

Upgrading Checkers Compositions

Yaakov HaCohen-Kerner, Daniel David Levy, Amnon Segall
Department of Computer Sciences, Jerusalem College of Technology (Machon Lev)

21 Havaad Haleumi St., P.O.B. 16031, 91160 Jerusalem, Israel

Abstract: Computer checkers programs achieve outstanding results at playing checkers.
However, no existing program can either compose or improve adequate checkers
compositions. In this paper, we present a model that is capable of improving the quality of a
part of the existing checkers compositions. In this model we attempt to improve a given
composition by a series of meaningful checkers transformations using hill-climbing search,
while satisfying several criteria at each step. This model has been implemented in a working
system. The results of the experiment we carried out show that about half of the compositions
have been improved.

Key-Words: Artificial Intelligence, Checkers, Complexity, Composition of Problems,
Computer Checkers Programs, Computer Game Playing, Evaluation Function, Pruning,
Transformations

1 Introduction
Over the years, games in general and
checkers in particular have proven to be
very interesting and attractive domains,
whilst also proving fertile ground for
techniques and ideas that later have been
used in various domains of computer
sciences in general and artificial
intelligence in particular. For example,
research concerning game theoretic
approaches to multi-robot planning [5] and
to robot tracking problem [7] have been
presented.
 However, to the best of our knowledge,
there is no program able to either compose
or improve adequate checkers
compositions.
 In this paper, we propose a model that
is capable of improving a part of the
existing checkers compositions. We
formalize a major part of the knowledge
needed for judging the quality of checkers
compositions (8 x 8 draughts). The basic
idea is to attempt to improve a given
composition with respect to the difficulty
to solve the composition. The
improvement is performed by a series of
meaningful checkers transformations using
a hill-climbing search while satisfying
various criteria, step by step, until no
further adequate transformations are
available.

 This model has been implemented in a
working system. It has been tested on 139
known checkers compositions taken from
checkers web-sites [e.g.: 6 and 8]. The
results show that about half of the
compositions have been improved.
 This paper is organized as follows:
Section 2 gives background concerning
history of checkers programs and
composition of checkers compositions.
Section 3 describes the proposed model.
Section 4 presents the results of the
experiment and analyzes them. Section 5
summarizes the research and proposes
future directions.

2 Checkers Compositions

2.1 Checkers Programs History
The history of checkers starts about 3400
years ago, when it was known as
"Alquerque" in ancient Egypt, played on a
5 x 5 board. During the centuries,
checkers has been developed under
different names, sizes of boards and rules
for various countries.
 The history of checkers programs starts
on 1959. The first checkers program was
programmed by Samuel [10 and 11]. His
program was also a milestone in machine

learning. His method relies in part on the
use of a polynomial evaluation function
comprising a subset of weighted features
chosen from a larger list of possibilities.
The learning technique relies on an
innovative self-learning procedure
whereby one version that learns competed
against another version. The loser was
replaced with a deterministic variant of
the winner by altering the weights on the
features that were used.

The current computer world champion
checkers program is Chinook [3, 12 and
13], developed at the University of
Alberta by a team of researchers led by
Schaeffer. It was the first computer
checkers program to win the world man-
machine checkers championship. The
Chinook team produces databases which
give the computer perfect knowledge for
all positions with 10 pieces or less on the
board of the form win/loss/draw. Chinook
relies on a linear evaluation function that
considers several features of the game
board including: 1) piece count, 2) kings
count, 3) trapped kings, 4) turn, 5)
runaway checkers (unimpeded path to
king). No machine learning methods have
been employed successfully in the
development of Chinook.

Chellapilla and Fogel [1 and 2] develop
another interesting checkers program. In
contrast to the two previous programs,
they did not rely on look-up tables, perfect
end game databases, grand master
openings, or even features about checker
positions that are believed to be important.
Instead, they applied a coevolutionary
learning process on generations of neural
networks, where each network serves as
an evaluation function to describe the
quality of the current board position. Their
program did not use any human expertise
in the form of features that are believed to
be important to playing well. After 840
generations, their process has generated a
neural network that can play checkers at
the expert level.

2.2 Checkers Compositions
Some of the checkers compositions are
composed by human beings, and others are

taken from actual play or analysis. In most
of the compositions, White begins and
wins. In the rest, White begins and draws.
 However, to the best of our knowledge,
there is no program able to either compose
or improve adequate checkers
compositions. In a related domain, chess,
HaCohen-Kerner et. al. [4] have developed
a model that has been implemented in a
working system for improving two-move
chess compositions.
 In this research, we have developed a
similar model for checkers. Checkers and
chess resemble each other in many ways.
Nevertheless, there are many differences
between the two games. For example:
checkers is played only on half of the
squares (32) while chess is played on the
whole board (64). Checkers has 2 kinds of
pieces while chess has 6. In checkers a
typical position without any captures has 8
legal moves, while in chess the average is
about 35-40 moves. Additional differences
can be found in [12 and 13].
 There are also differences between
checkers compositions and chess
compositions. While in chess the most
frequent compositions are mate in either
two or three moves, in checkers most
compositions are solved by a series of
moves (usually much more three moves).

3 The model
The improvement process attempts to
improve a given composition through by a
series of meaningful checkers
transformations, while satisfying several
criteria at each step.
 The transformations that we use were:
� Move of a piece from one square to

another square
� Deletion of a piece from the board
� Addition of a piece to the board
 The input composition is tested
according to a tree search. Then, it is
analyzed automatically by a special
composition evaluator in order to find its
quality-score.
 After each transformation, we apply
the following three checks: (1) It is a legal
checkers position, (2) It is a winning
composition and (3) The new composition

is of a higher quality than the original
composition. In such a case, the new
position is stored as an improvement and

used as the current position.
In Fig. 1 we describe the main flow of

the composition algorithm.

 gets an original Start
 Success composition

 Failure
 (illegal checkers position)

 Success
 Success
 Success

 Failure

 Failure Failure
 (not a winning Failure

 composition) no more
 combinations Success

 Outputs the stored Failure
 improvements

 Success

 End Success (a higher evaluation
 than the original
 composition’s evaluation)

Fig. 1. Main flow of the composition algorithm

3.1 Complexity and Pruning
The number of possible checkers
configurations is estimated as 5*1020 [12
and 13], while in chess the� number� of�
different� legal� positions is estimated at
about 1040 [9]. However, not all are
positions legally reachable from the
starting position. Schaeffer et. al. [12 and
13] estimate that there are O(1018) legal
checkers positions. Theoretically, given a
certain checkers composition, it is
possible to check all these positions as
candidates for improvements of the given
composition. All these positions can be
reached, for example, by using various
deletion and addition transformations.
 In practice, however, our model has
overcome this combinatorial explosion by
using pruning. The pruning is performed
by the checks mentioned before. In this
way, the number of positions the model
has examined in any given composition

has been reasonable to deal with.
 The function for evaluating the quality
mark of a composition is defined in Fig. 2.
The concepts referenced in this function
are defined later.

�valueoblem _Pr
� �
� � � �

� �

�

�
�
�
�
�
�

�

�

	
	
	
	
	
	

�

��

��

�
�

�

�
}

0
_

__
93_
__

pieces
glassesall

valueglasses

StatusPieceValueMove

ForcingMoveBlocking

levelFreedomvaluepieceposition

�levelFreedomwhere _:

statuspiecevalueMovePosition __ ��

�valueglasses _
� � � �
� � � �
� � � �

�
�
�
�

�

�

	
	
	

�

� �
�
�

�
� �
�

� �
�

5_3_
2_5_

3_2_

FullOpponentHalfOpponent

FriendlyOpponentFullPlayer

HalfPlayerFriendlyPlayer

Fig. 2. The evaluation function

Winning
Checker

Checkers
Checker

Winning
Checker

old
position

stores the new position as
a possible improvement

new
position

Transformation
Maker

Checkers
Checker

Problem
Evaluator

Composition
Evaluator

Position 1 presents the common notation
for the squares of a 8 x 8 draughts.

 �� �� �� ��

�� �� �	 �

 �� �� �� ��

�� �� �� ��

 �	 15 14 13

12 11 10 9

 8 7 6 5

4 3 2 1

 Position 1

Position 2 presents the values of the
“position” feature for these squares.

 4 4 4 6

4 3 � �

 � � � �

� � � �

 � � � �

3 2 2 2

 3 3 3 4

6 4 4 4

 Position 2

 For instance, squares 4 and 29 in
position 2 get 6 points each because they
are placed on the main diagonal.

Piece_value is defined as follows: A king
has a value of three points, and a soldier
has a value of one point.
Freedom_level is a parameter of "how
free to move" is a piece before making the
current move. This value is calculated by
the future position of the piece, the value
of the move, and the status of the piece
after the move is made.
Blocking_move gets 3 points if the
location of the piece is blocking the
opponent from capturing a player’s piece,
and 0 if not.
Forcing occurs when we leave the
opponent no choice other then making a
specific move. Forcing gets 4 points.
Move_value checks the move we want to
make, and gives it a value of 9 points to a
move leading to forcing and 3 points to a
move leading to a blocking_move.
Piece_status is defined in Table 1. The
worst piece status is where the piece is
threatened and not threatening. The best
piece status is where the piece is
threatening and not threatened.

Table 1. The piece status

King Soldier Threatened Threatening
��� ��� V X
�
� �
� V V
�
� �
� X V
� � X X

Glasses_value: This value indicates the
value of all the "Glasses" on the board.
"Glasses" is a situation where a piece can
enter a square that is between two other
pieces of any type (White/Black,
King/Soldier) as shown in position 3
(White’s turn to play).

 Position 3

 Position 4

Piece #1�

Piece #1�

Piece #2�

Piece #2�

Piece #3�

"Full Glasses" is a situation when there is
Glasses and the third piece is an opponent
piece that can capture or be captured, as
shown in position 4.

The following flags indicate the kind
of Glasses that exists:
� Player_Friendly: A player’s piece is

between 2 player’s pieces.
� Player_Half: A player’s piece is

between 2 mixed pieces (one is a
player’s piece and the other is an
opponent’s piece).

� Player_Full: A player’s piece is
between 2 opponent’s pieces, and can
capture or be captured by a third
opponent’s piece.

� Opponent_Friendly: Same as
Player_Friendly, but for the opponent
side.

� Opponent_Half: Same as Player_Half,
but for the opponent side.

� Opponent_Full: Same as Player_Full,
but for the opponent side.

4 Results
We have tested our model on one hundred
thirty nine real compositions. Most of the
compositions were collected from relevant
checkers web-sites [e.g.: 6 and 8].

0%

0%-1.74%

1.74%+

 Fig. 3. The results

 Fig. 3 describes the general results of
our system: unimproved compositions,
improved compositions in a rate less than
the standard deviation of the
improvements and improved compositions
in a rate greater than the standard
deviation. The results in detail are as
follows:
� Total compositions:139
� Average improvement: 1.347%
� The Variance of the improvements is

3.03%
� The standard deviation of the

improvements is 1.74%
� 72 compositions have not been

improved (51.8%)
� 31 compositions have been improved

by 0%-1.74% (22.3%)
� 36 compositions have been improved

by more than 1.74% (25.9%)
� Total 67 compositions that have been

improved (48.2%)
� Range of improvements is 0%-15% of

the quality-scores of the original
compositions

� Total changes made: 321
� Average number of changes for each

composition: 2.31

Table 2 presents the distribution of the

successful transformations leading to
improvements.

Table 2. Distribution of the
transformations leading to improvements

Transformation # of improvements
<1> 129
<2> 162
<3> 1
<4> 2
<5> 27

 A legend for the transformations
included in Table 2 is given below:
<1> Move to Min.: Moves a piece to a
square where the composition’s value
would minimally increase.
<2> Move to capture without being
captured: Moves a piece in order to
capture an opponent piece, without being
threatened.
<3> Move to max.: Moves a piece to a
square where the composition’s value
would maximally increase.
<4> Add to capture, can be captured: Add
a piece to a square where it can capture an
opponent piece, but also can be
threatened.
<5> Add to capture without being
captured: Add a piece to a square where it
threats an opponent piece, without being
threatened.
 As shown in Table 2, the most

51.8%
22.3%

25.9%

effective changes were: '<2> Move to
capture without being captured.' and '<1>
Move to Min.'. Both changes are made on
White pieces in order to lower the
composition’s value to the White player.
Apparently, it is more effective to lower
the composition’s value for White, than to
raise the composition’s value for Black.

5 Summary and Future Work
We have developed a model that is
capable of improving the quality of a part
of the existing checkers compositions. The
results of the experiment we have made
show that about half of the examined
compositions have been improved.
 In computer game-playing, high levels
of playing have proven inefficient without
deep searching. We believe that this is
also true in order to achieve a high level in
composing checkers compositions.
Therefore, adding a more complex
searching technique rather than using a
hill-climbing search would further
enhance our model. That is, in order to
find the best improvements, we would
need to allow the application of
transformations even when the last tested
transformations do not satisfy the
necessary criteria. In this way, after
making a set of several transformations,
we may reach better and more complex
improvements.
 Another idea is to evaluate the
potential of our system as an intelligent
support system for weak and intermediate
human composers. Application of this
idea over time, on the one hand, can
improve our system’s strength and on the
other hand, can improve these composers’
performance.

References:
[1] Chellapilla K. and Fogel D. B.:
Anaconda Defeats Hoyle 6-0: A Case
Study Competing an Evolved Checkers
Program against Commercially Available
Software. Proc. of CEC, 2000, pp. 857-
863.

[2] Chellapilla K. and Fogel D. B.:
Evolving an Expert Checkers Playing
Program without Using Human Expertise.
IEEE Trans. Evolutionary Computation,
Volume 5, Number 4, 2001, pp. 422-428.
[3] Chinook:
http://www.cs.ualberta.ca/~chinook, 2004.
[4] HaCohen-Kerner Y., Cohen N., and
Shasha E.: An Improver of Chess
Compositions. Cybernetics and Systems.
30, 5, 1999, pp. 441-465.
[5] Galuszka A. and Swierniak A.: Game
Theoretic Approach to Multi-Robot
Planning. WSEAS Transactions on
Computers, Issue 3, Volume 3, July 2004,
pp. 537-542.
[6] Jetten H.:
http://www.xs4all.nl/~hjetten/damnl.html#
favlinks, 2004.
[7] Lucatero C. R., De Albornoz Bueno A.
and Lozano Espinosa R.: A Game Theory
Approach to th Robot Tracking Problem.
WSEAS Transactions on Computers, Issue
4, Volume 3, Oct 2004, pp. 862-868.
[8] Lyman A.:
http://www.acfcheckers.com/origin.html,
2004.
[9] Nievergelt, J.: Information Content of
Chess Positions. ACM SIGART Newsletter
62, 1977, pp. 13-14.
[10] Samuel, A. L.: Some Studies in
Machine Learning Using the Game of
Checkers. IBM Journal of Research and
Development, 3, 3, 1959, pp. 211-229.
[11] Samuel, A. L.: Some Studies in
Machine Learning Using the Game of
Checkers II- Recent Progress. IBM
Journal of Research and Development, 11,
6, 1967, pp. 601-617.
[12] Schaeffer J., One Jump Ahead:
Challenging Human Supremacy in
Checkers, Springer, Berlin, 1997.
[13] Schaeffer J., Culberson J., Treloar N.,
Knight N. B., Lu P. and Szafron D.: A
World Championship Caliber Checkers
Program, Artificial Intelligence, Volume
53, Number 2-3, 1992, pp. 273-290.

Acknowledgment:
Thanks to Reuven Gallant for valuable
comments.

