP Phone” package, which on the one hand offers
a standard (SIP) interface to the applications that
wish to make use of SIP, and on the other hand,
distributes incoming SIP requests to the appropriate
application.

SIP stack is also in Java and has a layered
architecture. It has four layers. SIP Phone has an
interface with third and fourth layer only. The
architecture of this SIP stack is discussed in [3].

Internet Phone deals mainly with three aspects,
being:
• Graphical User Interface,
• SIP-call and SIP-call-leg (dealing with the

“signaling” aspects) ,

MM Application
Server

Telecom Service

Subscriber
attributes
Logon_ID
Password

Picture

SIP URL

Service attributes
Telecom Service

MM
Terminals
Served
Users

SIP++
Server

Service
API

Telecom Service

L1: TSM
Interface

L2: Service
Interface

TSM
Instanc
e

TSM
Agen
t

Telecom Service Manager

ORB

Repository

• Connection-call and Connection-call-leg
(dealing with the “bearer” aspects).

The major classes of Internet Phone are described
below.

CallManagerGUI handles all actions towards the
graphical components. It hides the graphical
implementation (at least the details of it) from the
outside world (rest of the system). It is split in a
part for incoming calls, outgoing calls and active
calls. Also there is a part that manipulates the “me”
icon i.e. the icon that represents the served user.
This class is the view of the Call Manager which
acts as controller and implements the model

The Call Manager is the “central class” of the
Internet Phone. Its tasks can be summarized as
follows:Be the “focal point”,

a) between the served user and the “call
handling” in the terminal,

i) Convert the call handling related
commands that the served user issues via
the GUI, into specific (but still rather high
level) commands towards one the one hand
the SIP stack (the signaling plane) and the
realm of the “streams” (the bearer or
connection plane).

ii) Convert the requests of the remote users
(coming in via SIP) towards indications on
the GUI allowing the served user to react
on them.
To be able to perform this task, it is clear
that the call manager needs an overview
over all calls from or towards the served
user.

b) between the served user and the “service
logic” in the MM server.

It also terminates the L1 and L2 communication
towards the MM server. Via these two
communication layers, the user can issue service
related commands towards the applications. In the
MM server, and vice versa, applications in the MM
server can push information that is meant for the
served user, on the GUI.

The MMAS terminal is a Java application, however
it has also been converted to Java applet. The code
was developed using jdk1.2. For the time being, no
browser supports applets which use jdk1.2.
Therefore, it is necessary to load Java1.2 plugin to
run the applet

Figure 3 MMAS Terminal

 MM Terminal Served User

Media streams
RTP RTCP

Voice/Video/Data

Telecom Service
Client

 SIP User
Agent

Telecom Service
Client

 UA
CLIENT

 UA
SERVER

Web Browser

Service
API

Telecom Service
Wizard

MM

Application

Server

MM

Web Server

SIP ++
Server

Other MM
Terminal /
SIP Gateway

L1: TSM
Interface

L2: Service
Interface

L3: SIP
Protocol

HTTP

 SIP
AGENT

Telecom Service
Client

RTP/RTCP
Protocol

An applet, which is called register applet, was
developed to register new users to MMAS. This
applet downloaded to user terminal by clicking its
link on MMAS web page. It requires Java plugin to
run. The user chooses an username and password,
he also enters name, surname and URI. The logo
and photo of the user are read from the local hard
disk. All information is stored in an object called
Subscriber. This object is serializable and sent to
MMAS via TCP sockets. Since accessing the local
disk and making socket connections breaches
applet security mechanism, we need to prepare a
policy file to give read access and open socket
connection rights to the applet. This policy file
should downloaded and stored in the user home
directory.

4. Results and Conclusions

A Multi Media Application Server Prototype has
been developed using OO Design and
programming. All modules of this prototype are in
Java. The communication mechanism between
MMAS and its clients is via sockets. However,
inside MMAS Corba was used. It has been
considered to use Corba between terminals and the
server. In this case, the design of communication
mechanism between clients and server would be
easier, however the performance would had been
lower. Therefore, it was decided to use socket
mechanism in client –server communication.

The MMAS creates a thread for each request. If
number of requests is more than a certain value, no
more threads could be created. The server gives
thread panic exception. In the real product,
incoming requests should be hold in a queue, and a
pool of threads should be created. Then a thread
from the pool should be assigned for a request.

Even though Java supports threads, there is no
guarantee that an event will be executed in a given
time. The current Java implementation does not
support real time events. There is a proposal for
real time Java implementation. Until real time Java
becomes available, it will not be advisable to use
Java in a carrier grade communications system.
However, it can be used in simple clients.

The concept and design of applets are attractive,
however in real life is not easy to write and deploys

applets. Current browsers support only old version
of jdk. The applets developed in jdk1.2 need a Java
plugin. In controlled environments, like corporate
LAN’s, applets can be deployed.

Sound and video can be integrated in Java
applications and applets using JMF. However, JMF
is not stable yet. If this product becomes mature,
then it can only be considered for real product
development

OO Programming Environment, particularly Java is
well suited to develop prototypes. However, for
real products, because of the performance issues
and accumulated experience, procedural languages,
especially C is the choice.

 References:

[1] M. Handley, H. Schulzrinne, E. Schooler and J.
Rosenberg , SIP: Session Initiation Protocol,: IETF-
RFC 2543, March 1999.

[2] Java Media Framework(JMF) API,
http://java.sun.com/products/java-media/jmf/

[3] D. Chantrain and N. Marley , H. Zou, H. Wang, W.
Mao, B. Wang, S. Focant, K. Handekyen, Prototyping
SIP-based VOIP Services in Java, IFIP -World
Computer Congress-International Conference on
Computer and Telecommunications, Beijing, China,
August 2000.

