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Abstract: Computer checkers programs achieve outstanding results at playing checkers. 
However, no existing program can either compose or improve adequate checkers 
compositions. In this paper, we present a model that is capable of improving the quality of a 
part of the existing checkers compositions. In this model we attempt to improve a given 
composition by a series of meaningful checkers transformations using hill-climbing search, 
while satisfying several criteria at each step. This model has been implemented in a working 
system. The results of the experiment we carried out show that about half of the compositions 
have been improved. 
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1   Introduction 
Over the years, games in general and 
checkers in particular have proven to be 
very interesting and attractive domains, 
whilst also proving fertile ground for 
techniques and ideas that later have been 
used in various domains of computer 
sciences in general and artificial 
intelligence in particular. For example, 
research concerning game theoretic 
approaches to multi-robot planning [5] and 
to robot tracking problem [7] have been 
presented. 
 However, to the best of our knowledge, 
there is no program able to either compose 
or improve adequate checkers 
compositions. 
 In this paper, we propose a model that 
is capable of improving a part of the 
existing checkers compositions. We 
formalize a major part of the knowledge 
needed for judging the quality of checkers 
compositions (8 x 8 draughts). The basic 
idea is to attempt to improve a given 
composition with respect to the difficulty 
to solve the composition. The 
improvement is performed by a series of 
meaningful checkers transformations using 
a hill-climbing search while satisfying 
various criteria, step by step, until no 
further adequate transformations are 
available. 

 This model has been implemented in a 
working system. It has been tested on 139 
known checkers compositions taken from 
checkers web-sites [e.g.: 6 and 8]. The 
results show that about half of the 
compositions have been improved. 
 This paper is organized as follows: 
Section 2 gives background concerning 
history of checkers programs and 
composition of checkers compositions. 
Section 3 describes the proposed model. 
Section 4 presents the results of the 
experiment and analyzes them. Section 5 
summarizes the research and proposes 
future directions. 
 
 

2   Checkers Compositions 
 
 
2.1 Checkers Programs History 
The history of checkers starts about 3400 
years ago, when it was known as 
"Alquerque" in ancient Egypt, played on a 
5 x 5 board. During the centuries, 
checkers has been developed under 
different names, sizes of boards and rules 
for various countries. 
 The history of checkers programs starts 
on 1959. The first checkers program was 
programmed by Samuel [10 and 11]. His 
program was also a milestone in machine 



 

learning. His method relies in part on the 
use of a polynomial evaluation function 
comprising a subset of weighted features 
chosen from a larger list of possibilities. 
The learning technique relies on an 
innovative self-learning procedure 
whereby one version that learns competed 
against another version. The loser was 
replaced with a deterministic variant of 
the winner by altering the weights on the 
features that were used. 

The current computer world champion 
checkers program is Chinook [3, 12 and 
13], developed at the University of 
Alberta by a team of researchers led by 
Schaeffer. It was the first computer 
checkers program to win the world man-
machine checkers championship. The 
Chinook team produces databases which 
give the computer perfect knowledge for 
all positions with 10 pieces or less on the 
board of the form win/loss/draw. Chinook 
relies on a linear evaluation function that 
considers several features of the game 
board including: 1) piece count, 2) kings 
count, 3) trapped kings, 4) turn, 5) 
runaway checkers (unimpeded path to 
king). No machine learning methods have 
been employed successfully in the 
development of Chinook. 

Chellapilla and Fogel [1 and 2] develop 
another interesting checkers program. In 
contrast to the two previous programs, 
they did not rely on look-up tables, perfect 
end game databases, grand master 
openings, or even features about checker 
positions that are believed to be important. 
Instead, they applied a coevolutionary 
learning process on generations of neural 
networks, where each network serves as 
an evaluation function to describe the 
quality of the current board position. Their 
program did not use any human expertise 
in the form of features that are believed to 
be important to playing well. After 840 
generations, their process has generated a 
neural network that can play checkers at 
the expert level. 
 
 
2.2 Checkers Compositions 
Some of the checkers compositions are 
composed by human beings, and others are 

taken from actual play or analysis. In most 
of the compositions, White begins and 
wins. In the rest, White begins and draws.  
 However, to the best of our knowledge, 
there is no program able to either compose 
or improve adequate checkers 
compositions. In a related domain, chess, 
HaCohen-Kerner et. al. [4] have developed 
a model that has been implemented in a 
working system for improving two-move 
chess compositions. 
 In this research, we have developed a 
similar model for checkers. Checkers and 
chess resemble each other in many ways. 
Nevertheless, there are many differences 
between the two games. For example: 
checkers is played only on half of the 
squares (32) while chess is played on the 
whole board (64). Checkers has 2 kinds of 
pieces while chess has 6. In checkers a 
typical position without any captures has 8 
legal moves, while in chess the average is 
about 35-40 moves. Additional differences 
can be found in [12 and 13]. 
 There are also differences between 
checkers compositions and chess 
compositions. While in chess the most 
frequent compositions are mate in either 
two or three moves, in checkers most 
compositions are solved by a series of 
moves (usually much more three moves). 
 
 

3   The model 
The improvement process attempts to 
improve a given composition through by a 
series of meaningful checkers 
transformations, while satisfying several 
criteria at each step.  
 The transformations that we use were: 
� Move of a piece from one square to 

another square 
� Deletion of a piece from the board 
� Addition of a piece to the board 
 The input composition is tested 
according to a tree search. Then, it is 
analyzed automatically by a special 
composition evaluator in order to find its 
quality-score. 
 After each transformation, we apply 
the following three checks: (1) It is a legal 
checkers position, (2) It is a winning 
composition and (3) The new composition 



 

is of a higher quality than the original 
composition. In such a case, the new 
position is stored as an improvement and 

used as the current position. 
In Fig. 1 we describe the main flow of 

the composition algorithm. 
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Fig. 1. Main flow of the composition algorithm 

 
 

3.1 Complexity and Pruning 
The number of possible checkers 
configurations is estimated as 5*1020 [12 
and 13], while in chess the� number� of�
different� legal� positions is estimated at 
about 1040 [9]. However, not all are 
positions legally reachable from the 
starting position. Schaeffer et. al. [12 and 
13] estimate that there are O(1018) legal 
checkers positions. Theoretically, given a 
certain checkers composition, it is 
possible to check all these positions as 
candidates for improvements of the given 
composition. All these positions can be 
reached, for example, by using various 
deletion and addition transformations.   
 In practice, however, our model has 
overcome this combinatorial explosion by 
using pruning. The pruning is performed 
by the checks mentioned before. In this 
way, the number of positions the model 
has examined in any given composition 

has been reasonable to deal with. 
 The function for evaluating the quality 
mark of a composition is defined in Fig. 2. 
The concepts referenced in this function 
are defined later. 
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Fig. 2. The evaluation function 
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Position 1 presents the common notation 
for the squares of a 8 x 8 draughts. 
 

 ��  ��  ��  �� 

��  ��  �	  �
  

 ��  ��  ��  �� 

��  ��  ��  ��  

 �	  15  14  13 

12  11  10  9  

 8  7  6  5 

4  3  2  1  
 

                Position 1 
 

 

Position 2 presents the values of the 
“position” feature for these squares. 
 

 4  4  4  6 

4  3  �  �  

 �  �  �  � 

�  �  �  �  

 �  �  �  � 

3  2  2  2  

 3  3  3  4 

6  4  4  4  
 

               Position 2

 For instance, squares 4 and 29 in 
position 2 get 6 points each because they 
are placed on the main diagonal. 
 

Piece_value is defined as follows: A king 
has a value of  three points, and a soldier 
has a value of one point. 
Freedom_level is a parameter of "how 
free to move" is a piece before making the 
current move. This value is calculated by 
the future position of the piece, the value 
of the move, and the status of the piece 
after the move is made. 
Blocking_move gets 3 points if the 
location of the piece is blocking the 
opponent from capturing a player’s piece, 
and 0 if not. 
Forcing occurs when we leave the 
opponent no choice other then making a 
specific move. Forcing gets 4 points. 
Move_value checks the move we want to 
make, and gives it a value of 9 points to a 
move leading to forcing and 3 points to a 
move leading to a blocking_move. 
Piece_status is defined in Table 1. The 
worst piece status is where the piece is 
threatened and not threatening. The best 
piece status is where the piece is 
threatening and not threatened. 
 
Table 1. The piece status 
 

King Soldier Threatened Threatening 
���  ���  V X 
�
�  �
�  V V 
�
�  �
�  X V 
� � X X 

Glasses_value: This value indicates the 
value of all the "Glasses" on the board. 
"Glasses" is a situation where a piece can 
enter a square that is between two other 
pieces of any type (White/Black, 
King/Soldier) as shown in position 3 
(White’s turn to play).  

 

           Position 3 
 
 

          Position 4 

Piece #1�

Piece #1�

Piece #2�

Piece #2�

Piece #3�



 

"Full Glasses" is a situation when there is 
Glasses and the third piece is an opponent 
piece that can capture or be captured, as 
shown in position 4. 

The following flags indicate the kind 
of Glasses that exists: 
� Player_Friendly: A player’s piece is 

between 2 player’s pieces. 
� Player_Half: A player’s piece is 

between 2 mixed pieces (one is a 
player’s piece and the other is an 
opponent’s piece). 

� Player_Full: A player’s piece is 
between 2 opponent’s pieces, and can 
capture or be captured by a third 
opponent’s piece. 

� Opponent_Friendly: Same as 
Player_Friendly, but for the opponent 
side. 

� Opponent_Half: Same as Player_Half, 
but for the opponent side. 

� Opponent_Full: Same as Player_Full, 
but for the opponent side. 

 
 
4   Results 
We have tested our model on one hundred 
thirty nine real compositions. Most of the 
compositions were collected from relevant 
checkers web-sites [e.g.: 6 and 8]. 
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             Fig. 3. The results 
 
 Fig. 3 describes the general results of 
our system: unimproved compositions, 
improved compositions in a rate less than 
the standard deviation of the 
improvements and improved compositions 
in a rate greater than the standard 
deviation. The results in detail are as 
follows:  
� Total compositions:139 
� Average improvement: 1.347% 
� The Variance of the improvements is 

3.03% 
� The standard deviation of the 

improvements is 1.74% 
� 72 compositions have not been 

improved (51.8%) 
� 31 compositions have been improved 

by 0%-1.74% (22.3%) 
� 36 compositions have been improved 

by more than 1.74% (25.9%) 
� Total 67 compositions that have been 

improved (48.2%) 
� Range of improvements is 0%-15% of 

the quality-scores of the original 
compositions 

� Total changes made: 321 
� Average number of changes for each 

composition: 2.31 
 
Table 2 presents the distribution of the 

successful transformations leading to 
improvements. 

 
Table 2. Distribution of the 
transformations leading to improvements 
 

Transformation # of improvements 
<1> 129 
<2> 162 
<3> 1 
<4> 2 
<5> 27 

 
 A legend for the transformations 
included in Table 2 is given below: 
<1> Move to Min.: Moves a piece to a 
square where the composition’s value 
would minimally increase. 
<2> Move to capture without being 
captured: Moves a piece in order to 
capture an opponent piece, without being 
threatened. 
<3> Move to max.: Moves a piece to a 
square where the composition’s value 
would maximally increase. 
<4> Add to capture, can be captured: Add 
a piece to a square where it can capture an 
opponent piece, but also can be 
threatened. 
<5> Add to capture without being 
captured: Add a piece to a square where it 
threats an opponent piece, without being 
threatened. 
 As shown in Table 2, the most 

51.8% 
22.3% 

25.9% 



 

effective changes were: '<2> Move to 
capture without being captured.' and '<1> 
Move to Min.'. Both changes are made on 
White pieces in order to lower the 
composition’s value to the White player. 
Apparently, it is more effective to lower 
the composition’s value for White, than to 
raise the composition’s value for Black. 
 
 
5   Summary and Future Work 
We have developed a model that is 
capable of improving the quality of a part 
of the existing checkers compositions. The 
results of the experiment we have made 
show that about half of the examined 
compositions have been improved. 
 In computer game-playing, high levels 
of playing have proven inefficient without 
deep searching. We believe that this is 
also true in order to achieve a high level in 
composing checkers compositions. 
Therefore, adding a more complex 
searching technique rather than using a 
hill-climbing search would further 
enhance our model. That is, in order to 
find the best improvements, we would 
need to allow the application of 
transformations even when the last tested 
transformations do not satisfy the 
necessary criteria. In this way, after 
making a set of several transformations, 
we may reach better and more complex 
improvements. 
 Another idea is to evaluate the 
potential of our system as an intelligent 
support system for weak and intermediate 
human composers. Application of this 
idea over time, on the one hand, can 
improve our system’s strength and on the 
other hand, can improve these composers’ 
performance. 
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