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Abstract:- Properties of the total and conditional entropy – Strict Avalanche Criterion (SAC) are 
studied. The theorems that have been proved state the necessary and sufficient conditions for the total 
and conditional entropy (SAC) maximum of the special type functions, namely, D-functions. A 
procedure for synthesis of cryptographically strong balanced Boolean functions has been developed on 
the basis of the results obtained. It allows obtaining a more expanded class of Boolean functions for 
cryptographic application comparing to the known methods of synthesis 
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1 Introduction 
 

Most part of modern cryptographic algorithms, the 
block cipher, stream cipher and hash-algorithms among 
them, make use of Boolean transforms. 
Cryptoresistance to attacks by differential and linear 
cryptanalysis methods, depends on special properties of 
Boolean functions utilized in the algorithms.  

The entropy characteristics and nonlinearity of 
Boolean functions determine these properties. A 
reasonable level of security with respect to the modern 
methods of attacks is provided by Boolean functions 
possessing high nonlinearity and the maximal entropy 
characteristics. 
  
This work was supported by a grant by the Greek Ministry of 
Development - General Secretariat for Research and Technology 
and the European Community Social Funds. The main part of this 
work was carried out when the authors where attending the 
Operational program “Competitiveness” 2000 - 2006 ENTER 
2001. 

 

The latter property implies that a function attains 
the value of “zero” or “one” with equal probability 
and changes its value with alteration of the input 
parameters also with equal probability. Such 
functions have the zero level of auto-correlation 
and the only method for obtaining the reverse 
transform is total searching. 

Obtaining Boolean functions with high 
nonlinearity and entropy characteristics is a 
difficult problem unsolved by the present time. 
 
2 Problem statement  
Of great practical importance is the development 
of some formalized methods for automatic 
generation of both single functions and systems of 
orthogonal functions of a large number (several 
hundreds) of variables applying arbitrary chosen 
keys. 
Taking into account the large number of 
variables, the adequate methods for practical 
application should generate functions as 
algebraic normal forms (ANF) or in a procedure 
form, without utilizing the truth tables that 



require memory capacity exceeding the facility of 
modern computers.  
The most significant criteria to evaluate the 
procedures from their practical application point of 
view are: 

 the qualitative characteristics of the generated 
functions (the value of the nonlinearity, the order 
of nonlinearity, the propagation properties); 
 the size of the computational recourses required; 
 the formalized character of the process of 
obtaining the required functions with regard to 
the key taken at random; 
 the maximal number of cryptographically strong 
functions that the method is able to generate; 

By now a number of methods for synthesis of 
cryptographically strong Boolean functions have been 
suggested. Some of them, for example [2] provide for 
spectral Walsh-transforms application to obtain strong 
Boolean functions. Nevertheless such an approach 
cannot be adopted as a reasonable one from the 
technological aspect, since, in the course of synthesis 
of functions of n variables, with the tables of functions 
and spectra values whose capacity is in proportion to 
2n. The operation of reverse Walsh-transform, that is 
basic for this method, also requires time 
proportionally to 2n. 
Cryptographically strong Boolean functions may be 
obtained by means of bent-functions deconcatenation  
[1], however obtaining the bent-functions of a great 
number of variables as such is also a complex 
technological problem whose solution can be achieved 
only with expenditure of significant computational 
resources.   
The heuristic methods of synthesis [4] are not suitable 
for automatic generation of functions in dependence 
on a randomly chosen key. 
Nowadays, the most acceptable methods in practice 
for synthesis of ANF of cryptographically strong 
Boolean functions are the methods described in [3,5]. 
Their main shortcoming is that they enable only a 
small number of cryptographically strong functions 
from the total amount to be generated. The reason for 
that is that these methods are founded on the special 
properties of a restricted subset of cryptographically 
strong Boolean functions. To develop methods that 
allow for generating the most part of the 
cryptographically strong functions, a more thorough 
and overall investigation of their properties is 
necessary. 
 
 

3 Basic Definitions and 
Properties of SAC-functions  

 
The Hamming weight W (f(x1,…,xn) of a 
Boolean function f(x1,…,xn) of n variables is the 
total number of the values of “one” that the  
function attains on the 2n possible tuples of the 
variables values that form the set Z 
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The Boolean function f(x1,…,xn) satisfies the 
total entropy maximum criterion, i.e., is balanced 
if it takes the values of “zero” and “one” with 
equal probability: 
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The Boolean function f(x1,…,xn) satisfies the 
criterion of the conditional entropy maximum or 
Strict Avalanche Criterion (SAC), if alterating any 
of its n variables results in changing the value of 
the function with the probability of 0.5. 
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A system of Boolean functions 
G={f1(x1,…,xn),f2(x1,…,xn),…,fn(x1,…,xn)} is an 
orthogonal one, if XOR of any subset of the 
system functions is a balanced function: 
 12)),...,1((: −=⊕
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In this case the non-linearity, N (f(x1,…,xn)), of 
the Boolean function f(x1,…,xn) is determined as 
the minimal Hamming's distance to the linear 
functions: 
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4  D-functions 
 
D-function of a power k is the sum of a linear 
function L0(X0) and of the conjunction k of linear 
functions L1(X1), L2(X2),…,Lk(Xk)  that develop 
an orthogonal system: 

)6()0X(0L)kX(kL...)2X(2L)1X(1L)X(f ⊕⋅⋅⋅=  



where Li(Xi) is a linear function determined on the set 
of variables {Xi}. The following special variants of D-
functions exist: 
D-function of the 1-st power is a linear function. 
Degenerated D-function is a function, whose linear 
part L0(X0) is a linear combination of the other 
components (Li(Xi), i=1…k): 
L0(X0)=a0⊕a1⋅L1(X1)⊕a2⋅L2(X2)⊕…⊕ak⋅Lk(Xk)  (7) 
 
Separated D-function is a function whose linear 
components of the conjunction (Li(Xi), i=0…k) are 
determined on non-overlapping tuples: 
{Xi}∩{Xj}=∅,  ∀ i, j: i ≠ j, i=1…k, j=1…k   
{X1}∪{X2}∪ … ∪{Xk}={X}                           (8) 
 
Lemma 1. Hamming’s weight of a function-sum F = 
f1(x) ⊕ f2(x) is related to Hamming’s weights of the 
functions-summands through the following relation: 
W(f1(x)⊕f2(x))=W(f1(x))+W(f2(x))–2W(f1(x)⋅f2(x)) (9) 
 
Corollary 1.(Generalization of Lemma 1 for 3 
functions): 
W(f1(x) ⊕ f2(x) ⊕ f3(x))=  
= W(f1(x)) + W(f2(x)) + W(f3(x)) –  

- 2 [W(f1(x)⋅f2(x))+W(f2(x)⋅f3(x))+  
+W(f3(x)⋅f1(x))]+ 4W(f1(x)⋅f2(x)⋅f3(x)) (10) 
 

Corollary 2.(Generalization of Lemma 1 for m 
functions): 
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Lemma 2. Hamming’s weight of the conjunction of k 
variables F = x1⋅x2⋅ … ⋅xk is equal to: 
W(F) = 2n/2k = 2n-k                                           (12) 
 
Corollary 3. Hamming’s weight of the function-
product F = f1(x)⋅ f2(x)⋅ … ⋅fk(x) is equal to 2n-k if 
functions fi(x), I=1,…,k develop an orthogonal 
system. 
 
Theorem 1. The necessary and sufficient condition 
for a D-function to satisfy the total entropy maximum, 
that is to be a balanced one, is its property of non-
degeneracy, that is the linear component L0(X0) of the 
D-function and the linear functions L1(X1), 
L2(X2),…,Lk(Xk) must compose an orthogonal system. 
 
Proof.  
Present the D-function as a XOR of 3 component: 
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, where 
F1(X) = L1(X1) ⋅L2(X2)⋅ … ⋅Lk(Xk) 
F2(X)=c0⊕c1⋅L(X1)⊕c2⋅L2(X2)⊕…⊕ck⋅Lk(Xk), is 
a part of a linear function representable in form 
of the linear combination of the conjunctive part 
components L0(X0), ch∈{0,1},h=0,…k , 
F3(X)=L0(X0)⊕F2(X)  -  is a part of linear 
function L0(X0) non-representable in form of 
linear combination of the multiplicative part 
components. 
 
Necessity. 
Make use of the proof method from the opposite. 
Suppose, function (13) is a degenerated D-
function. In a degenerated function the 
component F3(X) = 0. Apply Lemma 1 for 
determining the number of ones in the function: 
W(F(X)) = W(F1) + W(F2) – 2W(F1F2). 
According to Corollary 3: W(F1) = 2n-k. Since 
F2(X) is a linear function, then Hamming’s weight 
F2 equals W(F2) = 2n-1. Representation of 
functions F1(X) и F2(X) is a logical product of the 
conjunctive components L1(X1),…,Lk(Xk) by a 
linear function of L1(X1),…,Lk(Xk):  
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If the number of the non-zero components is 
even, then F2(X)=0, and, correspondingly, 
F1(X)⋅F2(X)=0, otherwise F1(X)⋅F2(X)=F1(X) and 
accordingly to (12)  
W(F1(X)⋅F2(X))=W(F1(X))=2n-k.  
 
In the first case W(F(X)) = 2n-k + 2n-1 + 2⋅0 =2n-1 
+2n-k, and correspondingly, in the other one  
W(F(X))=2n-k+ 2n-1–2⋅2n-k=2n-1–2n-k. 
Thus, in both cases function (13) appears to be 
non-balanced. Consequently, the assumption 
about the degeneracy of the initial function is 
false. Therefore, to satisfy the unconditional 
entropy maximum criterion, the D-function must 
be non-degenerated, which proves the theorem. 
 
Sufficiency. 
Since function L0(X0) does not depend linearly 
on the conjunctive components L1(X1),…,Lk(Xk), 
they altogether develop a system of k+1 
orthogonal functions, so transition to a new 
coordinates system {Z}k+1 is quite rightful, here  



)(

,...,1),(

001 XLz

kjXLz

k

jjj

=

==

+

                                        (15) 

In the new coordinates system, the D-function has the 
form: F(Z) = z1⋅z2⋅…⋅zk⊕zk+1, that is, it represents the 
XOR of the balanced function (zk+1) and the function 
(z1⋅z2⋅…⋅zk) that does not depend on the former one 
and, therefore, the D-function is a balanced one. Since 
the number of “ones” in the function does not depend 
on the form of its representation, the non-degenerated 
D-function under consideration meets the 
unconditional entropy maximum criterion, which 
proves the statement. .24022)( 48 =−=fN  
 
5  D-functions of the 2-nd power 
 
Consider a special case of D-functions, namely, 
functions of the second power. 
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Theorem 2.  D-function of the 2nd power satisfies the 
criterion of conditional entropy maximum, that implies 
it is always a SAC-function if Х1∪X2 ={x1,…,xn}. 
 
Proof. For the proof, let us make use of a known 
statement [5] that if for all xj, j=1,2,…,n, at 
representation of function f(X) in the form:  
f(X) = gj(X) +xj⋅hj(X), (here gj(X), hj(X), are functions 
that do not depend on xj), functions hj(X),j=1,…,n are 
balanced ones, then f(X) meets the conditional entropy 
maximum criterion, so it is a balanced SAC-function. 
Let xj∈X1, xj∉X2, then function L1(X1) may be 
represented in the form L1(X1)=xj⊕Rj(X1-xj), 
correspondingly f(X)=(xi⊕R1(X1-xj))⋅L2(X2)⊕ 
L0(X0)=xj⋅L2(X2)⊕gj(X). Since the function L2(X2) is 
linear and correspondingly balanced, independent of xj, 
so with respect to the variable xj function f(X) 
corresponds to SAC. It may be proved in the similar 
way that function f(X) is a SAC-function, if variable xj 

∈X2, xj ∉X1. 
If xj ∈X2, xj ∈X1, then  

f(X)=(xj⊕R1(X1-xj))⋅(xj⊕R2(X2-xj))⊕L0(X0)= 
=(xj⊕R1(X1-xj))⋅(xj⊕R2(X2-xj))⊕L0(X0)⊕R1(X1-
xj)⋅R2(X2-xj)⊕xj⋅(1⊕R1(X1-xj)⊕R2(X2-xj))= 
=xj⋅(1⊕R1(X1-xj)⊕R2(X2-xj))⊕gj(X), that is the 
multiplier at xj in this case as well appears to be a linear 
function, and correspondingly, a balanced one, because 
R1(X1-xj)≠R2(X2-xj), in view of 
L1(X1)≠L2(X2)⇒(xj⊕R1(X1-xj))≠(xj⊕R2(X2-xj)). 
 

So, D-function of the second power (16), for 
which the condition Х1∪X2 ={x1,…,xn} is held, is 
always a SAC–function . 

For example, consider synthesis of a function 
of 4 variables. Let L1=x1⊕x2⊕x3, L2=x1⊕x4, 
L0(X)=x2. Then f(x)=(x1⊕x2⊕x3) ⊕ (x1⊕х4)⊕х2 = 
x1⊕ x2 ⊕x1⋅x4⊕  x1⋅x2 ⊕ x2⋅x4 ⊕ x1⋅x3 ⊕ x3⋅x4 . 
 
6 Compound D-functions 
 
Consider a Boolean function that is a XOR of a 
linear function L0(X0), of the product of liner 
functions L1(X1) and L2(X2) such that 
X1∪X2={x1,…,xn} and of the product k (k ≤ n-3) 
of linear functions L3(X3),L4(X4),…,Lk+2(Xk+2), in 
this case all the functions Lj, j=0,…,k+2 develop a 
system of linearly-independent functions. 
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Demonstrate that such a Boolean function satisfies 
the conditional and unconditional entropy 
maximum criterion. 

Since all the linear functions L0(X0),…,Lk+3(Xk) 
are linearly-independent, transition to a new 
coordinate system {Z}: zj=Lj(Xj),j=0,…,k+2  is 
lawful. 

243210 ...)( +⋅⋅⋅⊕⋅⊕= kzzzzzzZf           (18) 
Since function (18) is a XOR of a balanced 
function (z0) and a function independent of the 
variables of the balanced function, then function 
(18) is a balanced one. Since the number of “ones” 
does not depend on the representation of the 
function, the function (17) satisfies the criterion of 
unconditional entropy maximum. 

Now disclose that function (18) satisfies the 
criterion of conditional entropy maximum. For 
this, just as at proof of Theorem 2, it is necessary 
to reveal that for all xj, j=1,2,…,n, at representing 
the function f(X) in the form: f(X)=gj(X)+xj⋅hj(X), 
the function hj(X) is a balanced one. 

If xj∉{X3,X4,…,Xk+2}, then the course of the 
proof is quite identical to that of Theorem 2 
presented above. If xj∈{X3,X4,…,Xk+2}, then on 
introducing the following symbols for the linear 
functions Ri(Xi)=Li(Xi), δi=0 if xj∉Xi and Ri(Xi-
xj)=Li(Xi)⊕xj, δi=1 if xj∈Xi for i=1,…,k+2, the 
function hj(X) independent of xj may be 
represented as  
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Since all the functions Rl, l=1,…,k+3 composing (19) 
are linearly-independent, then, according to Theorem 1, 
each of the functions hj, j=1,…,n is balanced, and 
consequently the function determined by (17) possesses 
the conditional entropy maximum, so it is a SAC-
function. 
 
The theoretical results obtained make it possible to 
formulate the following procedure for obtaining 
Boolean functions possessing the maximum of the total 
and conditional entropy: 
On the set of {x1,…,xn} variables, 3 ≤ t ≤ n linear 
Boolean functions are built that develop an orthogonal 
system , and in doing so the union of variables set 
comprised in the linear function L1(X1) and L2(X2) 
must compose the total set of the variables 
X1∪X2={x1,x2,…,xn}. 
Accordingly to (18), the normal algebraic form is built 
of the Boolean function that corresponds to the 
criterion of the total and conditional entropy 
maximum, or, in other words, is a balanced SAC-
function. 

The procedure suggested for balanced Boolean 
SAC-functions is illustrated by the following example 
of synthesis of a balanced function of six variables 
(n=6). According to item 1, a system of k=n=6 linear 
Boolean functions is built that develop an orthogonal 
system: L0(x1) =x1, L1(x1,x2,x3)=x1⊕x2⊕x3, L2(x4,x5,x6) 
= x4⊕x5⊕x6, L3(x3,x4)=x3⊕x4, L4(x2)=x2, L5(x4,x6)=x4 
⊕x6. In correspondence with (18) the balanced SAC–
function is built in the form: f(X)=x1⊕ 
(x1⊕x2⊕x3)⋅(x4⊕ x5 ⊕ x6) ⊕x2⋅(x4⊕ x3)⋅(x4⊕ x6)=x1⊕ 
x1⋅x4⊕x1⋅x5⊕x1⋅x6⊕x2⋅x5⊕x2⋅x6⊕x3⋅x4⊕x3⋅x5⊕ 
x3⋅x6⊕x2⋅x4⋅x6⊕x2⋅x3⋅x4⊕x2⋅x3⋅x6. The non-linearity of 
the function synthesized is 20, and the non-linearity 
order is equal to 3. 
 
7  Superposition of the functions 
 
The suggested approach may be generalized for 
synthesis of functions in the orthogonal spaces of other 
functions. 
Let there exist:  
a) an orthogonal system of n functions {Z}n 

 b) an arbitrary function of (n-1) variables Sn-1(X) 
Then the next superposition will be balanced:  

in1i1i21 z)z,...,z,z,...,z,z(S)X(F ⊕= +−               (20) 
 
Theorem 3. Let there exist the following k (3 ≤ k 
≤ n) functions of n variables Xn=(x1…xn): 
Z1(Xn)=Φ1

j(x1…xj-1xj+1…xn)⊕ 
⊕xj⋅Ψ1

j(x1…xj-1xj+1…xn),   with j=1…n; 
 
Z2(Xn)=Φ2

j(x1…xj-1xj+1…xn)⊕  
⊕xj⋅Ψ2

j(x1… xj-1xj+1…xn) ,with j=1…n; 
 
Z3(Xn)=Φ3

j(x1…xj-1xj+1…xn)⊕ 
⊕xj⋅Ψ3

j(x1… xj-1xj+1…xn) ,with j=1…n;  
 
Zk(Xn)=Φk

j(x1…xj-1xj+1…xn)⊕ 
⊕ xj⋅Ψk

j(x1… xj-1xj+1…xn), with j=1…n; 
                                                                       (21) 
,denominate 
ξ(Xn-1)=Φ2

j(Xn-1)⋅Ψ3
j(Xn-1)⊕Φ3

j(Xn-1)⋅Ψ2
j(Xn-1)⊕  

⊕Ψ2
j(Xn-1)⋅Ψ3

j(Xn-1)⊕Ψ1
j(Xn-1)  

In this case: 
function Z1(Xn) is balanced; 
functions{Z} are mutually independent; 
in the set of functions Φi

j(Xn-1) and Ψi
j(Xn-1), 

i=4…k  ∀ j=1…n , there exists a certain subset 
{Wj} (of mj functions) all the functions of 
which are mutually independent. Moreover, the 
functions that do not enter the subset {Wj} may 
be represented through a sum of function from 
set {Wj}. 
Function ξ(Xn-1) is balanced and independent 
of the set of functions {Wj}, ∀ j=1…n; 

Then the following function satisfies the 
conditional and total entropy maximum 
criterion: 

)22)(X(Z)X(Z)X(Z)y,...,y(S)X(F n
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,where  
S – an arbitrary function of(k-3) variables 
уi = Zi+3(Xn), i=1…k-3 
 
Proof. 
Since functions (21) are mutually independent, 
transition is possible to a new coordinate 
system Хn → Zk  where function (22) is 
equivalent to the following one: 

132k4
kn ZZZ)Z,...,Z(S)X(F)X(F ⊕⋅⊕=≡          (23) 

 
This function is balanced because it consists of 
the sum of the balanced function (Z1) and a 
function independent of the variables of the 
balanced function Z1. Since the balancedness of 
a function does not depend on its representation, 



function (23) satisfies the total entropy maximum 
criterion, which proves the theorem. 

Present function (20) in the form: F(Xn) = US
j(Xn-1) 

⊕ UZ3•Z2
j(Xn-1) ⊕ UZ1

j(Xn-1) ⊕   xj⋅[ VS
j(X n-1) ⊕ 

VZ3⋅Z2
j(X n-1) ⊕ VZ1

j(X n-1)  ]. Consequently, function 
(20) satisfies the conditional entropy maximum 
criterion if the following function satisfies the total 
entropy maximum criterion for any j: 

)24()X(V)X(V)S(V)X(P 1nj
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The following identity is lawful:  
VZ3⋅Z2

j(X n-1)⊕VZ1
j(X n-1)≡ξ. The function VS

j(X n-1) 
appears to be a certain superposition of the functions 
Φi

j(Xn-1) and Ψi
j(Xn-1), i=4…k. According to the 

theorem conditions, there exists a subset of functions 
Wj={w1…wmj} that are mutually independent, while the 
other functions are representable by their combination. 
Consequently, the identity: VS

j(X n-1)≡VS
j(Wmj) is 

rightful. Thus, function (24) is equivalent to the sum of 
two functions: P(X n-1) ≡ VS

j(W mj) ⊕ ξ. Furthermore, 
according to the theorem conditions, function ξ is 
independent of the functions of set W, and the functions 
of set W, in their turn, are mutually independent. 
Consequently, if denote ξ=wmj+1, then the transition to a 
new coordinates system: Xn → Wmj+1 is possible. In this 
coordinates system function (24) is a sum of the 
balanced function (ξ=wmj+1) and a function that does not 
depend on the variable wmj+1. This fact ensures the 
balancedness of function (24) at any j and implies, in its 
turn, that function (20) satisfies the conditional entropy 
maximum criterion. 
The nonlinearity of the functions like (20) may be 
shown to be equal 2n-2. 
 
8 Conclusions 
 
The formalized method suggested for obtaining SAC-
functions of high nonlinearity is based on utilizing the 
generation of function properties with the maximum of 
the total and conditional entropy for the orthogonal 
Boolean spaces. The method operates with ANF, which 
on the one hand removes the technological restrictions 
on obtaining functions of a large number of variables 
(the experiments carried out have proved the practical 
possibility to obtain cryptographically strong functions 
of hundreds variables with use of personal computers) 
and on the other hand makes it possible to obtain 
functions most suitable for computation. 

Comparing to the known methods for obtaining 
cryptographically strong functions, the suggested one 
requires much less computational resources. So, 
comparing to one of the most effective methods of 

synthesis [3], the suggested one provides the 
performance by about two orders higher. 
 
The significant advantage of the presented 
approach comparing to the known ones [2,3,5] is 
that it allows the generation of an appreciably 
larger number of balanced SAC-functions from all 
the possible at a given number of n variables. So, 
for n=4, the method suggested may synthesize 
above 200 functions, while the method described 
in [5] provides developing only 96 functions, and 
method [3] does only 72 ones. 
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