# Some properties of Boolean functions and design of Cryptographically strong balanced Boolean functions 

Dr. N.G. BARDIS ${ }^{1,2}$<br>${ }^{1}$ Adjunct Assistant Professor<br>Department of Automation<br>Technological Educational Institution of Halkis<br>34400 Psahna, Halkis, Evia, Greece<br>${ }^{2}$ Research Associate<br>Hellenic Army Academy<br>Vari, 16673 Attiki, Greece

Dr. M.MITROULI<br>Assistant Professor<br>Department of Mathematics<br>National and Kapodistrian University of Athens<br>Panepistimiopolis, GR 15784 Athens, Greece

Dr. TH.I. MARIS
Assistant Professor
Department of Electrical Engineering
Technological Educational Institution of Halkis
34400 Psahna, Halkis, Evia, Greece

Dr. M.N. ORLOVA<br>Department of Applied Mathematics<br>National Technical University of Ukraine<br>37, Peremohy, pr. Kiev 03056, KPI<br>Ukraine


#### Abstract

Properties of the total and conditional entropy - Strict Avalanche Criterion (SAC) are studied. The theorems that have been proved state the necessary and sufficient conditions for the total and conditional entropy (SAC) maximum of the special type functions, namely, D-functions. A procedure for synthesis of cryptographically strong balanced Boolean functions has been developed on the basis of the results obtained. It allows obtaining a more expanded class of Boolean functions for cryptographic application comparing to the known methods of synthesis


Key words: Boolean function, SAC function, balancedness, non-linearity.

## 1 Introduction

Most part of modern cryptographic algorithms, the block cipher, stream cipher and hash-algorithms among them, make use of Boolean transforms. Cryptoresistance to attacks by differential and linear cryptanalysis methods, depends on special properties of Boolean functions utilized in the algorithms.

The entropy characteristics and nonlinearity of Boolean functions determine these properties. A reasonable level of security with respect to the modern methods of attacks is provided by Boolean functions possessing high nonlinearity and the maximal entropy characteristics.

This work was supported by a grant by the Greek Ministry of Development - General Secretariat for Research and Technology and the European Community Social Funds. The main part of this work was carried out when the authors where attending the Operational program "Competitiveness" 2000-2006 ENTER 2001.

The latter property implies that a function attains the value of "zero" or "one" with equal probability and changes its value with alteration of the input parameters also with equal probability. Such functions have the zero level of auto-correlation and the only method for obtaining the reverse transform is total searching.

Obtaining Boolean functions with high nonlinearity and entropy characteristics is a difficult problem unsolved by the present time.

## 2 Problem statement

Of great practical importance is the development of some formalized methods for automatic generation of both single functions and systems of orthogonal functions of a large number (several hundreds) of variables applying arbitrary chosen keys.
Taking into account the large number of variables, the adequate methods for practical application should generate functions as algebraic normal forms (ANF) or in a procedure form, without utilizing the truth tables that
require memory capacity exceeding the facility of modern computers.
The most significant criteria to evaluate the procedures from their practical application point of view are:
$\checkmark$ the qualitative characteristics of the generated functions (the value of the nonlinearity, the order of nonlinearity, the propagation properties);
$\checkmark$ the size of the computational recourses required;
$\checkmark$ the formalized character of the process of obtaining the required functions with regard to the key taken at random;
$\checkmark$ the maximal number of cryptographically strong functions that the method is able to generate;
By now a number of methods for synthesis of cryptographically strong Boolean functions have been suggested. Some of them, for example [2] provide for spectral Walsh-transforms application to obtain strong Boolean functions. Nevertheless such an approach cannot be adopted as a reasonable one from the technological aspect, since, in the course of synthesis of functions of n variables, with the tables of functions and spectra values whose capacity is in proportion to $2^{\mathrm{n}}$. The operation of reverse Walsh-transform, that is basic for this method, also requires time proportionally to $2^{\text {n }}$.
Cryptographically strong Boolean functions may be obtained by means of bent-functions deconcatenation [1], however obtaining the bent-functions of a great number of variables as such is also a complex technological problem whose solution can be achieved only with expenditure of significant computational resources.
The heuristic methods of synthesis [4] are not suitable for automatic generation of functions in dependence on a randomly chosen key.
Nowadays, the most acceptable methods in practice for synthesis of ANF of cryptographically strong Boolean functions are the methods described in [3,5]. Their main shortcoming is that they enable only a small number of cryptographically strong functions from the total amount to be generated. The reason for that is that these methods are founded on the special properties of a restricted subset of cryptographically strong Boolean functions. To develop methods that allow for generating the most part of the cryptographically strong functions, a more thorough and overall investigation of their properties is necessary.

## 3 Basic Definitions and Properties of SAC-functions

The Hamming weight $\mathrm{W}\left(\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right.$ of a Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ of $n$ variables is the total number of the values of "one" that the function attains on the $2^{\mathrm{n}}$ possible tuples of the variables values that form the set Z

$$
\begin{equation*}
W\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{x_{1}, \ldots, x_{n} \in Z} f\left(x_{1}, \ldots, x_{n}\right) \tag{1}
\end{equation*}
$$

The Boolean function $f\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ satisfies the total entropy maximum criterion, i.e., is balanced if it takes the values of "zero" and "one" with equal probability:

$$
\begin{equation*}
W\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=2^{n-1} \tag{2}
\end{equation*}
$$

The Boolean function $f\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ satisfies the criterion of the conditional entropy maximum or Strict Avalanche Criterion (SAC), if alterating any of its $n$ variables results in changing the value of the function with the probability of 0.5 .

$$
\begin{equation*}
\forall x_{j}, j=1, \ldots, n: W\left(f\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right) \oplus\right. \tag{3}
\end{equation*}
$$

$\left.\oplus f\left(x_{1}, \ldots, \bar{x}_{j}, \ldots, x_{n}\right)\right)=2^{n-1}$
A system of Boolean functions $\mathrm{G}=\left\{\mathrm{f}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{f}_{2}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \ldots, \mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right\}$ is an orthogonal one, if XOR of any subset of the system functions is a balanced function:

$$
\begin{equation*}
\forall \vartheta \subseteq G: W\left({\underset{f}{j} \in}_{\oplus} f_{j}\left(x_{1}, \ldots, x_{n}\right)\right)=2^{n-1} \tag{4}
\end{equation*}
$$

In this case the non-linearity, $\mathrm{N}\left(\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right)$, of the Boolean function $f\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ is determined as the minimal Hamming's distance to the linear functions:

$$
\begin{align*}
& \mathrm{N}\left(\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right)=\min _{\mathrm{a}_{\mathrm{k}} \in\{0,1\}, \mathrm{k}=0, \ldots, \mathrm{n}} \mathrm{~W}\left(\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \oplus\right. \\
& \left.\oplus\left(\mathrm{a}_{0} \oplus \ldots \underset{\mathrm{j}=1, \ldots, \mathrm{n}}{\oplus} \mathrm{a}_{\mathrm{j}} \cdot \mathrm{x}_{\mathrm{j}}\right)\right) \quad \text { (5) } \tag{5}
\end{align*}
$$

## 4 D-functions

D-function of a power $k$ is the sum of a linear function $\mathrm{L}_{0}\left(\mathrm{X}_{0}\right)$ and of the conjunction k of linear functions $\mathrm{L}_{1}\left(\mathrm{X}_{1}\right), \mathrm{L}_{2}\left(\mathrm{X}_{2}\right), \ldots, \mathrm{L}_{\mathrm{k}}\left(\mathrm{X}_{\mathrm{k}}\right)$ that develop an orthogonal system:

$$
\begin{equation*}
\mathrm{f}(\mathrm{X})=\mathrm{L}_{1}\left(\mathrm{X}_{1}\right) \cdot \mathrm{L}_{2}\left(\mathrm{X}_{2}\right) \cdot \cdots \cdot \mathrm{L}_{\mathrm{k}}\left(\mathrm{X}_{\mathrm{k}}\right) \oplus \mathrm{L}_{0}\left(\mathrm{X}_{0}\right) \tag{6}
\end{equation*}
$$

where $L_{i}\left(\mathrm{X}_{\mathrm{i}}\right)$ is a linear function determined on the set of variables $\left\{\mathrm{X}_{\mathrm{i}}\right\}$. The following special variants of D functions exist:
D-function of the 1 -st power is a linear function.
Degenerated D-function is a function, whose linear part $\mathrm{L}_{0}\left(\mathrm{X}_{0}\right)$ is a linear combination of the other components ( $\left.\mathrm{L}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{i}=1 \ldots \mathrm{k}\right)$ :
$\mathrm{L}_{0}\left(\mathrm{X}_{0}\right)=\mathrm{a}_{0} \oplus \mathrm{a}_{1} \cdot \mathrm{~L}_{1}\left(\mathrm{X}_{1}\right) \oplus \mathrm{a}_{2} \cdot \mathrm{~L}_{2}\left(\mathrm{X}_{2}\right) \oplus \ldots \oplus \mathrm{a}_{\mathrm{k}} \cdot \mathrm{L}_{\mathrm{k}}\left(\mathrm{X}_{\mathrm{k}}\right)(7)$
Separated D-function is a function whose linear components of the conjunction $\left(\mathrm{L}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}\right)\right.$, $\left.\mathrm{i}=0 \ldots \mathrm{k}\right)$ are determined on non-overlapping tuples:

$$
\begin{align*}
& \left\{\mathrm{X}_{\mathrm{i}}\right\} \cap\left\{\mathrm{X}_{\mathrm{i}}\right\}=\varnothing, \forall \mathrm{i}, \mathrm{j}: \mathrm{i} \neq \mathrm{j}, \mathrm{i}=1 \ldots \mathrm{k}, \mathrm{j}=1 \ldots \mathrm{k} \\
& \left\{\mathrm{X}_{1}\right\} \cup\left\{\mathrm{X}_{2}\right\} \cup \ldots \cup\left\{\mathrm{X}_{\mathrm{k}}\right\}=\{\mathrm{X}\} \tag{8}
\end{align*}
$$

Lemma 1. Hamming's weight of a function-sum $\mathrm{F}=$ $f_{1}(x) \oplus f_{2}(x)$ is related to Hamming's weights of the functions-summands through the following relation:
$\mathrm{W}\left(\mathrm{f}_{1}(\mathrm{x}) \oplus \mathrm{f}_{2}(\mathrm{x})\right)=\mathrm{W}\left(\mathrm{f}_{1}(\mathrm{x})\right)+\mathrm{W}\left(\mathrm{f}_{2}(\mathrm{x})\right)-2 \mathrm{~W}\left(\mathrm{f}_{1}(\mathrm{x}) \cdot \mathrm{f}_{2}(\mathrm{x})\right)(9)$
Corollary 1.(Generalization of Lemma 1 for 3 functions):
$\mathrm{W}\left(\mathrm{f}_{1}(\mathrm{x}) \oplus \mathrm{f}_{2}(\mathrm{x}) \oplus \mathrm{f}_{3}(\mathrm{x})\right)=$
$=\mathrm{W}\left(\mathrm{f}_{1}(\mathrm{x})\right)+\mathrm{W}\left(\mathrm{f}_{2}(\mathrm{x})\right)+\mathrm{W}\left(\mathrm{f}_{3}(\mathrm{x})\right)-$

- $2\left[\mathrm{~W}\left(\mathrm{f}_{1}(\mathrm{x}) \cdot \mathrm{f}_{2}(\mathrm{x})\right)+\mathrm{W}\left(\mathrm{f}_{2}(\mathrm{x}) \cdot \mathrm{f}_{3}(\mathrm{x})\right)+\right.$

$$
\begin{equation*}
\left.+\mathrm{W}\left(\mathrm{f}_{3}(\mathrm{x}) \cdot \mathrm{f}_{1}(\mathrm{x})\right)\right]+4 \mathrm{~W}\left(\mathrm{f}_{1}(\mathrm{x}) \cdot \mathrm{f}_{2}(\mathrm{x}) \cdot \mathrm{f}_{3}(\mathrm{x})\right) \tag{10}
\end{equation*}
$$

Corollary 2.(Generalization of Lemma 1 for m functions):

$$
\begin{align*}
W & \left(\oplus_{j=1}^{m} f_{j}(x)\right)=\sum_{j=1}^{m}(-1)^{j-1} \cdot 2^{j-1} \\
& \cdot \sum_{j 1 \neq j 2 \neq \ldots \neq j i} W\left(f_{i 1}(x) \cdot f_{j 2}(x) \cdot \ldots \cdot f_{i j}(x)\right) \tag{11}
\end{align*}
$$

Lemma 2. Hamming's weight of the conjunction of k variables $\mathrm{F}=\mathrm{x}_{1} \cdot \mathrm{x}_{2} \cdot \ldots \cdot \mathrm{x}_{\mathrm{k}}$ is equal to:
$\mathrm{W}(\mathrm{F})=2^{\mathrm{n}} / 2^{\mathrm{k}}=2^{\mathrm{nk}}$
Corollary 3. Hamming's weight of the functionproduct $\mathrm{F}=\mathrm{f}_{1}(\mathrm{x}) \cdot \mathrm{f}_{2}(\mathrm{x}) \cdot \ldots \cdot \mathrm{f}_{\mathrm{k}}(\mathrm{x})$ is equal to $2^{\mathrm{n}-\mathrm{k}}$ if functions $f_{i}(x), \quad \mathrm{I}=1, \ldots, \mathrm{k}$ develop an orthogonal system.

Theorem 1. The necessary and sufficient condition for a D-function to satisfy the total entropy maximum, that is to be a balanced one, is its property of nondegeneracy, that is the linear component $\mathrm{L}_{0}\left(\mathrm{X}_{0}\right)$ of the D-function and the linear functions $\mathrm{L}_{1}\left(\mathrm{X}_{1}\right)$, $\mathrm{L}_{2}\left(\mathrm{X}_{2}\right), \ldots, \mathrm{L}_{\mathrm{k}}\left(\mathrm{X}_{\mathrm{k}}\right)$ must compose an orthogonal system.

## Proof.

Present the D-function as a XOR of 3 component:

$$
\begin{equation*}
F(X)=F_{1}(X) \oplus F_{2}(X) \oplus F_{3}(X) \tag{13}
\end{equation*}
$$

, where
$\mathrm{F}_{1}(\mathrm{X})=\mathrm{L}_{1}\left(\mathrm{X}_{1}\right) \cdot \mathrm{L}_{2}\left(\mathrm{X}_{2}\right) \cdot \ldots \cdot \mathrm{L}_{\mathrm{k}}\left(\mathrm{X}_{\mathrm{k}}\right)$
$\mathrm{F}_{2}(\mathrm{X})=\mathrm{c}_{0} \oplus \mathrm{c}_{1} \cdot \mathrm{~L}\left(\mathrm{X}_{1}\right) \oplus \mathrm{c}_{2} \cdot \mathrm{~L}_{2}\left(\mathrm{X}_{2}\right) \oplus \ldots \oplus \mathrm{c}_{\mathrm{k}} \cdot \mathrm{L}_{\mathrm{k}}\left(\mathrm{X}_{\mathrm{k}}\right)$, is a part of a linear function representable in form of the linear combination of the conjunctive part components $\mathrm{L}_{0}\left(\mathrm{X}_{0}\right), \mathrm{c}_{\mathrm{h}} \in\{0,1\}, \mathrm{h}=0, \ldots \mathrm{k}$,
$\mathrm{F}_{3}(\mathrm{X})=\mathrm{L}_{0}\left(\mathrm{X}_{0}\right) \oplus \mathrm{F}_{2}(\mathrm{X}) \quad$ - is a part of linear function $\mathrm{L}_{0}\left(\mathrm{X}_{0}\right)$ non-representable in form of linear combination of the multiplicative part components.

## Necessity.

Make use of the proof method from the opposite. Suppose, function (13) is a degenerated Dfunction. In a degenerated function the component $F_{3}(X)=0$. Apply Lemma 1 for determining the number of ones in the function: $\mathrm{W}(\mathrm{F}(\mathrm{X}))=\mathrm{W}\left(\mathrm{F}_{1}\right)+\mathrm{W}\left(\mathrm{F}_{2}\right)-2 \mathrm{~W}\left(\mathrm{~F}_{1} \mathrm{~F}_{2}\right)$.
According to Corollary 3: W $\left(\mathrm{F}_{1}\right)=2^{\mathrm{n}-\mathrm{k}}$. Since $\mathrm{F}_{2}(\mathrm{X})$ is a linear function, then Hamming's weight $\mathrm{F}_{2}$ equals $\mathrm{W}\left(\mathrm{F}_{2}\right)=2^{\mathrm{n-1}}$. Representation of functions $\mathrm{F}_{1}(\mathrm{X})$ и $\mathrm{F}_{2}(\mathrm{X})$ is a logical product of the conjunctive components $\mathrm{L}_{1}\left(\mathrm{X}_{1}\right), \ldots, \mathrm{L}_{\mathrm{k}}\left(\mathrm{X}_{\mathrm{k}}\right)$ by a linear function of $\mathrm{L}_{1}\left(\mathrm{X}_{1}\right), \ldots, \mathrm{L}_{k}\left(\mathrm{X}_{\mathrm{k}}\right)$ :

$$
\begin{equation*}
F_{1}(X) \cdot F_{2}(X)=\prod_{j=1}^{k} L_{j}\left(X_{j}\right) \cdot\left(c_{0} \oplus\right. \tag{14}
\end{equation*}
$$

$\left.\bigoplus_{j-1}^{k} c_{j} \cdot L_{j}\left(X_{j}\right)\right)$
If the number of the non-zero components is even, then $\mathrm{F}_{2}(\mathrm{X})=0$, and, correspondingly, $\mathrm{F}_{1}(\mathrm{X}) \cdot \mathrm{F}_{2}(\mathrm{X})=0$, otherwise $\mathrm{F}_{1}(\mathrm{X}) \cdot \mathrm{F}_{2}(\mathrm{X})=\mathrm{F}_{1}(\mathrm{X})$ and accordingly to (12)
$\mathrm{W}\left(\mathrm{F}_{1}(\mathrm{X}) \cdot \mathrm{F}_{2}(\mathrm{X})\right)=\mathrm{W}\left(\mathrm{F}_{1}(\mathrm{X})\right)=2^{\mathrm{n}-\mathrm{k}}$.
In the first case $W(F(X))=2^{n-k}+2^{n-1}+2 \cdot 0=2^{n-1}$ $+2^{\mathrm{n}-\mathrm{k}}$, and correspondingly, in the other one $W(F(X))=2^{n-k}+2^{n-1}-2 \cdot 2^{n-k}=2^{n-1}-2^{n-k}$.
Thus, in both cases function (13) appears to be non-balanced. Consequently, the assumption about the degeneracy of the initial function is false. Therefore, to satisfy the unconditional entropy maximum criterion, the D-function must be non-degenerated, which proves the theorem.

## Sufficiency.

Since function $\mathrm{L}_{0}\left(\mathrm{X}_{0}\right)$ does not depend linearly on the conjunctive components $\mathrm{L}_{1}\left(\mathrm{X}_{1}\right), \ldots, \mathrm{L}_{\mathrm{k}}\left(\mathrm{X}_{\mathrm{k}}\right)$, they altogether develop a system of $\mathrm{k}+1$ orthogonal functions, so transition to a new coordinates system $\{Z\}^{k+1}$ is quite rightful, here

$$
\begin{align*}
& z_{j}=L_{j}\left(X_{j}\right), j=1, \ldots, k  \tag{15}\\
& z_{k+1}=L_{0}\left(X_{0}\right)
\end{align*}
$$

In the new coordinates system, the D -function has the form: $F(Z)=z_{1} \cdot z_{2} \cdot \ldots \cdot z_{k} \oplus z_{k+1}$, that is, it represents the XOR of the balanced function $\left(z_{k+1}\right)$ and the function $\left(z_{1} \cdot z_{2} \cdot \ldots \cdot z_{k}\right)$ that does not depend on the former one and, therefore, the D-function is a balanced one. Since the number of "ones" in the function does not depend on the form of its representation, the non-degenerated D-function under consideration meets the unconditional entropy maximum criterion, which proves the statement. $N(f)=2^{8}-2^{4}=240$.

## 5 D-functions of the 2-nd power

Consider a special case of D-functions, namely, functions of the second power.
$f(X)=L_{1}\left(X_{1}\right) \cdot L_{2}\left(X_{2}\right) \oplus L_{0}\left(X_{0}\right)$

Theorem 2. D-function of the 2 nd power satisfies the criterion of conditional entropy maximum, that implies it is always a SAC-function if $X_{1} \cup X_{2}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$.

Proof. For the proof, let us make use of a known statement [5] that if for all $x_{j}, j=1,2, \ldots, n$, at representation of function $f(X)$ in the form:
$f(X)=g_{j}(X)+x_{j} \cdot h_{j}(X)$, (here $g_{j}(X), h_{j}(X)$, are functions that do not depend on $\mathrm{x}_{\mathrm{j}}$ ), functions $\mathrm{h}_{\mathrm{j}}(\mathrm{X}), \mathrm{j}=1, \ldots, \mathrm{n}$ are balanced ones, then $f(X)$ meets the conditional entropy maximum criterion, so it is a balanced SAC-function. Let $x_{j} \in X_{1}, x_{j} \notin X_{2}$, then function $L_{1}\left(X_{1}\right)$ may be represented in the form $L_{1}\left(X_{1}\right)=x_{j} \oplus R_{j}\left(X_{1}-x_{j}\right)$, correspondingly
$f(X)=\left(x_{i} \oplus R_{1}\left(X_{1}-x_{j}\right)\right) \cdot L_{2}\left(X_{2}\right) \oplus$
$\mathrm{L}_{0}\left(\mathrm{X}_{0}\right)=\mathrm{x}_{\mathrm{j}} \cdot \mathrm{L}_{2}\left(\mathrm{X}_{2}\right) \oplus \mathrm{g}_{\mathrm{j}}(\mathrm{X})$. Since the function $\mathrm{L}_{2}\left(\mathrm{X}_{2}\right)$ is linear and correspondingly balanced, independent of $x_{j}$, so with respect to the variable $\mathrm{x}_{\mathrm{j}}$ function $\mathrm{f}(\mathrm{X})$ corresponds to SAC. It may be proved in the similar way that function $f(X)$ is a SAC-function, if variable $x_{j}$ $\in \mathrm{X}_{2}, \mathrm{x}_{\mathrm{j}} \notin \mathrm{X}_{1}$.

If $x_{j} \in X_{2}, x_{j} \in X_{1}$, then
$f(X)=\left(x_{j} \oplus R_{1}\left(X_{1}-x_{j}\right)\right) \cdot\left(x_{j} \oplus R_{2}\left(X_{2}-x_{j}\right)\right) \oplus L_{0}\left(X_{0}\right)=$
$=\left(\mathrm{x}_{\mathrm{j}} \oplus \mathrm{R}_{1}\left(\mathrm{X}_{1}-\mathrm{x}_{\mathrm{j}}\right)\right) \cdot\left(\mathrm{x}_{\mathrm{j}} \oplus \mathrm{R}_{2}\left(\mathrm{X}_{2}-\mathrm{x}_{\mathrm{j}}\right)\right) \oplus \mathrm{L}_{0}\left(\mathrm{X}_{0}\right) \oplus \mathrm{R}_{1}\left(\mathrm{X}_{1}-\right.$
$\left.\mathrm{x}_{\mathrm{j}}\right) \cdot \mathrm{R}_{2}\left(\mathrm{X}_{2}-\mathrm{x}_{\mathrm{j}}\right) \oplus \mathrm{x}_{\mathrm{j}} \cdot\left(1 \oplus \mathrm{R}_{1}\left(\mathrm{X}_{1}-\mathrm{x}_{\mathrm{j}}\right) \oplus \mathrm{R}_{2}\left(\mathrm{X}_{2}-\mathrm{x}_{\mathrm{j}}\right)\right)=$
$=\mathrm{x}_{\mathrm{j}} \cdot\left(1 \oplus \mathrm{R}_{1}\left(\mathrm{X}_{1}-\mathrm{x}_{\mathrm{j}}\right) \oplus \mathrm{R}_{2}\left(\mathrm{X}_{2}-\mathrm{x}_{\mathrm{j}}\right)\right) \oplus \mathrm{g}_{\mathrm{j}}(\mathrm{X})$, that is the multiplier at $\mathrm{x}_{\mathrm{j}}$ in this case as well appears to be a linear function, and correspondingly, a balanced one, because $\mathrm{R}_{1}\left(\mathrm{X}_{1}-\mathrm{x}_{\mathrm{j}}\right) \neq \mathrm{R}_{2}\left(\mathrm{X}_{2}-\mathrm{x}_{\mathrm{j}}\right)$, in view of $\mathrm{L}_{1}\left(\mathrm{X}_{1}\right) \neq \mathrm{L}_{2}\left(\mathrm{X}_{2}\right) \Rightarrow\left(\mathrm{x}_{\mathrm{j}} \oplus \mathrm{R}_{1}\left(\mathrm{X}_{1}-\mathrm{x}_{\mathrm{j}}\right)\right) \neq\left(\mathrm{x}_{\mathrm{j}} \oplus \mathrm{R}_{2}\left(\mathrm{X}_{2}-\mathrm{x}_{\mathrm{j}}\right)\right)$.

So, D-function of the second power (16), for which the condition $X_{1} \cup X_{2}=\left\{x_{1}, \ldots, x_{n}\right\}$ is held, is always a SAC-function .

For example, consider synthesis of a function of 4 variables. Let $L_{1}=x_{1} \oplus \mathrm{x}_{2} \oplus \mathrm{x}_{3}, \quad \mathrm{~L}_{2}=\mathrm{x}_{1} \oplus \mathrm{x}_{4}$, $\mathrm{L}_{0}(\mathrm{X})=\mathrm{x}_{2}$. Then $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}_{1} \oplus \mathrm{x}_{2} \oplus \mathrm{x}_{3}\right) \oplus\left(\mathrm{x}_{1} \oplus \mathrm{x}_{4}\right) \oplus \mathrm{x}_{2}=$ $\mathrm{x}_{1} \oplus \mathrm{x}_{2} \oplus \mathrm{x}_{1} \cdot \mathrm{x}_{4} \oplus \mathrm{x}_{1} \cdot \mathrm{x}_{2} \oplus \mathrm{x}_{2} \cdot \mathrm{x}_{4} \oplus \mathrm{x}_{1} \cdot \mathrm{x}_{3} \oplus \mathrm{x}_{3} \cdot \mathrm{x}_{4}$.

## 6 Compound D-functions

Consider a Boolean function that is a XOR of a linear function $\mathrm{L}_{0}\left(\mathrm{X}_{0}\right)$, of the product of liner functions $\mathrm{L}_{1}\left(\mathrm{X}_{1}\right)$ and $\mathrm{L}_{2}\left(\mathrm{X}_{2}\right)$ such that $\mathrm{X}_{1} \cup \mathrm{X}_{2}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ and of the product $\mathrm{k}(\mathrm{k} \leq \mathrm{n}-3)$ of linear functions $\mathrm{L}_{3}\left(\mathrm{X}_{3}\right), \mathrm{L}_{4}\left(\mathrm{X}_{4}\right), \ldots, \mathrm{L}_{\mathrm{k}+2}\left(\mathrm{X}_{\mathrm{k}+2}\right)$, in this case all the functions $L_{j}, j=0, \ldots, k+2$ develop a system of linearly-independent functions.

$$
\begin{equation*}
f(X)=L_{0}\left(X_{0}\right) \oplus L_{1}\left(X_{1}\right) \cdot L_{2}\left(X_{2}\right) \oplus \prod_{i=3}^{k+2} L_{i}\left(X_{i}\right) \tag{17}
\end{equation*}
$$

Demonstrate that such a Boolean function satisfies the conditional and unconditional entropy maximum criterion.

Since all the linear functions $\mathrm{L}_{0}\left(\mathrm{X}_{0}\right), \ldots, \mathrm{L}_{\mathrm{k}+3}\left(\mathrm{X}_{\mathrm{k}}\right)$ are linearly-independent, transition to a new coordinate system $\{\mathrm{Z}\}: \mathrm{z}_{\mathrm{j}}=\mathrm{L}_{\mathrm{j}}\left(\mathrm{X}_{\mathrm{j}}\right), \mathrm{j}=0, \ldots, \mathrm{k}+2$ is lawful.

$$
\begin{equation*}
f(Z)=z_{0} \oplus z_{1} \cdot z_{2} \oplus z_{3} \cdot z_{4} \cdot \ldots \cdot z_{k+2} \tag{18}
\end{equation*}
$$

Since function (18) is a XOR of a balanced function ( $\mathrm{z}_{0}$ ) and a function independent of the variables of the balanced function, then function (18) is a balanced one. Since the number of "ones" does not depend on the representation of the function, the function (17) satisfies the criterion of unconditional entropy maximum.

Now disclose that function (18) satisfies the criterion of conditional entropy maximum. For this, just as at proof of Theorem 2, it is necessary to reveal that for all $\mathrm{x}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{n}$, at representing the function $f(X)$ in the form: $f(X)=g_{j}(X)+x_{j} \cdot h_{j}(X)$, the function $h_{j}(X)$ is a balanced one.

If $x_{j} \notin\left\{X_{3}, X_{4}, \ldots, X_{k+2}\right\}$, then the course of the proof is quite identical to that of Theorem 2 presented above. If $x_{j} \in\left\{X_{3}, X_{4}, \ldots, X_{k+2}\right\}$, then on introducing the following symbols for the linear functions $\mathrm{R}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{L}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}\right), \delta_{\mathrm{i}}=0$ if $\mathrm{x}_{\mathrm{j}} \notin \mathrm{X}_{\mathrm{i}}$ and $\mathrm{R}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}-\right.$ $\left.\mathrm{x}_{\mathrm{j}}\right)=\mathrm{L}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}\right) \oplus \mathrm{x}_{\mathrm{j}}, \delta_{\mathrm{i}}=1$ if $\mathrm{x}_{\mathrm{j}} \in \mathrm{X}_{\mathrm{i}}$ for $\mathrm{i}=1, \ldots, \mathrm{k}+2$, the function $h_{j}(X)$ independent of $x_{j}$ may be represented as
$h_{j}(X)=\delta_{1} \cdot R_{2}(X) \oplus \delta_{2} \cdot R_{1}(X)$
$\oplus \sum_{t=3}^{k+2} \delta_{t} \cdot \prod_{\substack{l=3 \\ l \neq t}}^{k+2} R_{l}(X)$
Since all the functions $\mathrm{R}_{\mathrm{l}}, \mathrm{l}=1, \ldots, \mathrm{k}+3$ composing (19) are linearly-independent, then, according to Theorem 1, each of the functions $h_{j}, j=1, \ldots, n$ is balanced, and consequently the function determined by (17) possesses the conditional entropy maximum, so it is a SACfunction.

The theoretical results obtained make it possible to formulate the following procedure for obtaining Boolean functions possessing the maximum of the total and conditional entropy:
On the set of $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ variables, $3 \leq \mathrm{t} \leq \mathrm{n}$ linear Boolean functions are built that develop an orthogonal system, and in doing so the union of variables set comprised in the linear function $\mathrm{L}_{1}\left(\mathrm{X}_{1}\right)$ and $\mathrm{L}_{2}\left(\mathrm{X}_{2}\right)$ must compose the total set of the variables $X_{1} \cup X_{2}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Accordingly to (18), the normal algebraic form is built of the Boolean function that corresponds to the criterion of the total and conditional entropy maximum, or, in other words, is a balanced SACfunction.

The procedure suggested for balanced Boolean SAC-functions is illustrated by the following example of synthesis of a balanced function of six variables $(\mathrm{n}=6)$. According to item 1 , a system of $\mathrm{k}=\mathrm{n}=6$ linear Boolean functions is built that develop an orthogonal system: $\mathrm{L}_{0}\left(\mathrm{x}_{1}\right)=\mathrm{x}_{1}, \mathrm{~L}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\mathrm{x}_{1} \oplus \mathrm{x}_{2} \oplus \mathrm{x}_{3}, \mathrm{~L}_{2}\left(\mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}\right)$ $=\mathrm{x}_{4} \oplus \mathrm{x}_{5} \oplus \mathrm{x}_{6}, \mathrm{~L}_{3}\left(\mathrm{x}_{3}, \mathrm{x}_{4}\right)=\mathrm{x}_{3} \oplus \mathrm{x}_{4}, \mathrm{~L}_{4}\left(\mathrm{x}_{2}\right)=\mathrm{x}_{2}, \mathrm{~L}_{5}\left(\mathrm{x}_{4}, \mathrm{x}_{6}\right)=\mathrm{x}_{4}$ $\oplus \mathrm{x}_{6}$. In correspondence with (18) the balanced SACfunction is built in the form: $f(X)=x_{1} \oplus$ $\left(\mathrm{x}_{1} \oplus \mathrm{x}_{2} \oplus \mathrm{x}_{3}\right) \cdot\left(\mathrm{x}_{4} \oplus \mathrm{x}_{5} \oplus \mathrm{x}_{6}\right) \oplus \mathrm{x}_{2} \cdot\left(\mathrm{x}_{4} \oplus \mathrm{x}_{3}\right) \cdot\left(\mathrm{x}_{4} \oplus \mathrm{x}_{6}\right)=\mathrm{x}_{1} \oplus$ $\mathrm{x}_{1} \cdot \mathrm{x}_{4} \oplus \mathrm{x}_{1} \cdot \mathrm{x}_{5} \oplus \mathrm{x}_{1} \cdot \mathrm{x}_{6} \oplus \mathrm{x}_{2} \cdot \mathrm{x}_{5} \oplus \mathrm{x}_{2} \cdot \mathrm{x}_{6} \oplus \mathrm{x}_{3} \cdot \mathrm{x}_{4} \oplus \mathrm{x}_{3} \cdot \mathrm{x}_{5} \oplus$ $\mathrm{x}_{3} \cdot \mathrm{x}_{6} \oplus \mathrm{x}_{2} \cdot \mathrm{x}_{4} \cdot \mathrm{x}_{6} \oplus \mathrm{x}_{2} \cdot \mathrm{x}_{3} \cdot \mathrm{x}_{4} \oplus \mathrm{x}_{2} \cdot \mathrm{x}_{3} \cdot \mathrm{x}_{6}$. The non-linearity of the function synthesized is 20 , and the non-linearity order is equal to 3 .

## 7 Superposition of the functions

The suggested approach may be generalized for synthesis of functions in the orthogonal spaces of other functions.
Let there exist:
a) an orthogonal system of $n$ functions $\{Z\}^{n}$
b) an arbitrary function of ( $\mathrm{n}-1$ ) variables $\mathrm{S}^{\mathrm{n}-1}(\mathrm{X})$ Then the next superposition will be balanced:

$$
\begin{equation*}
\mathrm{F}(\mathrm{X})=\mathrm{S}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{i}-1}, \mathrm{z}_{\mathrm{i}+1}, \ldots, \mathrm{z}_{\mathrm{n}}\right) \oplus \mathrm{z}_{\mathrm{i}} \tag{20}
\end{equation*}
$$

Theorem 3. Let there exist the following k ( $3 \leq \mathrm{k}$
$\leq n)$ functions of $n$ variables $X^{n}=\left(x_{1} \ldots x_{n}\right)$ :
$\mathrm{Z}_{1}\left(\mathrm{X}^{\mathrm{n}}\right)=\Phi_{1}{ }^{\mathrm{j}}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{j}-1} \mathrm{X}_{\mathrm{j}+1} \ldots \mathrm{x}_{\mathrm{n}}\right) \oplus$
$\oplus \mathrm{x}_{\mathrm{j}} \cdot \Psi_{1}{ }^{\mathrm{j}}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{j}-1} \mathrm{x}_{\mathrm{j}+1} \ldots \mathrm{x}_{\mathrm{n}}\right)$, with $\mathrm{j}=1 \ldots \mathrm{n}$;
$\mathrm{Z}_{2}\left(\mathrm{X}^{\mathrm{n}}\right)=\Phi_{2}{ }^{\mathrm{j}}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{j}-1} \mathrm{X}_{\mathrm{j}+1} \ldots \mathrm{x}_{\mathrm{n}}\right) \oplus$
$\oplus \mathrm{x}_{\mathrm{j}} \cdot \Psi_{2}^{\mathrm{j}}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{j}-1} \mathrm{x}_{\mathrm{j}+1} \ldots \mathrm{x}_{\mathrm{n}}\right)$, with $\mathrm{j}=1 \ldots \mathrm{n} ;$
$\mathrm{Z}_{3}\left(\mathrm{X}^{\mathrm{n}}\right)=\Phi_{3}{ }^{\mathrm{j}}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{j}-1} \mathrm{X}_{\mathrm{j}+1} \ldots \mathrm{x}_{\mathrm{n}}\right) \oplus$
$\oplus \mathrm{x}_{\mathrm{j}} \cdot \Psi_{3}^{\mathrm{j}}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{j}-1} \mathrm{x}_{\mathrm{j}+1} \ldots \mathrm{x}_{\mathrm{n}}\right)$, with $\mathrm{j}=1 \ldots \mathrm{n}$;

$$
\begin{align*}
Z_{k}\left(X^{\mathrm{n}}\right)= & \Phi_{\mathrm{k}}{ }^{\mathrm{j}}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{j}-1} \mathrm{x}_{\mathrm{j}+1} \ldots \mathrm{x}_{\mathrm{n}}\right) \oplus \\
& \oplus \mathrm{x}_{\mathrm{j}} \cdot \Psi_{\mathrm{k}}^{\mathrm{j}}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{j}-1} \mathrm{x}_{\mathrm{j}+1} \ldots \mathrm{x}_{\mathrm{n}}\right), \text { with } \mathrm{j}=1 \ldots \mathrm{n} ; \tag{21}
\end{align*}
$$

,denominate
$\left.\xi\left(\mathrm{X}^{\mathrm{n}-1}\right)=\Phi_{2}{ }^{\mathrm{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right) \cdot \Psi_{3}{ }^{\mathrm{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right) \oplus \Phi_{3}{ }^{\mathrm{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right) \cdot \Psi_{2}{ }^{\mathrm{j}} \mathrm{X}^{\mathrm{n}-1}\right) \oplus$
$\oplus \Psi_{2}{ }^{\mathrm{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right) \cdot \Psi_{3}{ }^{\mathrm{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right) \oplus \Psi \Psi_{1}{ }^{\mathrm{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right)$
In this case:
function $\mathrm{Z}_{1}\left(\mathrm{X}^{\mathrm{n}}\right)$ is balanced;
functions $\{\mathrm{Z}\}$ are mutually independent;
in the set of functions $\Phi_{i}^{j}\left(\mathrm{X}^{\mathrm{n-1}}\right)$ and $\Psi_{i}^{j}\left(\mathrm{X}^{\mathrm{n}-1}\right)$, $\mathrm{i}=4 \ldots \mathrm{k} \quad \forall \mathrm{j}=1 \ldots \mathrm{n}$, there exists a certain subset $\left\{\mathrm{W}_{\mathrm{j}}\right\}$ (of $\mathrm{m}_{\mathrm{j}}$ functions) all the functions of which are mutually independent. Moreover, the functions that do not enter the subset $\left\{\mathrm{W}_{\mathrm{j}}\right\}$ may be represented through a sum of function from set $\left\{\mathrm{W}_{\mathrm{j}}\right\}$.
Function $\xi\left(\mathrm{X}^{\mathrm{n}-1}\right)$ is balanced and independent of the set of functions $\left\{\mathrm{W}_{\mathrm{j}}\right\}, \forall \mathrm{j}=1 \ldots \mathrm{n}$;

Then the following function satisfies the conditional and total entropy maximum criterion:
$\mathrm{F}\left(\mathrm{X}^{\mathrm{n}}\right)=\mathrm{S}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}-3}\right) \oplus \mathrm{Z}_{3}\left(\mathrm{X}^{\mathrm{n}}\right) \cdot \mathrm{Z}_{2}\left(\mathrm{X}^{\mathrm{n}}\right) \oplus \mathrm{Z}_{1}\left(\mathrm{X}^{\mathrm{n}}\right)(22)$
,where
S - an arbitrary function of(k-3) variables
$y_{i}=Z_{i+3}\left(X^{1}\right), i=1 \ldots k-3$

## Proof.

Since functions (21) are mutually independent, transition is possible to a new coordinate system $X^{\mathrm{n}} \rightarrow \mathrm{Z}^{\mathrm{k}}$ where function (22) is equivalent to the following one:
$\mathrm{F}\left(\mathrm{X}^{\mathrm{n}}\right) \equiv \mathrm{F}\left(\mathrm{X}^{\mathrm{k}}\right)=\mathrm{S}\left(\mathrm{Z}_{4}, \ldots, \mathrm{Z}_{\mathrm{k}}\right) \oplus \mathrm{Z}_{2} \cdot \mathrm{Z}_{3} \oplus \mathrm{Z}_{1}$
This function is balanced because it consists of the sum of the balanced function $\left(\mathrm{Z}_{1}\right)$ and a function independent of the variables of the balanced function $Z_{1}$. Since the balancedness of a function does not depend on its representation,
function (23) satisfies the total entropy maximum criterion, which proves the theorem.

Present function (20) in the form: $F\left(X^{n}\right)=U_{S}{ }^{j}\left(X^{n-1}\right)$ $\oplus U_{Z 3 \bullet Z 2}{ }^{j}\left(X^{n-1}\right) \oplus U_{Z 1}{ }^{j}\left(X^{n-1}\right) \oplus \quad x_{j} \cdot\left[V_{S}{ }^{j}\left(X^{n-1}\right) \oplus\right.$ $\mathrm{V}_{\mathrm{Z} 3 \cdot \mathrm{Z2}^{\mathrm{j}}}\left(\mathrm{X}^{\mathrm{n}-1}\right) \oplus \mathrm{V}_{\mathrm{Z} 1}{ }^{\mathrm{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right)$ ]. Consequently, function (20) satisfies the conditional entropy maximum criterion if the following function satisfies the total entropy maximum criterion for any $j$ :
$P\left(X^{n-1}\right)=V_{S}^{j}\left(S^{n-1}\right) \oplus V_{Z 2 \cdot Z 3}^{j}\left(X^{n-1}\right) \oplus V_{Z 1}^{j}\left(X^{n-1}\right)$

The following identity is lawful:
$\mathrm{V}_{\mathrm{Z} 3 \cdot \mathrm{Z2}^{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right) \oplus \mathrm{V}_{\mathrm{Z1}}{ }^{\mathrm{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right) \equiv \xi$. The function $\mathrm{V}_{\mathrm{S}}{ }^{\mathrm{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right)$ appears to be a certain superposition of the functions $\Phi_{i}^{\mathrm{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right)$ and $\Psi_{\mathrm{i}}^{\mathrm{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right), \quad \mathrm{i}=4 \ldots \mathrm{k}$. According to the theorem conditions, there exists a subset of functions $\mathrm{W}_{\mathrm{j}}=\left\{\mathrm{W}_{1} \ldots \mathrm{~W}_{\mathrm{mj}}\right\}$ that are mutually independent, while the other functions are representable by their combination. Consequently, the identity: $\mathrm{V}_{\mathrm{S}}{ }^{\mathrm{j}}\left(\mathrm{X}^{\mathrm{n}-1}\right) \equiv \mathrm{V}_{S}{ }^{\mathrm{j}}\left(\mathrm{W}^{\mathrm{mj}}\right)$ is rightful. Thus, function (24) is equivalent to the sum of two functions: $\mathrm{P}\left(\mathrm{X}^{\mathrm{n}-1}\right) \equiv \mathrm{V}_{\mathrm{S}}{ }^{\mathrm{j}}\left(\mathrm{W}^{\mathrm{mj}}\right) \oplus \xi$. Furthermore, according to the theorem conditions, function $\xi$ is independent of the functions of set W , and the functions of set W , in their turn, are mutually independent. Consequently, if denote $\xi=\mathrm{w}_{\mathrm{mj}+1}$, then the transition to a new coordinates system: $\mathrm{X}^{\mathrm{n}} \rightarrow \mathrm{W}^{\mathrm{mj}+1}$ is possible. In this coordinates system function (24) is a sum of the balanced function $\left(\xi=\mathrm{w}_{\mathrm{mj}+1}\right)$ and a function that does not depend on the variable $\mathrm{w}_{\mathrm{mj}+1}$. This fact ensures the balancedness of function (24) at any j and implies, in its turn, that function (20) satisfies the conditional entropy maximum criterion.
The nonlinearity of the functions like (20) may be shown to be equal $2^{\mathrm{n}-2}$.

## 8 Conclusions

The formalized method suggested for obtaining SACfunctions of high nonlinearity is based on utilizing the generation of function properties with the maximum of the total and conditional entropy for the orthogonal Boolean spaces. The method operates with ANF, which on the one hand removes the technological restrictions on obtaining functions of a large number of variables (the experiments carried out have proved the practical possibility to obtain cryptographically strong functions of hundreds variables with use of personal computers) and on the other hand makes it possible to obtain functions most suitable for computation.

Comparing to the known methods for obtaining cryptographically strong functions, the suggested one requires much less computational resources. So, comparing to one of the most effective methods of
synthesis [3], the suggested one provides the performance by about two orders higher.

The significant advantage of the presented approach comparing to the known ones [2,3,5] is that it allows the generation of an appreciably larger number of balanced SAC-functions from all the possible at a given number of $n$ variables. So, for $\mathrm{n}=4$, the method suggested may synthesize above 200 functions, while the method described in [5] provides developing only 96 functions, and method [3] does only 72 ones.

## References

1. Cusic T.W. On construction of balanced correlation immune function, in sequences and their application. // Proceeding of SETA'98-Springer Discrete Mathematics and Theoretical Computer Sciences,-1999-P.184190.
2. Forre R. The strict avalanche criterion: spectral properties of Boolean functions and extended definition // Advances in Cryptology - Crypto'88 Proceeding, Lecture Notes in Computer Sciences, 403-1990 P.450-468.
3. Kurosawa K., Satoh T. Design of SAC/PC(1) of Order k Boolean Functions and Three Other Cryptographic Criteria.// Advances in Cryptology -Eurocrypto'97 Proceeding, Lecture Notes in Computer Science 1233-1997-P.433-449.
4. Millan W., Clark A., Dawson E. Heuristic design of cryptographically strong balanced Boolean functions // Advanced of Cryptology - Eurocrypt'98 Proceeding Lecture Notes in Computer Sciences, 1403 - 1998 P. 485-499.
5. Polymenopolos A., Bardis N.G, Bardis E.G., Markovskaja N.A. Design and Implementation of Boolean Balanced Function Satisfying Strict Avalanche Criterion (SAC) - Problems in Applied Mathematics and Computational Intelligence. WSESP, 2000, P.12-16.
