
Neural Network Adaptive Control for Underwater Robotic Systems 
  

V.S. KODOGIANNIS 
Mechatronics Group, Dept of Computer Science 

University of Westminster 
London, HA1 3TP 

UNITED KINGDOM 
 

 
Abstract: Neural networks are currently finding practical applications, ranging from ‘soft’ regulatory control in 
consumer products to accurate modelling of non-linear systems. This paper describes the application of neural 
networks to the control of a remotely operated underwater vehicle, as an example of a system containing severe non-
linearities. Neural networks are been used in a closed-loop to approximate the nonlinear vehicle dynamics. No prior 
off-line training phase and no explicit knowledge of the structure of the vehicle are required, and the proposed scheme 
exploits the advantages of both neural network control and adaptive control. A control law and a stable on-line 
adaptive law are derived using the Lyapunov theory, and the convergence of the tracking error to zero and the 
bounded-ness of signals are guaranteed. In this paper, a neural network architecture based on radial basis functions has 
been used to evaluate the performance of the adaptive controller via computer simulation. 
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1   Introduction 
The Ocean covers over sixty percent of the earth’s 
surface, yet humans have hardly been able to fully 
explore their depths. Undoubtedly with the recent 
images captured by the Hubble Space Telescope, the 
Russian Mir Space Station and NASA’s Galileo 
atmosphere probe mankind knows more about space 
or the outer solar system than about the Oceans. 
However, in the past decade, Oceanographic 
exploration has emerged as one of the fastest growing 
areas of research attracting huge grants. The main 
reason is the vast amount of mineral resources that 
satellites have mapped across the Oceans, not 
forgetting the oil and natural gas reserves. 

The design of controllers for unmanned 
underwater vehicles (UUV) is challenging because of 
difficulties in accurately modelling the inherently non-
linear dynamics of UUVs in a hazardous environment 
with persistent unmodelled disturbances. In general, 
real-time control of non-linear systems with unknown 
structure and parameter uncertainty remains an open 
area of research. Dynamic models of UUVs are 
required to design advanced control systems, and 
models of underwater vehicles have been studied in 
the past [1]. The nonlinear dynamics of UUVs result in 
parametric and structural uncertainties in the dynamic 
model, and this necessitates the need for advanced 
robust control techniques. Control strategies that 
address some of “modelling characteristics” have been 
reported in the literature, including linear control, 
robust control, fuzzy control, neural networks, sliding 
mode control, etc. Among various control techniques, 
sliding mode control has been successfully 
implemented and tested for underwater vehicles [2]. 
Fossen et al. [3] developed an adaptive controller for 
underwater vehicles in 6-DOF by assuming that its  

dynamics can be linearly parameterised. The 
emergence of neural networks (NNs) as effective 
learning systems for a wide variety of applications has 
resulted in the use of these networks as learning 
models for dynamical systems. NN controllers have 
important features that overcome the typical 
difficulties in designing control systems for 
underwater vehicles. For instance, the dynamics of the 
vehicle need not be completely known as a prior 
condition for controller design. This is very desirable 
for underwater vehicle controller to have since the 
dynamic characteristics of underwater vehicles change 
with configuration and it is impossible to consider all 
the effects from disturbances. Also, the ability of these 
networks for adaptation and disturbance rejection and 
their highly parallel nature of computation make this 
approach suitable for real-time applications. A NN 
based control scheme for UUV is described by 
Venugopal et al. [4] using direct control scheme, 
where the input to dynamics is implicitly used for both 
identification and control simultaneously. A similar 
idea to the above is used by Yuh [5] in his studies on 
the NN-based control scheme for an UUV. Fujii et al. 
[6] proposed a self-organizing neural network based 
control system to the development of the motion 
control for autonomous UUV. Kodogiannis et al. used 
several different neural network architectures to 
evaluate a long-range model predictive control scheme 
both for simulation and on-line control of vehicle 
depth [7]. An alternative approach to “soft-computing” 
techniques is the implementation of approximate 
controllers based on fuzzy logic theory. A new 
framework in sliding mode fuzzy control was 
presented by Trebi-Ollenu et al. for selecting free 
control parameters of an input-output linearising 
controller with sliding mode control for the depth  



control of a remotely operated underwater vehicle 
(ROV) [8]. In their approach, the concept of multi-
objective fuzzy genetic algorithm optimisation was 
adopted and a new membership weighting strategy 
was suggested. In this paper, the development of a 
direct adaptive neural network controller for 
underwater vehicles is proposed, with a parallel 
investigation of the performance and robustness issues 
of the adopted controller. Radial basis functions 
networks (RBF) are used to approximate the nonlinear 
dynamics of underwater vehicles without explicit 
knowledge of the plant’s dynamic structure. The on-
line weight adaptation law of the neural network is 
derived in the context of Lyapunov stability concept. 
Bounded-ness of all signals as well as the convergence 
of the tracking errors to zero are guaranteed. The 
contribution of this paper is to combine adaptive 
control with neural network architectures to 
approximate the nonlinear and time-varying 
underwater vehicle dynamics. Tracking performances 
and robustness of the proposed controller is 
demonstrated through computer simulation. 
 
 

2 Vehicle Modelling 
The dynamic equations of motion of underwater 
vehicles have been analytically presented in the 
literature [9]. In this paper a nonlinear six-degree-of-
freedom model based on Fossen et al. [10] has been 
considered. The rigid body underwater vehicle model 
in the body-fixed reference frame can be represented 
as 

τηννννν =+++ )()()( gDCM &      (1) 

νηη )(J=&          (2) 
where 

TT ZYXrqpu ],,,,,[   ,],,,,,[ ψθφηωυν == .In this 
notation, í denotes the linear and angular velocity 
vector with coordinates in the body-fixed reference 
frame, ç denotes the position and attitude vector with 
coordinates in the earth-fixed reference frame, and ô is 
used to describe the control input forces and moments 
acting on the vehicle in the body-fixed reference 
frame. The body-fixed velocity vector can be 
transformed into the earth-fixed reference frame 
through the Euler angle transformation denoted by 

)(ηJ . M is the inertia matrix including added mass 

MA, )(νC is the matrix of Coriolis and centrifugal 

terms, )(νD  is the damping matrix, and )(ηg is the 
vector of gravitational forces and moments. The 
equation of motion of underwater vehicle can be 
represented in the earth-fixed reference frame in terms 
of position and attitude through the kinematic 
transformations (assuming that )(ηJ  is non-singular) 

ηηννηη && )(   )( 1−=⇔= JJ       (3) 
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to eliminate ν&  and  ν  from Eq.1. Defining 
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yields the earth-fixed vector representation 
ηηηηη τηηηνηηνηη =+++ )(),(),()( gDCM &&&&   (10) 

The inertia matrix )(ηηM , including hydrodynamic 

added inertia, is symmetric and positive definite. The 
Coriolis and centrifugal matrix, also including added 
inertia effect, ),( ηνηC , satisfies the skew symmetric 

relationship 0)],(2)([ =− xCMxT ηνη ηη
& . The dam-

ping matrix ),( ηνηD is positive definite. A more 

detailed discussion on mathematical models of 
underwater vehicles can be found in [3]. 
 
 

3 Neural Network Controller Design 
Due to the difficulty obtaining the exact values of 
hydrodynamic coefficients, but also due to the fact the 
coefficients change with the configuration of 
underwater vehicles, the robustness and adaptiveness 
are important requirements for the underwater vehicle 
controllers. The disturbances from currents and waves 
are also very difficult to model. Fossen et al. [10] 
derived an adaptive control law for underwater 
vehicles in 6 DOF assuming that M, )(νC , )(νD , 

and )(ηg  are linear in their parameters and that the 
dynamics can be linearly parameterised, which is a 
common assumption in the adaptive control. The 
linear parameterisation in the adaptive control is 
usually valid and can consider the changes and 
uncertainties in parameters. However, it should be 
noted that this assumption considers the change only 
in parameters; the unstructured or un-modelled 
dynamics such as disturbances from currents and 
waves cannot be linearly parameterised. In this paper, 
an adaptive control law is derived that does not require 
off-line training. An RBF network is used in the 
approximation of a nonlinear function, assuming that 
the nonlinear model of the underwater vehicles is 
unknown. 
 
 
3.1 Controller Specifications 

A certain measure of error is defined as 
ηλη ~~ += &s          (11) 

where ë is any positive constant and dηηη −=~ . The 
desired position and attitude of the vehicle denoted by 

dη , and the time derivative dd ηη &&&  , can be obtained 

from a trajectory planner. The reference model is  



chosen considering the vehicle kinematics as in [3]. 
The desired parameters dν and dη are computed from 

ηηηηνν rJJ d
T

dd
T

dd Ω=Ω+Λ+ )()(&    (12) 

dd
T

d J νηη )(=&         (13) 

where ηr is a constant (or slowly varying) commanded 

input. The design parameters in the reference model 
are the matrices Ë > 0 and Ù = ÙT  > 0 describing the 
preferred damping and stiffness of the system. Ë and 
Ù are usually chosen as diagonal matrices with 
positive entries on the diagonal. For notational 
simplicity, it is convenient to rewrite Eq. 11 in terms 
of the virtual reference trajectory rη defined as 

ηληηηη ~−=⇒−= drrs &&&&       (14) 
The reference trajectory in the body-fixed frame can 
be derived 
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Now, the Eq. 10 describing the nonlinear equation of 
motion of an underwater vehicle in 6 DOF in the 
earth-fixed reference coordinate is considered. Taking 
the derivative of s  with respect to time, the vehicle 
dynamics can be written in terms of s as 
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Çere, the relationship 
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is used. Denoting the dynamics of vehicle in the body-
fixed reference coordinate as 

),,,()()()( ηνννηννννν rrrrr fgDCM && =+++   (19) 
and taking a control input as 

sKJf d
T

rr −= ),,,(ˆ ηννντ & , the closed-loop system 

becomes

]),,,(ˆ[)( εηνννηηη ++−+−= −
rr

T
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where ),,,(ˆ ηννν rrf & is the estimate of the vehicle 

dynamics ),,,( ηννν rrf & , Kd is a symmetric positive 
regulator gain matrix of appropriate dimension and å is 
used to denote the approximation error. Eq. 20 is an 
error dynamics where the filtered tracking error is 
driven by the functional estimation error. Following 
the approach in [11], the tracking problem can thus be 
solved by finding a adaptation law for adjusting 

),,,(ˆ ηννν rrf & that ensures the bounded-ness of the 
parameter estimates and that ∞→→ tts   as  0)( .  
 
3.2 Linear Parameterisation 

Considering the Eq. (18), Eq. (19) can be 
parameterised as 

θηνννηννννν ),,,()()()( rrrrr gDCM && Φ=+++  (21) 

assuming that M, )(νC , )(νD , and )(ηg  are linear 
in their parameters. Here, è is an unknown parameter 
vector and ),,,( ηννν rr&Φ is a known matrix function of 
measured signals usually referred to as regressor 
matrix. Consider a Lyapunov function as 

θθη
~~

2

1

2
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where 1−Γ is a positive definite weighting matrix of 

appropriate dimension and θθθ −= ˆ~
 is the parameter 

estimation error. Differentiating V with respect to time 
yields 

θθηηη
~~

)(
2
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&&&&&   (23) 

Using the symmetry of inertia matrix sMssMs TT
ηη && =  

and the skew-symmetric property 
0)),(2( =− sCMsT ηνηη , Eq. (23) becomes 
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Considering Eq. (17), Eq. (24) becomes 
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           (25) 
Let the control input be chosen as 

sKJ d
T
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where θ̂  is the estimated parameter vector and Kd is a 
symmetric positive regulator gain matrix of 
appropriate dimension. Hence, 
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           (27) 
Then the parameter update law with the assumption of 
constant parameters )0( =θ&  

sJrr
T )(),,,(

~ 1 ηηνννθ −ΓΦ−= &&      (28) 

cancels out the last term in the expression for V& and 
yields 

0)( ≤+−= sDKsV d
T

η
&       (29) 

Then, the convergence of s  to zero and the bounded-
ness of the parameters can be shown by applying 

Barbalat’s lemma [12] as follows. Since V& is negative 
or zero and V is positive definite, V tends to a constant 
as ∞→t . Considering that the inertia matrix M is 
positive definite and s is bounded, the estimation 

errors θ
~

can be shown to be bounded, consequently θ̂  
is bounded. This makes s&  is bounded showing that s  
is uniformly continuous. Therefore, applying 

Barbalat’s lemma [12], it can be shown that 0→V&  
and 0→s  as ∞→t . The convergence of s  to zero 

implies the convergence of the tracking error η&~ and η~  
to zero since the tracking error is driven by s  through 
a stable dynamics as shown in Eq. (11). 
 
 



4 Neural Network Modelling 
The derivation of the control law and the adaptation 
law of the weights of the RBF network are considered 
in this section. This neural network shown in Fig. 1 
consists of one layer of series of neurons multiplied by 
output weights. Such system is employed since it is 
known that a linear superposition of radial basis 
functions is the optimal solution to a class of function 

approximations given a finite set of data in nℜ [13]. 
Also, the relatively simple network structure enables 
the easy derivation of an adaptive network update law. 
The mathematical representation of the neural network 
is 

∑
=

==
N

j
jjiji xwxf

1

n1,...,i       ),()( ξγ     (30) 

where 22
2/exp[ jjj x σξγ −−=  is the nonlinear 

function at node j, taken as a Gaussian function of the 
inner product of its arguments. 

 
Fig. 1: Structure of RBF network 

 
The coefficients jξ represent the centre of radial 

Gaussian, 2
jσ is a measure of its width at node j, and 

ijw represents the output weight for that node. The 

number of degree-of-freedom is denoted by n, and N is 
the number of employed neurons. It is assumed that 
there exists a certain combination of optimal weights 
of the network that provides the satisfactory 
approximation of the nonlinear mapping applying 
enough number of neurons. 
The Lyapunov function candidate is chosen as 
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2
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w

T wwtrsMsV −Γ+= η      (31) 

where wΓ  is a positive definite weighting matrix of 

appropriate dimension, and  www −= ˆ~  is the 
estimation error of the network output weights. Here, 
ŵ  is the output weight estimate and w  is the optimal 
weight. Differentiating V with respect to time yields 

}~~{)(
2

1 1 T
w
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Using the facts that sMssMs TT && ηη = , the skew 

symmetry of 0)2( =− sCMsT
ηη

& , and the closed loop 

system Eq. (20), Eq. (32) can be rewritten as 
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(33) 
The radial basis neural network is used as an 
approximation of the dynamics of the plant as  

)(),(ˆ),,,( xxwf rr εξγηννν +=&      (34) 

where )(xε denotes the approximation error and it is 

assumed to be bounded as 0)( εε ≤x  for Ω∈x  

where �  is the domain of approximation. The bound 

0ε on the approximation error can be made smaller by 

selecting a large number of neurons in the hidden 
layer, and it is assumed that it can be neglected as long 
as enough number of neurons is adopted. Choosing the 
control input as 

sKJxw d
T )(),(ˆ ηξγτ −=       (35) 

and assuming that the output of radial basis neural 
network approximates the function with sufficient 
precision as long as th domain of approximation is 
completely covered, Eq. (33) becomes 
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(36) 
Also, choosing the adaptive law of the network weight 
as 

T
w

T sJxw ))(,(ˆ 1−Γ−= ξγ&       (37) 
the Eq.(33) can be shown to be negative semi-definite, 
which implies the convergence of s  to zero and the 
bounded-ness of w~  applying Barbalat’s lemma [12]. 
In summary, the control law is given by Eq. (35) and 
the adaptation law is given by Eq. (37). It should be 
noted that the approximation of the nonlinear function 
Eq. (34) can also be expressed as the product of 
regressor matrix and unknown parameters under the 
assumption that the nonlinear function is linear in their 
parameters and the dynamic structure of vehicles is 
completely known. The neural network approximation 
does not require such assumption since no explicit 
knowledge of the dynamic structure is required. The 
architecture of controller is shown in Fig. 2. 
 

 
 

Fig. 2: Proposed controller architecture 
 
 



5 ROV Case Study 
The computational study in this paper was based on 
the model structure of the Norwegian Experimental 
Remotely Operated Vehicle (NEROV) [14]. The 
vehicle is controlled in all 6 DOF by six dc-motor 
driven thrusters. The fluid velocity was chosen to be 
zero in all computations. The desired velocities and 
positions were generated by a reference trajectory 
generator. The simulation, using the developed 
controller, were performed at 5Hz, which implies all 
the measurements and the control action occurred at a 
time step of 0.2 seconds. The tracking performance of 
the X and Y positions, the depth and the heading angle 
was considered in this study. The centre of gravity was 
assumed to be located at the origin of the vehicle 
coordinate system. The inertia matrix was assumed to 
be diagonal: 
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The mass is Kgm  185= . The moments of inertia 

around the x-, y- and z-axes are 2kgm 25=xI , 
2kgm 50=yI  and 2kgm 50=xI . The hydrodynamic 

added inertias are kg 30−=uX & , kg 80−=υ&Y , 
kg 80−=ω&Z , 

2kgm 15−=pK & , 2kgm 30−=qM & , 2kgm 30−=rN & . The 

C matrix is assumed to be as 
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The drag matrix is assumed to be diagonal 
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Fig. 3: X and Y trajectory (solid: desired; dashed: 

proposed controller) 
 
The centre of buoyancy was assumed to be located at 

),,( BBB zyx , where xB=yB=0 and zB=0.02m is the x-, 
y- and z-coordinates in the vehicle coordinate system. 
The system was assumed to be neutrally buoyant 
g=(0,0,0, zBBcèsö, zBBsè,0)T, where B=1800N is the 

buoyancy. One RBF network was used to approximate 
the nonlinear dynamics of NEROV. In this particular 
case, the centres of Gaussian functions ),( ii x ξγ were 

uniformly spaced in the state space. The width of the 
Gaussian function ),( ii x ξγ  was set to 30, and the 

overall weights of a neural network were initially set 
to zero. Only a single MIMO neural network was 
employed with 24 input and 6 output units. The 
adaptive gain matrix was set to 0.3I, where I was the 
identity matrix of appropriate dimension. The choice 
of the width of the Gaussian function ),( ii x ξγ was the 

most critical factor for overall stability of the system 
and related to the choice of the number of Gaussian 
functions over the state space. In other words, the 
optimal width of the Gaussian function should be 
found considering the width of an area in the input 
space to each neuron responds. The value of 

),( ii x ξγ should be large enough that neurons respond 

to enough overlapping regions of the input space. The 
tracking performance of the X and Y positions of the 
vehicle following the specified position is shown in 
Fig. 3. It can be seen that the proposed neural-network 
controller gives fairly good tracking performance. In 
this simulation study, only the neural network 
controller was used to determine the feasibility of 
using the proposed neural network architecture. Of 
course, improved and more robust tracking 
performance could be achieved when the PD and the 
adaptive control inputs are combined together. Better 
performance may be obtained by further tuning the 
update gain and increasing the number of RBF centres. 
Higher update gain gave better tracking performance, 
but when the gain was too high, oscillatory behaviour 
was observed. By combining with the PD part of the 
controller, the unwanted oscillatory motion could be 
removed at the price of slight increase in the control 
effort. Control inputs are shown in Fig. 4.  
 

 
Fig. 4: Control inputs to thrusters 

 
Robustness of the proposed controller to the 
unmodelled disturbance is shown in the Fig. 5. A 
sinusoidal disturbance is added in the yaw channel. 
The performance of adaptive neural network controller  



with radial basis neural network is compared to the 
adaptive controller with linear parameterisation. A 
robust tracking performance has been achieved using 
adaptive neural network, whereas the adaptive 
controller with linear parameterisation gives 
degradation in the performance. 
 

 
 
Fig. 5: Robustness test to the unmodelled disturbances 
in the yaw channel (solid: desired, dashed: proposed, 

dashdot: linearly parameterised) 
 
 

6 Conclusions 
An adaptive neural network controller has been 
developed for an underwater vehicle in 6 DOF. One 
RBF network was used to approximate the nonlinear 
dynamics of underwater vehicle. Without explicit prior 
knowledge of the vehicle dynamics, the proposed 
control technique could achieve improved tracking 
performance. Results have showed that the dynamics 
of the vehicle need not be known explicitly for the 
design of the controller and no linearisation is required 
to deal with nonlinear vehicle dynamics. The proposed 
controller architecture is robust and adaptive, while it 
does not need any prior training phase and can be 
applied on-line. The next stage of this study is to apply 
the proposed adaptive controller in the under 
development UUV funded from the FREESUB 5th 
framework EU project. 
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